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foreword

/ will neverforget the first conversation I had with Jim Satker. He was then in the process of

writing his first book. Understanding the Apple 11. Jim and I discussed the details, anoma-
lies, oversights, and paradoxes oftheApple 11hardware as we drove the LA freeways. Designers

like myselffind it very rewarding to encounter others who understand and appreciate what we
feel are the tricks and magic of our circuits. I was able to add to the magic by erplaininff the

unusualframework in which the computerwas designed. Frommy conversations with him, and
from his writing, it is obvious thaiJim has a contagious enthusiasm about Apple computers, and
this enthusiasm is sure to spread to readers ofhis books. In Understanding the Apple II, Jim
provided the definitive treatment ofApple IIhardware. He hasnowfollowed that effort with the

equally definitive Understanding the Apple He.
Patterned after the earlier book. Understanding the Apple lie leaves no stone unturned in

the search into the inner imrkings oftheA pple lie computer. Allfacets ofthe A pple are revealed,

from basic microprocessor operation to the inner secrets of the Apple lie custom ICs. Disk
controller operation—my favorite subject—is explained in great detail. Numerous program-
ming examples illustrate the application ofhardware knowledge.

Anyone who is at all concerned about the workings of the Apple He will benefitfrom this book,

as will students and programmers who have a needfor reliable hardware reference material. It

is an incl^^sive sourcefor a great variety ofApple lie information. TheApple lie holds a special

niche in the history ofmicrocomputers. Documentation ofthis quality is worthy ofthe computer it

describes.



preface

It has been close to a decade s ince an unknown kid,

having some fun in his own creative way, built the

first Apple computer. What a difference a decade

makes. Our boy is well known now, and he and his

pals have built nnillions of Apples with which mil-

lions of people have had a tremendous amount of fun

in their own creative ways.

The creative ways of different people lead them in

different directions, and not all Apple owners use

their computer for the same purposes. Yet diverse as

they are, people who use their Apple have a common
need for knowledg^e and understandingof the work-

ings of the computer. Most of them will teach them-

selves almost everything they learn about the Apple,

so they also have a need for tutorial literature and

meaningful reference material to guide them down
their chosen paths.

The purpose of Underfitanding the Apple lie is to

provide tutorial descriptions and reference mate-

rial concerning the most basic of Apple He related

knowledg-e. It contains explanations of how the

hardware works and how programmers make the

hardware work. Emphasis is placed on assisting the

reader in attaining operational knowledge of the

Apple He. Operational knowledge consists of know-
ing what the Apple He can do, knowing how to make
it do it, and knowing what a controlling program is

making the Apple He do. By way of assisting the

reader in achieving his goals, the goals of this book
are:

1. To provide clear descriptions of microcomputer
fundamentals and of the operational features of

the Apple He.

2. To provide examples that show how knowledge
of the operational features of the Apple He can
be applied.

3. To provide meaningful reference material con-

cerning Apple He hardware and operational
features.

4. To serve as a textbook for Apple-based high
school or university courses teaching computer
fundamentals.

5. lb fill information gaps in Apple He literature
by describing previously undocumented opera-
tional features.

Those who will benefit from reading Understand-

ing the Apple lie are inquiring people who want to

spend some time learning about this machine. Gen-

erally speaking, this refers to those persons who
program the Apple He in any language. It is recog-

nized that different people will carry their investi-

gation to different depths. For thosewho do not have

the time or desire to reach the greater depths, the

overview, bus structure, and I/O chapters (Chapters

1, 2, and 7), as well as the application notes at the end

of every chapter, are recommended as providing a

good foundation for understanding the Apple lie.

As a textbook for students or a learning guide to

hard core enthusiasts, cover to cover reading is

recommended.
While an inquiring mind is the only qualification

required of a reader of this book, certain sections

will be difficult for those readers without some
background knowledge. In order of descending

importance, helpful background knowledge in-

cludes understanding of BASIC programming lan-

guage, hexadecimal and binary number systems,

6502 assembly language, and technical illustrative

aids such as timing diagrams, truth tables, and

schematic diagrams. It should be noted by all read-

ers that (except for the technical aids) they will

eventually have to acquire the listed background
knowledge if they are to achieve a real understand-

ing of the Apple He computer. It is hoped that the

nontechnical aids and language in Understanding

the Apple He are sufficiently descriptive, and that a

technical background, although helpful, is not neces-

sary. In general, the later chapters contain more
detailed and technical information than the earlier

chapters, and the earlier sections in each chapter

are less technically oriented. Appendices E and F
contain some basic information on number systems

and circuit symbols for those readers who come to

this book with no previous knowledge of these

subjects.

Even though Understanding the Apple lie is not a

programming instruction manual, many program-
ming examples that illustrate applications of the

principles being discussed are given in the body of

the text. Where possible, theseexamples are written



in BASIC so that the clearest attainable level of

illustration results. In addition, a number of soft-

ware application notes are included at the end of

various chapters which further demonstrate the

application ofprincipies. These programming notes

are included because understanding the Apple lie

includes a combination of programming knowledge
and hardware knowledge. Unless noted otherwise,

all software examples are creations of the author

and are hereby placed in the public domain. The
author requests that he be given credit as the pro-

grammer in all reproductions of these programs.

A number of hardware application notes are also

included at the ends of chapters. Some of these notes

describe hardware projects which demonstrate rele-

vant principles. Other notes are simple descriptions

of hardware modifications that enhance operation

in some way. Figure 4.7 is an original design of the

author. Readers are encouraged to study, build, or

integrate it into their own designs. The author

requests that he be given credit as the designer in

any reproduction or other use of this schematic. The
D MAnual Controller is being manufactured by the

Southern California Research Group, and is avail-

able by mail as noted in Chapter 4.

Several hardware application notes detail modi-
fications to the Apple or Apple peripherals. Please

read the NOTE OF CAUTION following the Table
of Contents before performing any modifications to

your equipment. It is recommended that readers

unskilled in electronics workmanship who desire a

modification have the work performed at a comput-
er dealership or by a skilled friend. Persons who
modify their hardware should be able, or know
someone who is willing and able, to repair the modi-
fied assembly if it should fail.

Understanding the Apple He is the companion of
my previously published work. Understanding the

Apple II*. These two books are identical in format
and outline, one describing the Apple II computer
and the other describing the Apple He. Readers of
both books will find that, where operational features
in the two computers are identical, the text in the
two books is identical. Those readers will also find
that some application notes which are relevant to
both the Apple II and Apple He are found in both
books. % the extent that operational features and
hardware implementation in the Apple He is differ-
ent than that of the Apple II, Understanding the
Apple He isdifferent from Understanding theApple

•Quality Software, 1983.

In deference to readers who have experience only

with the Apple He, descriptions in Understanding

the Apple lie assume that the reader is not familiar

with the functioning of the older Apple H. However,
Apple II features and functions are sometimes de-

scribed in order to clarify differences between the

two computers or to explain why Apple lie features

exist. Some notes on differences between the Apple
II and lie are contained in Appendix I.

There are differences among Apples that are sold

in various regions of the world, and it is sometimes
difficult to make statements that are accurate for all

versions. Generally, descriptions in this book per-

tain to the Apple He as it is sold in the USA with

separate sections devoted to descriptions of export

versions. Readers in other countries should be aware
that some descriptions, in particular those dealing

with signal frequency and video generation, may
give details that are not accurate in their country.

Those readers should rely on the sections of Chap-
ters 3 and 8 that deal directly with international

Apples for guidance. Additionally, it should be

noted that program listings in Figures 3.11 and 3.12

have to be modified if they are to operate correctly in

50 Hz display scanning Apples such as those found

in Europe.

Figures 1.1, 3.8, 3.10, 5.3, 5.13, 7.1, and 8.5 illus-

trate functions internal to the Apple He special pur-

pose integrated circuits (the lOU, MMU, and timing

HAL). These drawings are my own representations

of those internal functions, based on my observa-

tions of Apple He signals and features. These draw-

ings do not accurately show internal circuit detail,

but are intended only to accurately depict internal

circuit functions.

Understanding the Apple He is the result of an

intensive investigation of the Apple He computer by

the author. There is no other source of much of the

information covered here, and the possibility of

error exists on the part of the author. For those

errors which do exist, the author is truly sorry.

The Apple He is not a perfect computer, Apple
Computer, Inc. is not a perfect company, and I am
not a perfect author. There are many opinions of the

author in the body of the text, and some of them are

negative toward the Apple lie or the company that

manufactures it. The reader must rely on his own
judgment to evaluate these opinions, Although I

am sometimes critical of Apple Computer, Inc., I

acknowledge that the actions of this company have

enriched my life. Although I am sometimes critical

of the Apple He, I believe it is the best personal

computer that money can buy.
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chapter 1

TheApple Ile—

An Overview

The following overview is a brief statement of the
hardware features of the Apple lie computer. It is

not meant to be a description of everything pro-
grams can make the Apple lie do. Rather, it is a
description of the basic capabilities with which
computer programmers and peripheral designers
work. An attempt is made to explain the technieal
terms that are used, but newcomers tom icrocom put-
ers should not be discouraged if some points are not
absolutely clear to them. The chapters that follow
expand on all topics covered here, and Chapter 2 in
particular contains information which will clarify
much of Chapter 1.

First and foremost, the Apple lie is a revised and
improved version of the Apple 1 1 computer that was
designed by Steve Wozniak in the mid-seventies. It
IS operationally compatible with a 48K Apple 11 that
has a 16K expansion RAM card in Slot and an
80-column text card in Slot 3, The Apple He also
supports64K ofauxiliary RAM and has an improved
keyboard, improved graphics capability, and num-
erous minor operational improvements, but com-
patibility with the Apple II is its predominant
feature.

Apple's motivation in refining the Apple 11 was
reducing manufacturing costs and eliminating some
critical text handling weaknesses of the Apple 11.

They achieved these goals very nicely and produced
a computer that is better than the Apple II but
which inherited its personality and many features
from the Apple II. The computer that is described
here is the Apple He, butmuch ofwhat is said is also
trueof the Apple II.

APPLE Me OVERVIEW
The Apple lie is made up of five physical units: the

baseplate and case, the keyboard, the power supply,
the speaker, and the motherboard. The speaker,
power supply and keyboard are all utility units
which plug into the motherboard. It is the mother-
board which contains all the uniqueness of the
Apple lie. The motherboard is the Apple lie, and
the Apple He is consequently referred to as a single
board computer. On one board, it has a microproces-
sor , memory, video text and graph ics output circu i

t-

ry, seven peripheral expansion slots, an auxiliary
expansion slot, and circuitry for communications
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with a variety of external devices. These features

are part of an organized structure centered around

the microprocessor.

The Microprocessor and Bus Structure

The brains of the Apple lie is a 6502 micropro-

cessor. A microprocessor, or MPU (Microprocess-

ing Unit), is a single chip logic device capable of

executing stored sequential programs.* A micro-

computer is a computer which uses an MPU as its

fundamental logic processor.

Digital computersoperate to a synchronizing beat

known as a clockpulse, similar to the beatof music,

but over ten thousand times as fast. The 6502 oper-

ates to a beat which occurs approximately 1,020,500

times a second. We say that the clockpulse frequency

is 1.0205 MegaHertz(MH2)meaningl.0205million

cycles per second. Actually, there is a clockpulse

jitter, which is described in the timing section of

Chapter 3. Until we get to that point, just say that

the 6502 operates at about 1 MHz. This, Inciden-

tally, is slow by modern microprocessor standards.

There are 4 MHz 6502 MPUs available now, and

other MPUs have faster clockpulse rates than that.

With a given MPU, the faster the clock, the faster

the execution speed.

The structure of the Apple He is that of multiple

devices which can communicate with the MPU.
Onceevery clockpulse, theMPU outputs the address

of the location which is being communicated with,

and it transmits data to or receives data from that

location. The address which the MPU is putting out

isdistributed toall addressable devices in the Apple
lie via the address bus, and data is transferred

between the MPU and the addressed location via the

data bus. Associated and distributed with the

address bus is the read/write control output of the

MPU, Read/write control tells the addressed loca-

tion whether data will be read from it or written to

it.

The 6502 has 16 address outputs, each connected

to one line (electrical conductor) of the address

bus.** It controls the 16 address Hnes and the

read/write line together by placing a high or a low

voltage on each line. The simultaneous condition of

the 16 address lines is the 6502 address. The 6502

address is a number between $0 and $FFFF (65535),

and the 6502 can access any one of the $10000

(65536) addressed locations in that range.

The 6502 has eight data input/output lines, each

connected to one line of the data bus. It controls the

eight lines when writing and monitors the eight

lines when reading, and the simultaneous condition

of the eight lines is the 6502 data word. Like the

address lines, each of the data lines is brought to a

high or a low voltage when information is passed.

Each line can be one of two states (high or low), so

the information is said to be two state, or binary.

Other common ways of referring to the two states of

binary information are true/false, one/zero, and

on/off.

A unit of binary information is a bit. Whether a

line is high or low at a given instant is a bit of

information. The 6502 reads or writes and manipu-

lates information eight bits at a time and is there-

fore classified as an 8-bit MPU. A group of eight bits

is a byte. The 6502 manipulates and transfers data,

one byte at a time, to an addressed location in the

Apple lie bus system.

Most locations which the MPU addresses are

memory locations. Memory contains the stored

program which the MPU is executing and about

half of the MPU's time is spent fetching that pro-

gram. The program is stored sequentially, so fetch-

ing the program by the MPU simply involves

incrementing the address output while reading the

data input and interpreting it as a sequential pro-

gram. When not fetching the program, the MPU is

executing it This execution involves logical manip-
u lation of data, storage of data at or loading of data

from addressed locations determined by the pro-

gram, changing the program fetching location to

somewhere other than the next sequential address,

or any combination of these and other functions.

Not all locations addressed by the MPU are

memory locations. Program instructions fetched

from memory may cause the MPU to address non-

memory locations such as the speaker or keyboard,

A memory location responds to a read at its address
by placing data on the data bus. The speaker
responds to a read or a write at its address with

sound. The MPU thus controls the speaker via the

address bus in an address decoding process.

*A chip is another name for an integrated circuit, or IC. It is a
unit with a small body and a number of metal pins or leads, and it

contains complex electronic circuitry inside. If you look inside

the Apple lie, you will see many little black chipa plugged into

socketson or soldered directly to the motherboard. There are four
ch ips that are bigger than al 1 the others, and the G502MPU is one
of the four big chips.

*'As described in Chapters 2 and 4, the 6502 is not connected

directly to the address bus. It is connected to the address bus
through isolating devices which give the Apple He a DMA
(Direct Memory Access) capabi tity and allow the 6502 to address
the large number of electronic devices connected to the address

bus of the Apple lie.
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Address decoding is the only way a 6502 can control

other devices, so all programmed control of Apple
He devices is via address decoding.

Memory
General purpose microcomputers require two

types of memory, memory you can change (RAM)
and memory you can't change (ROM).* RAM is

necessary so you can store general programs and
data. ROM is necessary so the computer has a pro-

gram to run when it is first turned on.

Both ROM and RAM are random address memo-
ries, meaning any specific memory iocation can be

accessed at its specific address. Computer memory
islike thousands of light bulbs, each ofwhich mayor
may not be glowing, If the memory is random
access, the microprocessor can communicate with

any light bulb it chooses by calling its number. It

can, for example, check if light bulb number 25,765

is glowing or not. This is analogous to reading from
memory. Telling light bulb number 7,682 to not

glow is analogous to writing to memory; the MPU is

altering the state of light bulb 7,682. RAM and ROM
are functionally identical except that ROM is fixed

as if it was etched in stone. You can't turn the light

bulbs on or off. You can only check to see if they are
on or off.

The MPU cannot really tell whether a light bulb is

glowing or not, but it can tell whether the voltage on
a line is high or low. RAM is capable of storing the

high/low state of its data input when the MPU
writesdata toa RAM address. Both RAM and ROM
are capable of bringing their data outputs high or

low in accordance with stored data when the MPU
reads data from a RAM or ROM address. In a posi-

tive logic system like that of the Apple lie, storing
or reading a high voltage is thought of as storing or
saving a "1". Storing or reading a low voltage is

thought of as storing or saving a "0".

Since the 6502 is an 8-bit MPU, memory must be
organized so that it is accessed eight bits, or one
byte, at a time. The Apple He motherboard has
sockets for 65,536 bytes (524,288 bits) of RAM. This
IS normally referred to as 64K of RAM, meaning 64
Kilobytes. In addition to this motherboard RAM,
motherboard timing and memory management
fully support an additional 64K of RAM on a card

*ROM stands for Read Only Memory, which is accurate, and
BAM stands for Randons Access Memory, which is the most
famous misnomer in atl of computer jargon. Both read only
memory and read/write memory in the Apple lie are random
access memory, and this book refers to them by their conven-
tional labels, ROM and RAM.

installed in an auxiliary slot that is mounted near
the front of the motherboard.

The 64K of motherboard RAM in the Apple He is

functionally similar to the 64K of RAM in an Apple
II with Slot 16K expansion RAM card. LowRAM
is the 48K addressed at $0000-$BFPF, and high
RAM is 16K addressed at $DOO0-$FFFF with
$DOOO-$DFFF response switched between two 4K
banks. Low RAM is the main body of Apple lie

RAM, and it does not share $0000-$BFFF with
other motherboard devices. High RAM is secondary
RAM that shares $DOOO-$FFFF response with
motherboard ROM. It is disabled for reading, in

favor of motherboard ROM, anytime the RESET
key is pressed. Auxiliary card RAM is divided the

same way as motherboard RAM, so a 128K Apple
lie is the RAM equivalent of two 48K Apple lis with
two I6K RAM cards.

The Apple lie uses dynamic RAM which must be
refreshed. Memory refresh must occur on a peri-

odic basis or dynamic RAM will not work. It's like a
fire that goes out unless someone is constantly

pumping the bellows. Dynamic RAM is nice because
it's inexpensive, but it requires a lot of external

circuitry to support the refresh requirement. The
Apple He fully supports 64K of motherboard RAM
and 64K of auxiliary card RAM in every way,
including refresh.

The Apple lie motherboard contains 16,128 bytes

of system firmware (programs and data in ROM).
This firmware includes a system monitor, Apple-
soft BASIC, some separate keyboard-in / video-out

routines referred to as the 80-column firmware,
and some system diagnostic routines. The monitor
tells the Apple He what to do at power-up and con-

tains valuable utilities which make the Apple He
hardware accessible to its user; Applesoft is the

BASIC editor and command interpreter normally
used in the Apple He; the 80-coiumn firmware is an
extension of the monitor written to support the

Apple He 80-column text display; and the firmware
diagnostics provide the Apple He with a modest self

testing capability.

Peripheral Slots

The Appte He peripheral slots are similar to a

card cage. What is a card cage? A card cage is a
very versatile physical package for microcomputers
and other electronic circuits. It is a row of slots

mounted close together into which printed circuit

cards are plugged. Behind the slots are hundreds of

wires connecting the slots together in accordance

with the design purpose. Card cage architecture is
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like a house with an intercom system. Just as com-

munication is possible between various rooms of the

house, communication is possible between the var-

ious cards plugged into the card cage. Each slot in

the card cage is a different station in the intercom

system.
, ,

In a card cage microcomputer, part of the wirmg

which interconnects the slots is a multiline address

bus and data bus. similar to the buses on the Apple

He motherboard. A microprocessor board can be

plugged into any slot, from where it can control

communication in the card cage via the address bus.

A very nice modern card cage micro would have a

multifunction single board microcomputer in one

slot and a variety of devices in the other slots. The

Apple He is exactly that computer, turned inside

out. Instead of mounting the main logic board in the

card cage, they mounted the card cage on the main

board.

The Apple lie "card cage" consists of seven pe-

ripheral slots mounted on the back of the mother-

board. The address bus and data bus are connected

to all the slots, making them addressable extensions

of the Apple's basic communication system.* Each

slot has a part of the 6502 address range assigned to

it, so programs can make the 6502 access a pe-

ripheral slot just as if it were a group of memory
locations.

Some important 6502 input control signals are

tied to pins on the peripheral slots. They are

RESET', READY, NMI' (Non-Maskabie Interrupt),

and IRQ' (Interrupt ReQuest). These signals are

all described in greater detail in the 6502 section

of Chapter 4. Their connection to the peripheral

slots means that the processor can be interrupted,

stopped, started, and reset from any peripheral

card. It also means that any peripheral card can be

designed to respond to these control signals. For
example, pressing RESET at the keyboard resets

the 6502 and additionally turns off the floppy disk

drive. The disk drive controller is designed to

respond to the RESET' signal which is pulled low
when RESET is pressed. RESET', incidentally, is

read "reset prime." In this book, the prime behind
the name of a logic term is used to signify that a
signal is active or true when a low voltage is pres-

ent.** It is an aid to understanding the logic func-

tions of a given signal. Knowing this, you could
guess from the second sentence of this paragraph

*As described in Chapters 2 and 7, the peripheral slots are actu-

ally connected to the data bus through a bidirectional bus driver
that enables the 6502 to communicate with a large number of

peripheral card devices via the data bus.

that the 6502 is interrupted and reset by low vol-

tages on the NMI', IRQ', and RESET' lines, and

enabled by a high voltage on the READY line.

Another peripheral slot signal which affects the

6502 but isn't connected directly to it is the DMA'
signal. DMA stands for Direct Memory Access

and refers to direct memory access from the pe-

ripheral slots. The DMA' line does a bit more than

give the slots access to memory, however. It allows a

card in a slot to isolate the 6502 from the address bus

and data bus and take control of communication in

the bus system. This means that a peripheral card

can control all hardware featuresof the Apple lie. It

is as if you could plug a Suzy brain into Johnny and

have the Suzy brain control Johnny's body, a concept

much in vogue in some circles.

There are signals connected to the peripheral slots

other than those that have been mentioned. They

provide various capabilities so peripherals can be

designed to be fully integrated into the Apple struc-

ture. These signals include timing and control

inputs, power supply voltages, and control signals

decoded from address ranges on the address bus.

The purposes of these signals will be fully explained

in later chapters.

The Auxilfary Slot

The auxiliary slot is a 60-pin slot that is physically

separated from the peripheral slots. Like a pe-

ripheral slot, the auxiliary slot holds a card that is

designed to augment the features of the mother-

board. Unlike a peripheral slot, the auxiliary slot

does not feature full connection to the address bus

and data bus and is not supported as an I/O port by

Apple lie firmware.

Rather than acting as an I/O port, the auxiliary

slot is designed to accept cards that interact with the

RAM, video generation, and/or timing generation

circuitry of the motherboard. It most commonly
holds a 64K RAM card that enables video display of

80-columns of text, enables doubling of the Apple
He video graphics horizontal resolution, and makes
a total of 128K of RAM accessible to the Apple lie

MPU. Other functions such as RGB (Read-Green-
Blue) video signal generation can also be performed

**Most published computer literature will overscore a logic

term, rather than placing a prime symbol behind it, to signify

that it is active when low. In using the prime notation, Under-
standing the Apple He is following the convention used by Apple
in the Apple He Reference Manual for lie Only. In addition to

signifying that a term is active when low, the prime symbol
following a logic term can mean that the inversion of that logic

term is being referred to. Please see Appendix E for further
discussion of this subject.
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by auxiliary slot cards, but such alternate function

cards will probably always contain at least enough
RAM to support the Apple He 80-colunnn text dis-

play. Additionally, production and service facility

auxiliary slot cards can be designed to monitor
important Apple lie timing and video generation

signals and inject substitutes for many of those sig-

nals to the motherboard.

The MMU, tOU, and Timing HAL

In addition to fundamental building blocks like

the MPU, ROM, RAM, and an I/O capability, a

microcomputer has a large amount of associated

circuitry that supports the operation of the funda-

mental building blocks. In the Apple He, much of

this circuitry is concentrated in two custom VLSI
{Very Large Scale Integration) ICs, the MMU and
the lOU. These custom ICs are very complex inte-

grated circuits, co-designed by Apple and an IC
manufacturer* to perform logical functions re-

quired in the Apple He.

TheMMU (Memory Management Unit) contains

programmable soft switches and address decoding
circuitry which define the overall memory and I/O

configuration of the Apple He. By this, it is meant
that the MMU controls which device (RAM, ROM,
I/O device, or peripheral card) responds to which
addresses. This is a complex task in the Apple He,
because the memory map can be reconfigured so

that the same device does not always respond to a

given range of addresses.

Programmable soft switches are very important
in the operational scheme of the Apple lie. They are
like a mechanical switch, except that they are
switched when they are addressed by the MPU, not
by the ftipof a finger. Programs maintain control of
a number of Apple lie functions by setting and
resetting soft switches that are mechanized in the
MMU and lOU. As an example, the RAMRD soft

switch is a programmable switch in the MMU that,

when set, enables MPU reading from much of auxil-
iary card RAM. It is set when the controlling pro-
gram causes the MPU to perform write access to

3C0O3 and reset when the program causes the MPU
to perform write access to SC002.

Custom IC design is a cooperative effort by IC and equipment
manufacturers. In the case of the lOU and MMU, Apple
employee (and former Synertek employee) Walt Broedner
designed the FOU and the MMU within the constraints of the
Synertek custom IC program. Synertek is the priniaryMMU and
lOU source, and judging by the lOU in my Apple lie, American
Microsystems (AMI) is an alternate source.

TheMMU accomplishes its memory management
functions by monitoring the address bus and R/W,
and responding to certain addresses by setting or

resetting its configuration soft switches. Also, for

any address on the add ress bus and any status of the

MMU soft switches, the MMU controls which class

of motherboard device will respond to an address.

The MMU does this by activating or deactivating

various data bus management signals. A second
function of the MMU is to convert the MPU address
from the 16-line address bus format to the 8-line

multiplexed format that is required by dynamic
RAM, This subject and all subjects related to the

MMU are covered in detail in Chapters 2 and 5.

The lOU (I/O Unit) contains circuitry primarily

related to thevarious facets of generatingthe Apple
He VIDEO signal. This includes the video scanner,
a counter that scans RAM for video output when the

MPU is not accessing RAM. It also includes circuit-

ry to convert video scanner states to a multiplexed

RAM address, soft switches by which the display

mode of the Apple He Is established, and circuitry

which is actively involved in processing the RAM
residentdisplay map to generate the VIDEO signal.

In addition to the display related functions men-
tioned above, several I/O functions of the Apple He
are implemented in the lOU. These include parts of

the cassette and speaker output functions, the

annunciator outputs, the KEYSTROBE (keyboard
strobe) soft switch, the keyboard auto repeat func-

tion, and the capability to transmit the AKD (Any
Key Down) line to a 1 i ne of the data bus so a program
can determine when a keyboard key is being held

down. The varied lOU tasks span topics covered in

several chapters of Uvdcrsiandirtri the Apple lie.

Figure 1.1 is a general diagram of the lOU that

shows chapters and figures in which the lOU func-

tions are discussed and illustrated.

A third special purpose VLSI IC on the Apple He
motherboard is the timing HAL. A HAL (Hard
Array Logic) is an IC, designed by a manufacturer
to perform logic functions within a general format.

The specific logic functions that the IC is to perform
are specified by the buyer— in this ease, Apple
Computer, Inc. The timing HAL is similar to a

ROM, except that the HAL purchaser specifies logic

functions instead of memory contents.

The HAL in the Apple He is used in the process of

generating the timing signals that synchronize

functions throughout the motherboard. The nature

of these timing signals and the details of their gen-

eration are discussed in Chapter 3.



1 -6 Understanding the Apple lie

(3.9»

_25_

.^e_

jr^

NC Jfi.

(5.2) _33_

BASL

<l>0

M

lOU

AKD
^p|^-31)

ADDRESS
LATCH

(5.3)

ALO

AL1

AL2

AL3

AL4

AL5 ,

AL7 ^

ADDRESS
DECODE

(7.1-)

vcc

MD7

5V

J

j^(yiRTflflF PAGE 2 HIRES

VIDEO
RAM

ADDRESS
MUX
(5.3)

VIDEO
SCANNER

AND
FLASH

COUNTER
(3.8)

VBf
FROM VIDEO
GENERATOR

CSST
OUT

SOFT
SWITCHES

(7.1)

SPKR

ANO

AN1

JUl

jm

10

11

12

Bnnnr

AUTO
REPEAT

(3.8)

PWR-UP
RESET
(3.8)

TO
READ
FLAGS

KSTRB

AKD

RESET'

^
M.

15

_bil

GR*1

TIMING SIGNALS
TO ALL BLOCKS

-APPLE lie IRO'

34^ VIDfi-

VI n?

GROUND

±z

TEXT
MIX
HIRES
ALTCHRSET

lOU
INTERNAL
VIDEO

GENERATOR
(B.5)

VBL',
-TO READ FLAGS

GR*2

SEGA

SEGB

SEGC

40

RA9

RA10

CLR6ATE'

WNDW

SYNC

-(4.2)

13 ,

M7.2)

-* (3.9)

~]U.*)

I
'(3.9)

35

36

37

38

Me.5)

Figure 1 .1 lOU Functions and Fin Assignment*.



The Apple He—An Overview 1-7

Vktoo Output

The primary output of the Apple He is video. Th is

video is color compatible with the television system

used in the country in which an Apple He is sold.

There are two versions of the motherboard—one
which outputs video compatible with the NTSC tel-

evision system used in America and other areas, and
one which outputs video compatible with the PAL
television system used in most of western Europe
and other areas. An Apple He in a given country wil 1

contain the version of the motherboard compatible

with that country's television system. Additionally,

the video and keyboard ROMs will be tailored to the

requirements of that country's language or lan-

guages.

Video from the Apple He can be directly in put to a

color or monochrome video monitor but not to a

television set. Rather than video, a television accepts

RF (Radio Frequency) modulated by video. This

means that you can use the Apple He with a televi-

sion set, but the input to the television must be an RF
signal modulated by Apple He video. Generation of

the RF signal and modulation is accomplished in a

usersupplied modulator. Another name for the user

supplied modulator is a pain in the neck.

There are three basic Apple He video display

modes: TEXT, LORESgraphics (LOw RESoIution
colored blocks) and HIRES graphics (High RESo-
Iution colored points). Additionally, LORES and
HIRES graphics can be displayed with four lines of

text at the bottom of the screen in the Apple lie

MIXED mode. MIXED mode is very useful, as far

as it goes, because there are many times when the

graphics programmer needs to enhance a display
with text. However, four 1 ines at the bottom turn out
to be inadequate for many purposes. The HIRES
screen has good enough resolution to draw text, and
several programs are available that make it rela-

tively easy to place upper/lower case text on the
HIRES screen. This type of text can be drawn
alongside graphics to enhance graphic displays.

All display modes can be switched to normal
horizontal resolution (40 TEXT characters, 40
INGRES blocks, or 280 HIRES points) or double
horizontal resolution (80 TEXT characters, 80
LORESblocks.or 560HIRES points). The SINGLE-
RES {single horizontal resolution) modes are iden-
tical to the display modes of the older Apple II

computer. The DOUBLE-RES (double horizontal
resolution) modes offer twice the characters, blocks,
or points per horizontal display width as do the
SINGLE-RES modes.

Memory scanning is used to generate video in all

Apple He display modes. Data that represents the
display is stored (mapped) in RAM so that video is

generated by processing data that comes from RAM
as it is scanned repeatedly. Certain areas of RAM
are designated as display memory. The designated
areas are:

TEXT/LORES Page 1 $400-$7FF (IK RAM)
TEXT/LORES Page 2 $800-$BFF (IK RAM)
HIRES Page 1 $2000-$3FFF(8K RAM)
HIRES Page 2 $4000-$5FFF(8K RAM)

As an example, assume that the computer is in

TEXT mode, page 1. Then memory in the range
$400—$7FF will be scanned approximately 60 times

a second and the data in that memory area will be

processed for video output. Part of display memory
is always being scanned while the computer is on.

The Apple lie is designed so that this constant scan-

ning satisfies the refresh requirement of the dy-

namic RAM.
Page 1 and page 2 are primary and secondary

memory display areas that are switched via the

PAGE2 lOU soft switch. Page 1 is normally selected

in all modes (PAGE2 soft switch reset), but use of

page 2 may suit the programmer's purpose.

An important consequence of the Apple He dis-

play implementation is that the video display steals

memory from the user. The programmer must pro-

gram around the display areas if he intends to use

the associated displays.

SINGLE-RES displays are mapped in mother-

board RAM only. One byte of the display map is

processed for each cycle of the MPU, and 40 bytes of

the display map are scanned to process the dis-

played portion of a single horizontal scan of the

television or monitor. Based on the number of bytes

that make up the displayed portion of a horizontal

scan, the SINGLE-RES TEXT, LORES, and

HIRES modes will be referred to in this book as the

TEXT40, LORES40, and HIRES40 modes when

it is necessary to distinguish them from their

DOUBLE-RES counterparts. For the reason made
clear in the next paragraph, the DOUBLE-RES
TEXT, LORES, and HIRES modes will be referred

to as the TEXT80, LORES80, and HIRES80
modes.

DOUBLE-RES displays are mapped in mother-

board RAM and auxiliary card RAM. For every

MPU cycle, first one byte of the auxiliary card dis-

play map, then one byte of the motherboard portion

of the display map are processed to generate video.
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A total of 80 bytes of the overall display map are

scanned to process the displayed portion of a smgle

horizontal scan of the television or monitor. If these

are numbered 0-79, the even bytes are stored m
auxiliary card RAM, and the odd bytes are stored m
motherboard RAM.
A RAM card must be installed in the auxihary

slot to utilize the DOUBLE-RES modes of the Apple

He. A 64K auxiliary RAM card enables use of all

DOUBLE-RES modes, and a IK auxiliary RAM
card enables use of only the TEXT80 mode (80-

column text).* Additionally, a IK auxiliary RAM
card enables use of LORES80 mode if a wire !S

connected between pins 50 and 55 of the IK RAM
card's edge connector.

Scanning-for video output is not performed by the

MPU but by the lOU. Inside the lOU. there is a

counter whose outputs are used to make up the video

RAM address, a television sync signal, and other

video related signals. This counter synchronizes the

television scan to its addressing ofRAM and can be

thought of as scanning RAM while it scans the tele-

vision (or video monitor) picture. Consequently, it is

referred to in this book as the video scanner.

The scanner accesses RAM in a way that is com-

pletely transparent to the MPU. During the first

half of every 6502 cycle period, the video scanner

accesses motherboard and auxiliary card RAM.
During the second half, the 6502 accesses mother-

board RAM, auxiliary slot RAM, or other device.

The scanner access to RAM is always a read access

and the data which comes from RAM during the

scanner access is saved and processed by the video

generator to make video. The 6502 access can be

either read or write and, on some cycles, the 6502

may not access RAM at all.

The programming method for controlling the

Apple lie display is to select the display mode by

setting or resetting soft switches, and to compute or

look up the memory addresses of screen locations

and modify those addresses to achieve the desired

display. The video scanner scans the display area

determined by the display mode, and the resulting

memory data is processed as text or graphics as

determined by the display mode.

TEXT characters are represented in the RAM
displaymap as ASCII (American Standard Code for

Information Interchange). In addition to ASCII,

code for normal display (white on black), inverse

display (black on white), or flashing display (alter-

•The DOUBLE-RES graphics modes are not available on Revi-

sion A motherboards.

nating normal and inverse) are stored for each text

character. One character is stored per byte of dis-

play memory. As text is scanned, the coded data

from memory is translated to 5 x 7 dot matrix video

in normal, flashing, or inverse format. There are 96

displayable upper case, lower case, numeric, punc-

tuation, and special text characters, all ofwhich can

be displayed in normal or inverse format and 64 of

which can be flashed between normal and inverse

format. The TEXT display is 40 columns by 24 lines

in SINGLE-RES mode and 80 columns by 24 lines

in DOUBLE-RES mode.

The 80-column text capability of the Apple lie is

implemented in hardware and in firmware so that

the Apple He emulates an Apple II with an 80-

column card installed in Slot 3. This emulation is

carried out to such an extent that the Apple lie is, in

fact, a 40-column display computer with a pe-

ripheral 80-column capability. The Apple lie pow-

ers in 40-column mode, and it will remain in that

mode up until a program, maybe or maybe not

guided by operator input from the keyboard, selects

the 80-column mode.

LORES graphics is a programmable display of

40 columns and 48 rows (SINGLE-RES) or 80

columns and 48 rows (DOUBLE-RES) of colored

blocks. Each block can be any one of 15 colors

including black and white, Apple claims 16 colors

but the two grays are identical in color and lumi-

nance. There are, however, 16 different LORES
patterns, even though they produce only 15 discern-

ible colors, and these will be referred to as the 16

LORES colors.

LORES is mapped in the same display area as

TEXT, so memory scanning is identical in the two

modes. In LORES, rather than converting ASCII to

video, the video generator processes the bit pattern

directly into video. The code for each LORES block

requires four bits, so there is code for two blocks in

every byte of display memory. Also, there is a direct

correspondence between the screen location of a

pair of LORES blocks and one text character as

shown in Figure 1.2.

HIRES40 graphics mode is a programmable

array of 280 columns and 192 rows of dots. Because

of the way video is generated in the Apple lie, the

color of any dot is dependent on its horizontal posi-

tion. To draw a violet horizontal line, for instance,

every other dot in one row is turned on. To draw a

violet figure, only half of the columns of dots can be

turned on. This is also true of the other HIRES40
colors: green, orange, and blue. There is only 140 x

192 resolution when drawing these four colors.
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White (the absence of color) and black (the absence
of luminance) can also be displayed. The 280 dots in

any row are divided into 40 groups of seven dots.

Each group of seven dots may be shifted top:ether

horizontally one half of a dot position, changinp: the
colors of any colored dots in that group of seven.
Thus, there are 560 horizontal dot positions in each
row, but only 280 dots are independently program-
mable.

HIRES80 graphics mode is a projrrammabie
arrayofSeo columns and 192 rows of dots. Eachdot
in the array is independently prog-rammable. and
the horizontal resolution is so fine that all 16 LORES
colors can be produced, and no shifting of 7-dot pat-
terns is required or available. Resolution is 560 x
192 in monochrome plotting, and varies from 140 x
192 to 560 X 192 in 16-eolor plotting depending on
color.

This brief statementof HIRES graphics capabili-
ties is probably just enough information to let the
reader know that the subject of HIRES is complex.
Full understanding is possible in the light of more
detailed analysis, and HIRES is covered in greater
detail in Chapter 8. For now, let the resolution of the
Apple He HIRES display be summarized as vary-
ing from 140x 192 to 560x 192 depending on color or
monochrome plotting and selection of HIRES40 or
HiRESSOmode,
The HIRES memory display area is much larger

than theTEXT/LORES area: 8192 bytes of mother-
board RAM for a HIRES40 display, and 8192 bytes
of motherboard RAM and 8192 bytes of auxiliary
card RAM for a HIRES80 display. This is the hard-
ware cost of high resolution.

The Keyboard
The keyboard is the primary human input to the

Apple He (as opposed to storage med ia input such as

cassette or disk). Virtual ly all human al phanumeric
i nput is via the keyboard

, and the M PU of the A pple
lie spends the majority of its life cycling through a
little firmware routine called KEYIN(or CETKEY
if the 80-column firmware is active). This routine
samples the keyboard to see if a key has been
pressed, while incrementing a random number
counterand occasionally flashingthescreencursor.
KEVIN checks the keyboard at a rate of about a 165
million times an hour, and if anyone asks ,vou what
an Apple does, you can answer "mainly, it checks to

see if a key has been pressed."

Enough silliness. The keyboard has 63 keys that
represent letters of the alphabet, numbers 0—9,
punctuation characters, symbolic characters, and
special functions. These keys are arranged like

those of the keyboard of an IBM Svlnirir typewrit-
er. An auto repeat function (mechanized in the lOU)
simulates rapid keypresses when a key is held down
constantly, and i)rovisions exist for programs to

determine when a key is being pressed or when a key
has been pressed. Apple lie keys "roll over", mean-
ing that if one key is held and another is pressed, the
newly pressed key will be read by the controlling
program.

Most of the keys produce ASCIh\'hich can be read
by a program, and most of the ASCII ke.vs, includ-

ing the alphabetic keys, produce shifted ASCII if

the left or right SHIFT key is held down simultane-
ously with the ASCII producing key. Since the key-

board input and text output are both ASCII, it is

fairly easy tooutput characters to the video display
as they are entered from the keyboard. This is done
by keyboard input and video output routines in the

Apple He firmware.

Special function keys on the keyboard are ESC,
DELETE, RESET. TAB. CONTROL, RETURN,
SHIFT, CAPS LOCK, open Apple, close Apple, left
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arrow, right arrow, down arrow, and up arrow.

CONTROLand SHIFTmodify the ASCII produced

by other simultaneously pressed keys while CAPS
LOCK is a 2-position locking switch that forces

upper case ASCII from the alphabetic keys when it

is latched in the down position. RESET is tied to

Apple He RESET' line, and if CONTROL and

RESET are pressed simultaneously, RESET' drops

low to reset the Apple lie. Resetting the Apple He
consists of resetting the 6502, ail MMU soft switches,

most lOU soft switches, and all peripheral cards

that respond to RESET'.
ESC, DELETE, TAB, RETURN, left arrow,

right arrow, down arrow, and up arrow produce

ASCII which must be interpreted by the control-

ling program. The codes for ESC and DELETE are

unique, but TAB. RETURN, left arrow, right

arrow, down arrow, and up arrow produce code that

is identical to that of CONTROL-I, CONTROL-M,
CONTROL-H, CONTROL-U, CONTROL-J, and
CONTROL-K respectively.

The open Apple and close Apple keys are not asso-

ciated with other keyboard functions. Instead, these

are connected to the PBO and PBl serial inputs

described in the nextsection. Pushing open Appleor
close Apple is equivalent to pushing pushbutton or

pushbutton 1 on a paddle set or .joystick, and these

keys are mounted on the keyboard only to provide a
convenient means of activating the PBO and PBl
input lines.

All ASCII produced by Apple He keypresses

comes from the keyboard ROM which is a standard
2K ROM. This ROM contains ASCII for a standard
keyboard layout and an alternate keyboard layout.

The alternate layout is a Dvorak layout* in Ameri-
can Apple lie's. In export versions, it is usually a
layout tailored to the requirements of the host coun-
try's primary language. The alternate layout can be
selected by installing a switch assembly as shown in

an application note at the end of Chapter 7.

While there is no numeric keypad built into the
Apple He keyboard, there is a jack on the mother-
board which accepts a numeric keypad. Like ASCII
from the main keyboard, ASCII from this external
keypad comes from the keyboard ROM, so the keys
of a keypad can be defined as desired by installing a
customized keyboard EPROM on the motherboard.

Other I/O

I/O is Input/Output. Our point of reference for
th is d iscussion is the motherboard , mean ing that we

•Dvorak iskeyboard layoutdesi^ned to permitfaster typing than
IS possible in the conventional QWERTY layout.

speak of input to the motherboard and output from
the motherboard. The peripheral slots give the
Apple He an extremely versatile I/O capability, but
there is a good deal of additional I/O circuitry built

into the Apple lie. The keyboard input and video

output are the most significant motherboard I/O,

There are also some useful serial I/O ports.

Serial data is data on one line. This is opposed to

parallel data on more than one line (eight lines, for

instance). To transfer eight bits serially, each bitof

information is placed on the same line one after

another. This takes eight times as long as an 8-bit

parallel transfer, but requires only one connecting

wire. The keyboard is a parallel input. The video is

not a simple digital output but a mildly complex
signal output with a serial data component. In addi-

tion to these I/O capabilities, there are eleven serial

I/O ports and four resistance sensitive timer
inputs.

The speaker output is a serial output port con-

nected to a speaker through an audioamplifier. The
cassette input and output are serial data transmit-

ted via audio phone jacks on the motherboard
accessible from the back of the case. They are

designed to connect directly to the earphone output
and microphone input of a common audio tape
recorder. Firmware routines in motherboard ROM
read and write cassette data in Apple's storage

format.

Usage of 5 % inch floppy disks is so prevalent that

cassette storage is rarely used by most Apple owners.
Floppy disk I/O is not a built-in capability of the

motherboard, so the disk electronics are contained
in the drive and on a peripheral card called the disk

controller. Disk data is transferred in parallel

between the MPU and the controller, and serially

between the controller and the drive. Control of disk
I/O requires an extensive program, and the most
commonly used program of this nature is DOS 3.3

(Disk Operating System, version 3.3), a product of

Apple Computer, Inc. A more recently developed
DOS. and the one which is the current focus of sup-
port by Apple, is called ProDOS.
The other serial I/O signals are TTL (Transistor

Transistor Logic) compatible. TTL is a very com-
mon logic family of integrated circuits used for dig-
ital logic. The logic devices on the Apple lie

motherboard are either TTLor interface di rectly to

TTL,* TTL devices operate with two voltages cor-

responding to the two states of digital logic. The

"Most TTL chips in the Apple lie are LSTTL (Low Powered.
Schottky-Barrier diode clamped TTL). The 6502, ROM, RAM.
the MMU, the lOU. and the keyboard decoder are TTL compati-
ble MOS (Metal Oxide Semiconductor) chips.



The Apple Ile—An Overview 1-11

TTL low voltage is to 0.8 volts, and the TTL high

voltage is 2.4 to 5 volts. These are the two voltage

levels vi^hich represent digital information through-

out the Apple lie.

There is a 16-pin DIP (Dual In line Package)
socket on the Apple He motherboard which is gen-

erally called the game I/O connector. A set of two
paddles, a joystick, or a resistive graphics pad is

normally connected here, but there is a capability

for multiple uses. Four of the pins are annunciator
outputs. These are output lines which can be inde-

pendently switched toaTTL high or low level by the

controlling program. A fifth TTL output is called a
strobe. This output is high unless a program
triggers it. It then goes low for just 0.5 m icroseconds

(halfofa 6502 cycle), then returns to its normal high
state.

There are three TTL input ports on the game I/O
connector which can be read by a program. Two of

these, PBO and PBl. are normally connected to

pushbuttons on the joystick, paddles, or graphics
pad. PBO and PBl are also connected to the key-
board open and close Apple keys respectively. Addi-
tionally, if the motherboard X6 jumper is soldered,

the SHIFT' line is connected to PB2 so that the left

and right SHIFT keys activate this third game I/O
TTL input.

The paddles themselves are just potentiometers
(variable resistors). Joysticks are two potentiome-
ters mechanically linked so that the resistance ofone
potentiometer represents horizontal motion and the
resistance of the other potentiometer represents
vertical motion. Game I/O graphics pads consist of
X-ordinate and Y-ordinate resistive surfaces ar-
ranged and wired so that the X and Y resistances
vary with the point on the pad at which pressure is

applied.

In addition to the game I/O socket, the four timer
(paddle) and three TTL (pushbutton) inputs are
connected to a game I/O extension jack in the back
of the Apple He. This 9-pin jack provides a means of
connecting a paddle set, joystick, or other device to
the Apple He without lifting the cover. Further-
more, when a device is connected to this extension
jack, the game I/O lines which are not used by the
extension jack device are available at the game I/O
socket for connection to other devices.

The Power Supply
.^""^''hold power measures from 100 to 220 Volts
At. (Alternating Current), depending on the coun-

[J"^'" ^^J"^*!
the house is located. Most of thecircuits

"^ ^PPle He, however, require +5 volts DC

(Direct Current) referenced to ground (0 volts).

Converting relatively high voltage, household AC
power to the required low voltage DC power re-

quired by the Apple He is the function of the power
supply.

The power supply in an Apple He is designed to

operate on the household power in the country in

which it is sold. Inanycountry, the Apple He power
supply generates +5, -5. +12, and -12 volts DC ref-

erenced to ground. These voltages are distributed
throughout the motherboard to any device that
needs them. Additionally, all four voltages and
ground are available at the peripheral slots to

supply power to peripheral cards, and +5 VDC and
ground are available at the au.xiliary slot to supfily

power to an auxiliary card.

SUMMARY
The Apple He is a single board, (\^()2 based micro-

computer with built-in nnemory and video genera-
tion circuitry. It is an improved version of the older

Apple II computer. Enhancements include full

upper and lower case text handling capability, 80-

column text video display, and 128K of motherboard
and auxiliary slot RAM, as opposed to the upper
case only, 40-column, 48K Apple II.

The Apple He circuit board contains seven pe-

ripheral slots and an auxiliary slot which hold

smaller boards, and it is therefore thought of as a
motherboard. The slots give the Apple He expansion

and I/O capabilities comparable to more expensive

card cage microcomputer designs.

The motherboard can be one of two version.'^—one

which outputs video that is color compatible with

the NTSC television system used in America, or one

which outputs video that is color comi)atible with

the PAL television system used throughout western

Europe except in France. An Apple He in a given

country will contain the version of the motherboard
compatible with that country's television system.

Additionally, the video and keyboard RAM will be

tailored to the requirements of that country's lan-

guage or languages.

The 6502 in the Apple He operates at 1.0205 MHz.
IRQ'. NMI', RESET, and READY signals to the

6502 are connected to the peripheral slots, The
DMA' signal enables peripheral cards to isolate the

MPU from the rest of the motherboard. This enables

control of the Apple He from secondary MPUs or

other DMA devices in the peripheral slots. MPU
control of the various hardware features is via

address decoding.
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The motherboard contains 65,536 bytes of dy-

namic RAM, and motherboard circuitry fully sup-

ports an additional 65,536 bytes ofdynamic RAM in

an auxiliary slot RAM card. 16,128 bytes of firm-

ware include Applesoft BASIC and a system moni-

tor containing a number of important utilities.

In addition to the MPU, RAM, and ROM, there

are three important special purpose ICs that im-

plement Apple He motherboard logic functions. The

MMU controls the overall configuration of the

Apple lie memory map; the lOU performs multiple

functions related to generation of the video display

and other I/O; and the timing HAL contains most of

the circuitry required for the generation of Apple

He timing signals. The controlling MPU program

manipulates overall memory configuration, the

video display mode, and some I/O functions by set-

tingor resetting programmableMMU and lOU soft

switches.

The video output is compatible with a video

monochrome or color monitor. It can be used with a

home TV when connected through an inexpensive

modulator. Either single or double horizontal reso-

lution displays can be produced by programs, al-

though an auxiliary slot RAM card is necessary for

use of the DOUBLE-RES display modes. All

DOUBLE-RES displays are available with a 64K
auxiliary RAM card, but a IK RAM card only

supports DOUBLE-RES text or, with a minor
RAM card modification. DOUBLE-RES LORES
graphics.

TEXT is upper and lower case, 5x7 dot matrix
representation in a40character by 24 line (SINGLE-
RES), or 80 character by 24 line (DOUBLE-RES)
display. There are 96 video text characters, all of

which can be displayed normally (white on black) or

inverted (black on white). Sixty-four of the text

characters can be flashed between normal and
inverse display. This includes numerals, punctua-
tion, and upper case alphabetic characters but
excludes lower case alphabetic characters.

Graphics modes include 40 x 48 (SINGLE-RES)
and 80 x 48 (DOUBLE-RES) LORES block modes
in 15 colors, 140 x 192 HIRES point mode in six

colors (SINGLE-RES), 280 x 192 HIRES point
mode in black and white (SINGLE-RES), 140 x 192
HIRES point mode in 15 colors (DOUBLE-RES),

140 X 192 to 560 x 192 HIRES point mode in 15

colors with color dependent resolution (DOUBLE-
RES), and 560 x 192 HIRES point mode in black

and white (DOUBLE-RES). Some capabilities exist

for mixing text and graphics.

The video display in all modes is mapped in cer-

tain areas of RAM, motherboard RAM in the

SINGLE-RES modes, and both motherboard and

auxiliary card RAM in the DOUBLE-RES modes.

lOU circuitry continuously scans one of four possi-

ble areas in motherboard and auxiliary card RAM
while RAM output is processed to generate video.

RAM addressing is time shared between the system

address bus and the lOU video scanner. 6502 access

to RAM alternates with video scanner access so,

while the 6502 operates at 1 MHz, motherboard and

auxiliary card RAM are accessed at 2 MHz. In the

processof scanningRAM for video output, the RAM
is refreshed.

In addition to video output and the I/O capabili-

ties inherent with the peripheral slots, there are a

cassette input port, a cassette output port, a speaker,

four TTL control outputs, one .5 microsecond TTL
outputstrobe, four resistance sensitive timer inputs,

three TTL inputs, a keyboard, and a numeric key-

pad jack. Two of the TTL inputs can be activated by

pressing the open or close Apple switches on the

keyboard.

The keyboard contains 63 key switches arranged

like those on an IBM SelectHc typewriter, and is

adequate for most text processing functions. Opera-

tional features include a CAPS LOCK key, n-key

rollover, and automatic simulation of rapid key-

presses when a key is held down (auto repeat). An
alternate keyboard layout is electrically selectable,

but a switch assembly must be installed to access the

alternate layout. Also, because of the versatile

nature of the motherboard keyboard circuitry, the

keyboard layout can be changed by simply replac-

ing a ROM on the motherboard.

The built-in Apple lie power supply provides +12,

—12, +5, and —5 volts DC referenced to ground.

These voltages and ground (0 volts) are distributed

throughout the motherboard and to the seven pe-

ripheral card slots. -i-5 volts and ground are also

connected to the auxiliary slot.



chapter 2

The Bus Stnicture of

the Apple lie

There are many signals distributed throughout

the Apple He, but the most fundamental data

transfer lakes place on the data bus, and the most
basic control information is distributed via the

address bus. To understand how the Apple He and
other microcomputers really work, it is very impor-

tant to understand the bus structure. Fortunately,

it's not that hard to understand. The basic concepts

of the bus structure are within the grasp of nearly

everyone who uses a microcomputer.
The bus structure is a natural starting point for

learning what really goes on inside the Apple com-
puter, Discussing the bus structure will lead natu-

rally to the discussion of the other microcomputer
elements that the bus is connected to. First, though,
we need to find out what a bus is and how it is used.

COMPUTER BUSES AND
THREE STATE LOGIC
Logic signals in the Apple are distributed electri-

cally via conductive paths on the motherboard.
When a number of signals are grouped functionally
and distributed throughout a microcomputer, they

are collectively referred to as a bus. Physically,

then, a bus is an electrical distribution of multi-

line information. In the Apple, the address bus is

a sixteen-line electrically distributed information

group, and the data bus is an eight-line electrically

distributed information grouji.

Some devices connected to a bus are strictly

receivers of information. ROM is like this in its con-

nection to the address bus. Receivers respond to the

high/low information on the lines of the bus without

appreciably affecting the bus information. Electri-

cally speaking, the receiver input presents a high

impedance to the bus which enables other devices to

bring the bus lines high or low. If impedance is a

new word to you, it may help to think of high imped-

ance as high isolation.

Some devices on a bus must be information

transmitters capable of bringing the bus lines high

or low. If more than one information transmitter is

connected to a bus, each transmitter must be able to

disconnect itself from control of the bus by present-

ing a high impedance to the bus. Only one device can

control the bus at a time. Instead of two state, the

outputs of these devices are said to be three state or
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tri-state. The three states are high voltage, low volt-

age, and high impedance. All information transmit-

ters to the data bus of the Apple are capable of

presenting these states to their bus connections. The
ROM output to the data bus is a typical three state

output.

A third type of device, capable of transmitting to

or receiving from a bus, is called a transceiver

(transmitter/receiver). The MPU, for instance,

receives (reads) data from and transmits (writes)

data to the data bus, so as far as the data bus is

concerned, the MPU is a transceiver. While the

MPU is reading, it presents a high impedance to the

data bus so the addressed device can place data on

the data bus. While the MPU is writing, it controls

the data bus.

Figure 2.1 shows a hypothetical 4-line bus. The
symbols shown are schematic representations of a
tri-state line driver, a line receiver, and a line trans-

ceiver. A triangle represents a single line driver.

TViangles with a control linecomingin from the side

are tri-state line drivers. A little circle at a control

input to a triangle means that the input is active
when its voltage is low. Here is a truth table for the

tri-state line driver shown in Figure 2,1:

INPUT
OUTPUT
ENABLE OUTPUT

Any
High
Low

Low
High
High

High Impedance
High
Low

The control line either enables the high/low output
or forces the output to high impedance. The high/
low output, when enabled, follows the input.

It can be seen that the output enable controls of
the various information transmitters are the key to

cohesive control of the bus. For a bus with many
possible information transmitters, like the data bus
of the Apple, there has to be some intelligent man-
agement of the various tri-state output enables. We
will see shortly how this is accomplished. In the
foUowingdiscussions, remember that when a device
like a ROM chip responds to an address prompt by
placing data on the data bus, this is accomplished
via an output enable to the tri-state outputs of the
ROM chip.

Figure 2.2 shows a highly simplified diagram of
the bus structure of the Apple lie. There are two
distinct multiline signal paths: the address bus and
the data bus. The R/W' line (Read/Write control) is
shown separate and can be thought of as an exten-

sion of the address bus controlling the direction of

data flow on the data bus. Communication takes

place on every 6502 cycle between the MPU and an
add ressed device. Data flows between theMPU and
the device in a direction determined by the R/W
line. The MPU controls the R/W' line and the

address bus.

Figure 2.3 shows the two types ofbus access which
occur in the Apple He. In a read access, the MPU
places an address on the address bus and reads the

data bus. In a write access, the MPU places an
address on the address bus and places data on the

data bus. This establishes a system of data bus con-

trol that had to be implemented in the design of the

Apple. The control system works like this:

1. When the R/W' line is low (write access), all

inputs to the data bus are disabled except the

MPU.
2. When the R/W' line is high (read access), all

inputs to the data bus are disabled except the

device which is addressed.

This system concept keeps traffic flow orderly and is

a basic feature of microcomputer design.

The only remaining points to be made about buses
involve semantics. The peripheral slots are some-
times referred to as the peripheral bus or the
Apple bus. In fact, the wiring of the slots fits our
description of a bus as a functional group of distrib-

uted signals. The slots are a bus whose distributed
signals include the address bus. the data bus, and
other signals. Up to this point, the discussions have
avoided calling the slots a bus only to avoid confu-
sion between the card cage bus and the more basic
address bus and data bus. The connections to the
RAM and ROM chips form two more distributed
signal groups that can be referred to accurately as
the RAM bus and the ROM bus. This book will

continue to use the word "bus" to refer to the address
bus, the data bus, and the extensions of these two
basic communications paths. The peripheral bus,
RAM bus. ROM bus. and other distributed signals
will be referred to using other terminology.
The lines of the various buses in the Apple are

referred to by one or more letters followed by a
number. For example, the lines ofthe Apple address
bus are referred to as AO through A15. The largest
number, A15 in this example, refers to the line
which carries the most significant bit of informa-
tion. A list of bus terminology used in this book
follows here.
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LINE DRIVER

Information is transmitted

to the bus by a device

with tri-state outputs.

LINE RECEIVER

An information receiver

presents a high

impedance to the bus.

LINE TRANSCEIVER

A bidirectional

connection to the bus

must present a high

impedance to the bus

when in receive mode.

OUTPUT
ENABLE

Figure 2.1 A Hypoth«fical Four-Line Bus.
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ADDRESS BUS

AND R/W

ROM

DATA BUS

R W

W R

Figure 22 Battc MIcrocompuTer Building Blocks.
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ADDRESS

BUS

MPU

DATA

BUS

ADDRESSED

DEVICE

ADDRESS
BUS

MPU

ADDRESSED

DEVICE

A READ CYCLE A WRITE CYCLE

Figure 23 Communication on the Bus S^tem.

NAME OF BUS
LINE

TERMINOLOGY
Address

Data

Multiplexed RAM address
Auxiliary RAM data
Video data

Peripheral slot data

A0-A15
MD0-MD7*
RA0-RA7
AUXD0-AUXD7
VID0-VID7
DO—D7

By this time the reader should understand the
conceptof thebusasacommunication path. We will
now move on to how microcomputers in general and
Apples in particular perform their functions in a
bus environment.

THE PIGEONHOLE COMPUTER
There is an old analogy for understanding digital

wwnputeroperation which you don't see often enough
in personal computer instruction literature. It pos-
sibly IS not that helpful for understanding BASIC

programming, but it is very much like the way a

microcomputer works.

The analogy goes like this. A computer is like a

gigantic row of pigeonholes with pieces of paper in

them. Each piece of paper has an instruction on it.

There is a man who goes to each pigeonhole, one
after the other, reading the instructions and doing
what they say. The man always gets the next

instruction from the next pigeonhole in the row
unless an instruction tells him to go to some other

pigeonhole.

That's the pigeonhole computer. The man is exe-

cuting a stored sequential program. The man is the

microprocessor. The row of pigeonholes is computer
memory. The instructions are the program. The
microprocessor is smart enough to sequence through

memory and do what it's told, but it has to be told. It

has to have a program.

•MD in MDO—MD7 stands for the MOS Data bus. Apple chose

this nomenclature because nnost of the ICs connected to IMDO—
MD7 are MOS ICs.
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THE MPU, RAM. AND ROM
The microprocessor is the engineering marvel

which made all the home computers possible. The

6502 MPU is what executes the programs in the

Apple. Viewed from the outside, its capabilities

include manipulation of the address bus and R/W
(Read/Write') control, writing data to the data bus,

reading data from the data bus, logical and arith-

metic manipulation of data, and response to various

control inputs. All of these add up to execution of a

sequential program that comes from the data bus.

You see, the man from the pigeonhole computer

resides inside the MPU. The iittle guy has this con-

trol line called R/W, and he can put any address

from to 65535 on the address bus. He uses the R/W
line to tell the outside world whether he's reading

from or writing to the data bus. He uses the address

bus to tell the world where he wants the read data to

come from and the write data to go to. There are

plenty of things this man can do, but his most favor-

ite thing in the whole world is to increment the

address bus and read the results on the data bus.

While he's reading, this little workaholic interprets

the data he reads as instructions. If there is an out-

side device that is responding to his address prompts
with a valid sequential program, he will flat out

execute the program. This means that you can

exploit his insatiable reading appetite and get him
to do what you want if you're smart enough. That's

all any microcomputer designer ever really expects

from an MPU.
The key requirement above was an outside device

responding to the address prompts. This device is

memory: ROM or RAM. All of the addressing on the

Apple address bus is parceled out to various devices.

RAM gets addresses $0—$BFFF. ROM and high
RAM share $DOOO-$PFFF, although this range is

thoughtof asbeingprimarily assigned to ROM. The
peripheral slots are controlled by $C090—$CFFF.
$C000—$C08F is divided up among the keyboard
and cassette and all the other built-in devices. If the
6502 happens to be executing a program in the

$D000—IFFFF range with high RAM disabled,

then ROM is responding to the addressing with a
series of data which the 6502 is interpreting as a
program. If the ROM program tells the MPU to

store a byte of data at $400, the MPU takes a
microsecond to bring R/W low, set the address bus
to $400, and place the pertinent data on the data bus.
The data is accepted by address location $400 which
is in RAM. That pigeonhole of RAM owns address

$400 just as sure as your mailbox has a unique mail-

ing address. Inside RAM, inside ROM, all along the

address bus, address decoding takes place every

6502 cycle to enable only one of 65536 possible

addresses.

The 6502 is continually executing a program
while power is applied. If it gets lost and tries to

execute a program where no program exists, it

interprets whatever jibberish is appearing on the

data bus as a program and executes it anyway. An
unstoppable program-executing machine like this

has to have a starting point when you turn the com-

puter on. It also needs a way to start from scratch

when it gets lost. This starting-point is the RESET'
input to the 6502.

The RESET' input to the 6502 goes low when the

RESET key is pressed, when a peripheral card

makes it go low, or when the computer is turned on.

Any one of these occurrences makes the 6502 stop

what it's doing, load the address of the next program
step from locations $FFFC and $FFFD, and start

executing at that address. The contents of $FFFC
and $FFFD are the low and high bytes of the reset

vector.'*

The $FFFC/$FFFD reset vector comes from

motherboard ROM since the high RAM is disabled

for reading by the reset sequence. In Apple He
ROM, the contents of$FFFC/$FFFD is ?FA62, the

address of the firmware reset routine. There are

several important aspects of this routine that de-

termine features of the Apple lie, but the important

point here is that the Apple has a power-up routine

in ROM. This is an essential feature of microcom-
puter design. You might say it guarantees that the

6502 always gets out of bed on the right side.

Another routine which a microcomputer always
has in ROM is a routine to load data from a storage

device into RAM so that execution of saved pro-

grams is possible. The Apple lie, however, has much
more than the bare necessities in its 16K of ROM
space. The naked Apple is a cassette based system in

which BASIC in ROM and a system monitor in

ROM prevent unnecessary user aging while wait-

ing for the computer to become operational at turn
on. Additionally, firmware diagnostic routines are
available to confirm correct operation or aid in fault

isolation in case of hardware failure.

•Two 8-bit RAM locations are required to store a 16-bit 6&02
address. The 6502 fetches a 16-bit address from an adjacent pair
of memory locations. The less significant byte of the address is

fetched from the lower memory location, and the more signifi-

cant byte is fetched from the higher memory location.
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RAM ADDRESSING AND
DATA DISTRIBUTION

Wfiile Figure 2.2 adequately depicts the funda-
mental MPU access to RAM, it does not show many
details of the layout of RAM in the Apple. In fact,

there is some complexity to RAM access. This is due
to the nature of the dynamic RAM chips, the dual
access toRAM from the MPU and the video scanner,

and the multifaceted bank switching of RAM that

occurs in the Apple He. Figure 2.4 is the partial

diagram of the Apple lie's bus structure, expanded
from Figure 2.2 to show more of the details of

address and data distribution to RAM. The thick

black and dark gray lines in Figure 2,4 represent

the multiple lines of the address bus and the data
bus, respectively, R/W is considered to be distrib-

uted with the address bus. The MPU, as before, is in

control of the address bus.

A 64K RAM card is shown installed in the auxil-

iary slot in Figure 2.4. This reflects the fact that the

Apple lie design supports 128K of RAM and an
80-column text display. Eighty columns of text and
128KofRAM are fully implemented in timing, con-

trol, and bus structure. They just forgot to mount the

auxiliary RAM on the motherboard.

Figure 2,4 also shows some secondary buses which
carry address information or data. These buses are
not connected directly to the address bus or data
bus, but they can be thought of as extensions of the
address bus or data bus. The light gray buses are
extensions of the data bus, and the medium gray bus
is the multiplexedRAM address bus, an extension
of the address bus.

The Multiplexed RAM Address Bus
The multiplexed RAM address bus is a solution to

acommon problem in VLSI (Very Large Scale Inte-
gration) IC packaging. The problem is that you can
pack such complex and extensive logic functions
into a small IC that there are not enough pins on the
IC to input and output all the information required
to support the logic functions. The solution is to
multiplex (switch, share) the information. In the
case of Apple RAM, this means multiplexing the
information of the sixteen lines of the address bus
onto the eight lines of the RAM address bus.

We don't want to get too steeped in RAM address-
ing right now, but the basic situation is that there
are not enough pins on a 64K dynamic RAM chip to
address 64K memory cells simultaneously.* The

RAM is addressed with a one-two punch. First, half

of the address information is input toRAM where it

is saved. Then the second half of the address infor-

mation is input and the data access takes place. Both
the first half and the second half of the address are
input on the same eight pins of RAM, so sixteen bits

of information from the address bus must be multi-
plexed onto eight lines to effect the one-two punch.
This multiplexing is accomplished in the MMU,
and the multiplexed MPU address is distributed
from the MMU to all RAM chips on the mother-
board and auxiliary card via the 8-line multiplexed
RAM address bus (RAO—RA7).
The two halves of dynamic RAM addressing are

referred to as the ROW address and the COLUMN
address. This refers to conceptual rows and columns
of memory cells inside the RAM chips.

The RAM addressing would be complex enough,
but in the Apple, the RAM address lines are doubly
multiplexed. Both the MPU and the video scanner
in the lOU must access RAM, so the multiplexed
RAM address is connected to the lOU as well as the
MMU and the RAM chips, Duringevery 6502 cycle,

first the video scanner output, then the addre.ss bus
contents must be switched on to the multiplexed
RAM address bus. Each access is accomplished in

two halves (the one-two punch). The RAM address
multiplexing is cyclical, resulting in the following
repeating pattern of access to the multiplexed ad-
dress bus:

Tl -Video ROW address (lOU)
T2 -Video COLUMN address (lOU)
T3 -MPU ROW address (MMU)
T4 -MPU COLUMN address (MMU)

The lOU connection to the multiplexed RAM
address bus is bidirectional. While the video scanner
is addressing RAM, the lOU transmits the video
ROW address then the video COLUMN address to

the RAM address bus. While the MPU is addressing
RAM. the lOU monitors the RAM address bus and
receives MPU address information. More specifi-

cally, the lOU latches (saves) RAO—RA6 of the

MMU ROW address and thus monitors AO—ASand
A7 of the address bus without direct connection to

the address bus. By this sleight of hand, the need for

seven pins on the lOU is eliminated.

*ThrouRhout this book the word "cell" will be used to refer to a
unit of memory that stores one bit of data. The word "location"
will be used to refer to eight associated memory cells that hold
one byte of data in the Apple He.
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Video Scanning

The video scanner is not connected to the address
bus and is therefore not controllable by the MPU.
The scanner is a free running counter inside the
lOU, completely isolated from program control,

that shares RAM on an equal footing with the 6502.
The scanner is like a second MPU, but much simpler
than an actual MPU. In microcomputer jargon, it is

a built-in DMA device performing simultaneous
direct memory access with the MPU.
Video scanner access to RAM is a read access as

opposed to a write access, but it is of a different

nature than MPU read access. The MPU reads data
from RAM, meaning that theMPU addresses RAM,
and data from RAM comes back to the MPU. In
contrast, when the video scanner addresses RAM.
the data from RAM does not come back to the
scanner. The data goes out, instead, to the video
generator for video processing and, in the case of

motherboard RAM when R/W is high, to the peri-

pheral slots via the data bus. As a result, this book
does not refer to the video scanner as reading data
from RAM. Instead, the video scanner is said to

drive data out ofRAM to the video data latches and
the peripheral slots.

Other than the fact that the video scanner and
MPU both address RAM, their only operational tie

is timing. Just as the 6502 executes a machine cycle

once every microsecond, the video scanner changes
its memory address, and accesses RAM once every
microsecond. Logically enough, the timing for the
video scanner and MPU originate from the same
source. In fact, all timing on the motherboard origi-

nates at the same source. The timing involved in the
sharing of RAM is quite elaborate and is covered in

the chapters on timing generation, RAM, and video
generation (Chapters 3, 5, and 8).

The output of the video scanner is used in the lOU
for other tasks besides addressingRAM. It is used to

makeupanumberoflOUoutputsrequired in video
generation. This includes the syne portion of the
VIDEO signal, so the television scan is syncronized
With the scanning of RAM. Video scanner outputs
are also used in Apple timing generation. MIXED
mode switching between GRAPHICS and TEXT,
switching between normal and inverse video to
create flashing text on the screen, simulating re-

peated keypresses for the keyboard auto-repeat
function, and timing out the power-up reset.

RAM Data Distribution

The 65,536 bytes of motherboard RAM consist of
eight 64K dynamic RAM chips. Each RAM chip is

organized 64K x 1, meaning that each RAM chip has

65,536 1-bit memory cells, one data input line, and
one tri-state data output line. 6502 microprocessor

structure requires that memory be organized for

8-bit parallel data transfer, so eight chips provide

65,536 8-cell memory locations in a 6502 system.

Each of the eight motherboard RAM chips is

associated with one line of the data bus. The input

and output lines of one chip are tied to MD7, the

input and ouput lines of another are tied to MD6, etc.

The eight RAM chips can thus be thought of as a
single 64 kilobyte memory device with eight input/

output lines connected directly to the data bus. The
R/W line is gated to the RAM chips when it is time
to pass data to or from the MPU, .so the RAM chips

are able to receive data on MPU write cycles and
transfer data on MPU read cycles. The RAM read/

write control line is always forced to read when the
video scanner isaccessing RAM, so the video scanner
always reads, never writes.

There is a device connected to the data bus which
does not communicate with the MPU. It is the

motherboard video latch. This latch receives data
from the data bus at a point in time when data from
the video scanner access to RAM is on the bus. In a

sense, then, the data bus is multiplexed. Data travels

between the MPU and RAM during MPU access,

and data travels from motherboard RAM to the

motherboard video latch during video scanner
access.

The latched video data is routed, via the video data
bus, to video generation circuitry both internal

(VID6-VID7) and external (VID0-VID5) to the

lOU. It is proces.sed there to produce the dot pat-

terns that make up the Apple He display. VID7 is

also routed to the timing generator where it is u.sed

todeterminewhether or not groups of seven HIRES
dots are slightly delayed.

Auxiliary RAM data paths are similar to mother-
board data paths with one bigdifferenee. The auxil-

iary RAM data inputs and outputs are not connected

directly to the data bus. They are isolated from the

data bus by a bidirectional bus driver that only

enables data transfer when the MPU is reading
from or writing to auxiliary RAM. This creates an
auxiliary RAM data bus (AUXDO—AUXD7)
which is an extension of the motherboard data bus.

During video scanner access to auxiliary RAM, the

motherboard data bus is isolated from the auxiliary

RAM data bus.

There is a latch connected to the auxiliary RAM
data bus which saves the data resulting from the

video scanner access to auxiliary RAM. Like the

motherboard latched video data, the auxiliary
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latched video data is routed on the v.deo bu to he

video generator for processing to make up the

vfDES signal of the Apple^Both the moftertoard

latch and the auxiliary latch have tr>-state outputs

to the video bus, and Apple timing is such that the

two latches alternate in controlling the video bu.

The timing involved in scanning RAM for video

output is too complex to cover in this chapter But

^oi should be able to get the genera picture from

Figure 2.4. In the first half of the MPU cycle before

it is time for theMPU to communicate with the data

bus, the video scanner performs a read access to

RAM This access is performed simultaneously in

motherboard RAM and auxiliary RAM and the

motherboard data and auxiliary data are driven out

together. At a moment when the video data is known

to be valid on both the motherboard data busand the

auxil iary RAM data bus, the video data is latched in

the motherboard and auxiliary video latches, hor

the following half-microsecond, the auxiliary video

data is presenton the video bus for processing by the

video generator. Following that, motherboard video

data is present on the video bus for one half-miero-

second At the end ofthe second half-microsecond, a

new set of video data is latched in the pair of data

latches. If the Apple is in a DOUBLE-RES display

mode, the video generator processes auxiliary and

motherboard video data atone half-microsecond per

video cycle. If the Apple is in a SINGLE-RES dis-

play mode, the video generator ignores the auxil lary

data and processes the motherboard data at one

microsecond per video cycle.

ADDRESS DECODING

Inside RAM and ROM, some pretty sophisticated

address decoding goes on so that data communica-

tion is with the correct memory location. Each RAM
chip in the Apple He has a capacity of 65536 indi-

vidually accessible bits of information, and each

ROM chip has a capacity of 8192 individually

accessible bytes of information, Needless to say,

much of the circuitry in the memory chips is devoted

to decoding the address input.

Like memory, but on a much smaller scale, the

Apple must decode addresses to control its various

functions. As has been stated previously, the address

•As will be seen in Chapters 3. 5. and 8, this moment isPHASE
rising. Peripheral cards can also latch the motherboard video

data using PHASE rising.

bus and R/W' line are the way in which the 6502

commands the Apple devices to do things. There are

logic circuits in the MMU, the lOU, and some

smaller ICs on the motherboard that detect certain

addresses or address ranges, then perform control

functions or output control signals to various func-

tional areas of the Apple. The following types of

control are performed by address decode:

1. Gating (enabling) of information to the data

bus including data from serial inputs, periph-

eral slots, ROM, RAM, the MMU. and the IOU.»

2. Direct control of serial output lines.

3. Control of peripheral slots.

4. Control of display mode soft switches in the

5. Control of memory management soft switches

in the MMU.

Control by address decode gives cohesion to the bus

structure.

The address and control functions of the address

bus are not separate entities but different w^s of

looking at the same thing. Addressing memory loca-

tion $95FF can be thought of as controlling that

memory location. Similarly, control of the cassette

output line may be thought of as addressing it. The

address bus could be called the control bus

Figure 2.5 is a partial diagram of the Apple He s

bus structure highlighting the address de(»ding

motherboard devices. Please refer to this figure

during the following discussion.

The primary address decoding circuitry of the

motherboard is in theMMU. It alone, of the address

decoding elements, monitors all 16 lines of the

address bus. TheMMU monitors the entire $0000-

$FFFF 6502 address range, and activates the other

address decoding elements via various control sig-

nals. Each ROM chip, for example, is capable of

decoding a range of 8192 addresses, but the MMU
must tell the ROM chip that it is enabled and an

address in its particular range of 8192 addresses is

on the address bus. Because it receives an enabling

inputfrom the MMU, ROM does not have to monitor

all 16 lines of the address bus. It just monitors AG—

A12 which is enough to decode a range of 8192

addresses. Similarly, other address decoding ele-

ments such as the peripheral decoding circuits and

•When a digital signal controls the passage of information in a

logic device, it is said to gate that information. Gating of infor-

mation is like opening or closing the gate of a fence to control

passage through the gateway.
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the lOU do not have to monitor the full address bus

because they receive enabling inputs directly or

indirectly from the MMU. The Apple management

signals, decoded from the address bus and output

from the MMU. are listed here.

SIGNAL FUNCTION
CASEN' Enable data transfer

between motherboard RAM
and MPU

EN80' Enable data transfer

between auxiliary card

RAM and MPU
ROMENl' Enable Cl-DF ROM
R0MEN2' Enable EO~FF ROM
cxxx Enable I/O address decoding

KBD' Enable keyboard

MD IN/OUT' Control direction of

bidirectional peripheral data

bus driver

Other address decoding takes place in the MMU
which does not directly manipulate these control

signals. This includes setting and resetting of mem-
ory configuration soft switches and enabling the

status of soft switches to MD7 of the data bus for

reading by tine MPU. For example. $C082 on the

address bus is decoded inside the MMU to reset the

HRAMRD (high RAM read enable) soft switch.

With this soft switch disabled, an MPU read to

address $F000 will result in the MPU bringing
R0MEN2' low and subsequent transfer of data
from the EO—FF ROM to the data bus. The func-

tional details of the MMU soft switches are not of

primary interest here but are a subject of Chapter 5.

The important concept here is that the controlling

6502 program manipulates the memory configura-

tion of the Apple by address bus commands decoded
in the MMU to set or reset soft switches. Then the
MMU, guided by the status of the soft switches,

monitors the address bus and enables various func-
tional areas of the Apple via the control signals
listed above.

All of the MMU management signals except MD
IN/OUT' and CXXX enable the selected device to

control the data bus during a read cycle or, in the
case of RAM, to receive data from the data bus
during a write cycle.* MD IN/OUT' controls the
direction of a bidirectional peripheral data bus

•Some terminology examples—JCXXX is the address range
$C000—$CPFF. CXXX is a signal which goes high when an
address in the $CXXX range is on the address bus. C06X' is a
signal which goes low when an address in the $C06X range is on
the address bus.

driver as described in the next section. CXXX en-

ables further address decoding in the $CXXX range

in the peripheral address decoding circuitry.

The signals output by the peripheral address decod-

ing circuitry are

• an I/O STROBE' signal to the seven pe-

ripheral slots,

• an I/O SELECT' signal to each of the

peripheral slots,

• a DEVICE SELECT' signal to each of the

peripheral slots,

• the C040 STROBE' output,

• the C06X' serial input enable signal,

• the C07X' timer trigger,

• and the COXX' signal to the lOU.

The I/O STROBE', I/O SELECT', and DEVICE
SELECT' signals are used by the peripheral slots in

a variety of ways described in Chapters 6 and 7. In

many instances, the effect is to enable data bus

communication with a peripheral card. The C040

STROBE' is a game I/O socket output that goes low

for one half of a microsecond when $C04X is on the

address bus. C06X' enables one of eight serial inputs

to MD7 of the data bus during a read cycle. C07X'

triggers the four timers whose durations depend on

settings of paddles, joysticks or other variable resis-

tors. The COXX' signal enables further address dec-

oding in the lOU.
Address decoding in the lOU is not as extensive as

it is in the MMU. The lOU only monitors parts of the

$C0OO—$C05F range to set or reset some video con-

figuration soft switches, to gate the status of various

lOU flags and soft swithches to MD7 of thedatabus

for reading by the MPU, and to directly control

some serial outputs. The serial control signals which

come from the lOU are

• ANNUNCIATORS 0-3 to the game I/O

socket,

• SPKR to the speaker amplifier,

• and CASSO to the cassette output voltage

divider.

Figure 2.5 shows that the only line of the address

bus connected to the lOU is A6. Even with the aid of

the COXX' input, the lOU needs more addressing

inputs to perform its decoding functions. It needs to

monitor AO to distinguish between a switch on and

switch off function. It needs to monitor A3 to distin-

guish between a video soft switch command and an

annunciator command. In fact, to perform all of its

decoding functions, the lOU needs to monitor AO—
A7 of the 6502 address in addition to monitoring the

COXX' line. However, with the exception of A6, it
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Table 2.1 Apple Me Master Address Decode Table (1 of 2).

HEX DECIMAL DECIMAL
FUNCTION RW RANGE RANGE COMPLEMENT

RESET/SET 80STORE W $COOO/$C001 49152/49153 -16384/-16383
RESET/SET RAMRD w $C002/$C003 49154/49155 -16382/-16381
RESET/SET RAMWRT w $C004/$C005 49156/49157 -16380/-16379
RESET/SET INTCXROM w $C006/$C007 49158/49159 -16378/-16377
RESET/SET ALTZP w $C008/$C009 49160/49161 -16376/-16375
RESET/SET SL0TC3R0M w $C0OA/SCO0B 49162/49163 -16374/-16373
RESET/SET 80COL w $COOC/$COOD 49164/49165 -16372/-16371
RESET/SET ALTCHRSET w $COOE/$COOF 49166/49167 -16370/-16369
READ KBD/KEYSTROBE R $COOX 49152-49167 -16384 TO -16369
RESET KEYSTROBE RW $C010 49168 -16368
RESET KEYSTROBE w $C01X 49168-49183 -16368 TO -16353
READ KBD/AKD R $C010 49168 -16368
READ KBD/HRAM BANK2 R icon 49169 -16367
READ KBD/HRAMRD R $C012 49170 -16366
READ KBD/RAMRD R $C013 49171 -16365
READ KBD/RAMWRT R $C014 49172 -16364
READ KBD/INTCXROM R $C015 49173 -16363
READ KBD/ALTZP R $0016 49174 -16362
READ KBD/SLOTCSROM R $C017 49175 -16361
READ KBD/80STORE R $C018 49176 -16360
READ KBD/VBL' R $C019 49177 -16359
READ KBD/TEXT R $C01A 49178 -16358
READ KBD/MIXED R $C01B 49179 -16357
READ KBD/PAGE2 R $C01C 49180 -16356
READ KBD/HIRES R $C01D 49181 -16355
READ KBD/ALTCHRSET R $G01E 49182 -16354
READ KBD/80COL R ICOIF 49183 -16353
TOGGLE CASSETTE OUT RW $C02X 49184-49199 -16352 TO -16337
TOGGLE SPEAKER RW $C03X 49200-49215 -16336 TO -16321
C040 STROBE' RW $C04X 49216-49231 -16320 TO -16305
RESET/SET TEXT RW $C050/$C051 49232/49233 -16304/-16303
RESET/SET MIXED RW $C052/$C053 49234/49235 -16302/-16301
RESET/SET PAGE2 RW $C054/$C055 49236/49237 -16300/-16299
RESET/SET HIRES RW $C056/$C057 49238/49239 -16298/-16297
RESET/SET ANO RW $C058/$C059 49240/49241 -16296/-16295
RESET/SET ANl RW $C05A/$C05B 49242/49243 -16294/- 16293
RESET/SET AN2 RW $C05C/$C05D 49244/49245 -I6292/-16291
RESET/SET AN3 RW $C05E/$C05F 49246/49247 -16290/-16289
READ CASSETTE IN R $C060.$C068 49248,49256 -16288.-16280
READ PBO R $C061,$C069 49249,49257 -16287,-16279
READ PBl R $C062,$C06A 49250,49258 -16286,-16278
READ PB2 R $C063,$C06B 49251,49259 -16285,-16277
READ TIMERO R $C064,$C06C 49252.49260 -16284,-16276
READ TIMERl R $C065.$C06D 49253,49261 -16283,-16275
READ TIMER2 R $C066,$C06E 49254,49262 -16282,-16274
READ TIMERS R $C067.SC06F 49255.49263 -16281,-16273
TRIGGER TIMERS RW SC07X 49264—49279 -16272 TO -16257

*(i.!>
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Table 2.1 Apple He Master Address Decode Table (2 of 2).

HEX DECIMAL DECIMAL
FUNCTION RW RANGE RANGE COMPLEMENT

HIGH RAM, BANK2
WCNT = O.W',R RW $C080,$C084 49280,49284 -16256,-16252

WCNT+1,R' R $C08L$C085 49281,49285 -16255.-16251

WCNT = R' W $C08L$C085 49281,49285 -16255.-16251

WCNT = 0,W',R' RW $C082,$C086 49282.49286 -16254,-16250

WCNT+l.R R $C083,$C087 49283,49287 -16253,-16249

WCNT = O.R W $C083,$C087 49283,49287 -16253-16249

HIGH RAM, BANKI
WCNT = 0,W',R RW $C088,$C08C 49288.49292 -16248,-16244

WCNT+1,R' R $C089.$C08D 49289,49293 -16247,-16243

WCNT = O.R' W $C089,$C08D 49289,49293 -16247,-16243

WCNT = 0,W'.R' RW $C08A.$C08E 49290,49294 -16246,-16242

WCNT+l.R R $C08B.$C08F 49291,49295 -16245,-16241

WCNT = 0,R W $C08B,$C08F 49291,49295 -16245,-16241

DEVICE SELECT' SLOT 1 RW $C09X 49296—49311 -16240 TO -16225

DEVICE SELECT' SLOT 2 RW $COAX 49312—49327 "16224 TO -16209

DEVICE SELECT' SLOT 3 RW $COBX 49328—49343 -16208 TO -16193

DEVICE SELECT' SLOT 4 RW $COCX 49344—49359 -16192 TO -16177

DEVICE SELECT' SLOT 5 RW $CODX 49360-49375 -16176 TO -16161

DEVICE SELECT' SLOT 6 RW $COEX 49376-49391 -16160 TO -16145

DEVICE SELECT' SLOT 7 RW $COFX 49392-49407 -16144 TO -16129

1/0 SELECT' SLOT 1 RW $C1XX 49408-49663 -16128 TO -15873

I/O SELECT' SLOT 2 RW $C2XX 49664-49919 -15872 TO -15617

I/O SELECT SLOT 3 RW $C3XX 49920—50175 -15616 TO -15361

I/O SELECT' SLOT 4 RW $C4XX 50176-50431 -15360 TO -15105

I/O SELECT' SLOT 5 RW $C5XX 50432-50687 -15104 TO -14849

I/O SELECT' SLOT 6 RW $C6XX 50688—50943 -14848 TO -14593
I/O SELECT' SLOT 7 RW $C7XX 50944-51199 -14592 TO -14337
I/O STROBE' RW $C800—$CFFF 51200—53247 -14336 TO -12289
SET INTC8R0M RW $C3XX (INTC3) 49920—50175 -15616 TO -15361
RESET INTC8R0M RW $CFFF 53247 -12289
LOWER 48 RAM ACCESS RW $0000-$BFFF 00000—49151 -65536 TO -16385
HIGH RAM ACCESS RW $DOOO-$FFFF 53248—65535 -12288 TO -00001
INT/SLOT ROM ACCESS RW $C100—$CFFF 49408-53247 -16128 TO -12289
HIGH ROM ACCESS R $D000—$FFFF 53248—65535 -12288 TO -00001

does not receive these low order address inputs

directly from the address bus. It receives them from
the MMU via the multiplexed RAM address bus as

described in the previous section.

The control functions of various addresses are
fundamental operational features of the Apple He
computer. For easy reference. Table 2.1 contains a
complete list of the address decoded functions of the
Apple lie.

I/O (INPUT/OUTPUT)

The I/O capability of the Apple He is as versatile
as microcomputer bus architecture. We have seen

how the video scanner shares RAM, the RAM
address bus, and the data bus to drive a video map
out of RAM for video generator processing. The
other I/O features require more direct manipula-
tion from the MPU.
Apple I/O is memory mapped. This computer

lingo is used to describe a system where the I/O

devices have assigned addresses just like memory.
The addresses assigned to I/O in the Apple are in the

$CXXX range. This includes the built-in I/Odevices
as well as the peripheral slots.

Figure 2.6 is a bus diagram of the Apple He high-

lighting I/O capabilities. As you would suspect in a
memory mapped I/O system, the address bus is
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directly or indirectly distributed to all of the I/O

devices. Additionally, most of the I/O devices are

connected to the data bus.

Hardware control of the I/O devices is via address

decoding. In other words, when the MPU addresses

an I/O device, circuitry on the motherboard must

detect that address on the address bus and generate

signals which control that device.

The responseof a device to its control signals will

depend on the nature of the device. Addressing the

speaker makes the speaker diaphragm tense or

relax Addressing the cassette output causes the

cassette output line to toggle high or low. Address-

ing the keyboard causes the ASCII of the last key-

press to be placed on the data bus. Addressing a

peripheral slot causes the card in the slot to do what-

ever it was designed to do when its control signals

are activated.

Keyboard Input

The Apple He keyboard circuits include the key-

board, a keyboard encoder IC, and a 2K x 8 ROM.

The keyboard and encoder combine to latch ASCII

for keys that are pressed. The 2K x 8 ROM gives the

Apple He a versatile keyboard code translation ca-

pability and provides a tri-state connection to

MDO—MD6 of the data bus. Since the keyboard code

is latched, the controlling program can make the

MPU read the code of th e 1 ast keypress at any time or

any number of times before the following keypress.

The MPU reads the keyboard input via a read

access to $0000. Any read access in the $COOX range

can be used for this purpose, but the programming

convention is to use $C000. When the MMU detects a

read to $COOX on the address bus, it pulls the ena-

bling KBD' signal low*. This results in the transfer

of the 7-bit ASCII of the last keypress from the

keyboard ROM to MD0-MD6 of the data bus.

Additionally, the lOU detects the read to $COOX and

places the state of its KEYSTROBE soft switch on

MD7 of the data bus. The MPU thus reads the state

of KEYSTROBE and the latched ASCII of the last

keypress with a single access to $COOX.

The KEYSTROBE soft switch is set by the

KSTRB signal which goes high momentarily any

time a matrix key is pressed. KSTRB is output by

*KBD' also goes low when a read is made to $C01X although

Appledoesnotdocumentthis feature. Daring programmers may
exploit this capability to read the keyboard ASCII simultane-

ously with AKD or other lOU or MMU flags. Before you write

routines like this, please note that AKD becomes valid before

keyboard ASCII as described in Chapter 7.

the keyboard encoder and processed inside the lOU.

The strobe soft switch is reset when theMPU makes

a read access to $C010 or a write access to $C01X,

This provides programmers with a means of detect-

ing a keypress and distinguishing between multiple

keypresses The program polls $C000 until it finds

the MSB high (KEYSTROBE). Then it resets

KEYSTROBE, processes the ASCII, then resumes

polling $C000.
.

, , ,, „
If a key is held down continuously for .5 to .8

seconds (32 to 48 television scans), the lOU will start

setting the KEYSTROBE soft switch 15times every

second (once every four television scans). To the pro-

gram, this looks as if someone is pressing a key 15

times per second, and the result is the auto-repeat

feature of the keyboard.

A second flag related to the keyboard is the AKD
(any key dow n) flag, read at $C010. The AKD signal

is routed from the keyboard encoder to the lOU and

relayed to MD7 when the lOU detects a read to

$0010. This gives programmers a little more versa-

tility in interpreting keypresses. Not« that reading

the AKD flag also resets the KEYSTROBE soft

switch.

Peripheral Slots

The seven peripheral slots are connected to all of

the lines of the address bus and, through a bidirec-

tional driver, to all of the lines on the data bus. The

primary purpose of the driver is current amplifica-

tion. In other words, the driver helps motherboard

data bus signal suppliers in driving peripheral card

signal receivers and vice versa. Timing and control

signals to the driver are such that it doesn't isolate

the peripheral slots from data bus signals... with one

exception. The driver does prevent video data from

motherboard RAM from reaching the peripheral

slots during MPU write cycles. This seems to have

been done for compatilbility with the Apple II and II

Plus. I can see no other reason to deny video data to

the peripheral slots during write cycles.

TheMMU controls the direction of the peripheral

data bus bidirectional driver via the MD IN/OUT'

control line. The state of the address bus, R/W, and

the DMA' and INHIBIT' lines are used to determine

the correct direction for the driver. Direction is in to

the data bus when MD IN/OUT' is high and out

from the data bus when MD IN/OUT' is low.

I/O SELECT' ($C100-$C7FF), DEVICE
SELECT' ($C090-$C0FF), and I/O STROBE'
($C800—$CFFF) signals decoded on the mother-

board inform a peripheral card when it is being
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accessed at one of its assigned addresses. But the

slots are not restricted to response to $C090—
$CFFF addressing. The INHIBIT' line allows any
slot to disable motherboard and auxiliary slot re-

sponse to $0000—$BFFF and $C100—$FFFF ad-

dressing. With full connection to the address bus
and data bus, peripheral cards can take advantage
of this capability in any number of ways.

The peripheral slot and auxiliary slot connections

are different from each other in nature. The auxil-

iary slot is integrated into the Apple's timing and
control scheme as an 80-column video card, and
connection to the multiplexed RAM address bus,

data bus, and video data bus make the auxiliary slot

ideal for expansion RAM and 80-column cards.

Other connections make the auxiliary slot an ideal

diagnostic port for production testing or fault isola-

tion in malfunctioning motherboards. The periph-

eral slots, on the other hand, are meant to hold any
variety of I/O, memory expansion, or system con-

trolling device. To this end, the peripheral slots are

supported by full connection to the address bus and
data bus, fixed address assignments, and connection

to 6502 control lines and Apple timing signal lines.

Disk I/O

Disk I/O operations are an example of the flexibil-

ity that the peripheral slots give to the Apple. With
no peripheral cards plugged in, the Apple He has
only an anitiquated cassette interface for loading
and saving memory data. This goes back to the bad
old days when built-in cassette I/O was a noteworthy
convenience. But everybody knows that the primary
means of loading and saving memory data in the

Apple He is with 5 y^ inch floppy disks. The Apple is

thought of as a disk based computer, and when a
disk controller is installed in a peripheral slot, it is

fully integrated into the Apple, just as if it were a
motherboard device.

The data transfer path for disk output is from
RAM to the MPU to the disk controller to the disk
drive, and the data input path is the reverse of the
output path. Data is loaded from the transfer source
into the MPU, then stored at the transfer destina-
tion from the MPU. Data transfer between the MPU
and the controller is via the data bus.

Thedisk controller resides in a peripheral slot and
responds to the address bus/data bus environment
much like RAM. During disk input, the controller
responds to a read access from theMPU by placing a
byte of data on the data bus. During disk output, the
controller responds to a write access by accepting a

byte of data from the data bus. The addresses of the

input port and output port depend on which slot the

disk controller is in. If, as is normally the case, the

disk controller is in Slot 6, the input port address is

$COEC and the output port address is $C0ED.
Besides $COEC and $CGED, other address com-
mands perform the functions of motor control, drive

selection, read/write configuration, and head posi-

tioning. These commands are decoded on the moth-
erboard and controller. The motherboard circuits

detect the $COEX range on the address bus and
activate the Slot 6 DEVICE SELECT' signal to tell

Slot 6 it is being accessed. The controller decodes
AO—A3 of the address bus to determine which of 16

possible commands it is being given.

The actual programming of disk I/O is very com-
plex, requiring timed intervals, data encoding, and
extensive software housekeeping. Regardless of this,

all MPU control of the disk is via 16 address com-
mands on the address bus, and all data transfer is

over the data bus.

There is no motherboard ROM routine to load

programs from a disk drive when the Apple is first

turned on. A 256-byte program does exist on the

controller card, accessible at addresses $0600—
$C6FF {assuming Slot 6), which loads the extensive

Disk Operating System (DOS) from disk to RAM.
After power up, the motherboard firmware turns

control over to this controller firmware to get the

DOS up and running.

DMA and the MPU
As Figure 2.6 shows, the MPU address and R/W'

lines are connected to the address bus via a 17-bit

tri-state line driver. One purpose for this device is to

enable the MPU to drive (supply required signal

voltages to) all the circuits on the address bus,

including a possible variety of peripheral cards. A
second purpose of the address driver is to give the

MPU a tri-state connection to the address bus. This

is necessary to isolate theMPU from the address bus
during DMA operation, because the 6502 address
and R/W outputs are not tri-state. DMA (Direct

Memory Access) is achieved from a peripheral

card when the card pulls the DMA' line low. This

DMA capability is actually a direct bus access

which gives the peripheral card command of the

entire Apple. Pulling the DMA' line low forces the

17-bit line driver to high impedance, stops the clock

to the MPU, forces theMPU data terminals to input

mode, and affects the MMU read/write control of

the peripheral data bus driver.
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Unless it is stated otherwise, the discussions in

UnderKtavdivg the Apple lie assume that no periph-

eral card is performing DMA. This means that the

normal situation exists in which the MPU controls

the data bus during write cycles and always controls

the address bus.

The Serial Input Multiplexor

In addition to the keyboard input and any periph-

eral card inputs to the Apple, there are four paddle

inputs, three pushbutton inputs, and the cassette

input. Each paddle input is tied to a timer which,

when triggered, outputs a high TTL level for a

period of time determined by its paddle .setting. The

four timer pulses, three pushbutton inputs, and the

processed cassette input are all applied to the serial

input multiplexor.

When an address in the $00f5X range is on the

address bus. the .serial input multiplexor places one

of its eight inputs on D7 of the [ler ipheral data bus as

follows:

ADDRESS INPUT
$C06n/$C068 Cassette input

$C061/$C069 Pushbutton

$C062/$C06A Pushbutton 1

$C06a/-?C06B Pushbutton 2

$C0fi4/$C06C Timer (1

$C065/$C06D Timer 1

$C066/$C06E Timer 2

$C067/$C0fiF Timer .S

The MMU brings MD IN/OUT' high when a read

is made in the $C0f5X range. This causes the serial

input data to be passed from D7 of the peripheral

bus through the bidirectional driver to MD7 of the

data bus. The combined response of the serial input
multiplexor and the bidirectional driver toa read to

$C06X allows the MPU to read the serial inputs like

memory.
The serial input mechanization is similar to ROM.

A device responds to its address on the address bus
by placing data on the data bus. In this case, how-
ever, data is placed on only one line of the data bus.
The MPU receives data from the data bus as it does
when reading data from memory, and the control-

ling program ignores everything but MD7. The
program processes the MD7 information, extracts
the transfer data, and stores it in RAM.

The Serial Outputs

In addition to the video output and any peripheral
card outputs, there are seven serial outputs from the
Apple motherboard. These outputs are operated by

address decoding. They are direct or indirect out-

puts of the lOU, with the exception of the C040
STROBE' which is an output of the peripheral

address decoding circuitry. The serial outputs and

their controlling addresses are

CONTROL
ADDRESS SERIAL OUTPUT
IC02X
$C03X
$C04X
$C058/$C059
$C05A/$C05B
$C05C/$C05D
$C05E/$C05F

Cassette output toggle

Speaker toggle

C040 STROBE'
ANNUNCIATOR off/on

ANNUNCIATOR 1 off/on

ANNUNCIATOR 2 off/on

ANNUNCIATOR 3 off/on

A very interesting point about the serial outputs is

that ser iai output data is not transferred on the data

bus. Most of us would expect a serial output to be

written out on one of the 1 ines of the data bus as ifwe
were writing to memory. But addressing a serial

output port merely performs a control function on

the output line. For example, addressing the cassette

output port toggles the cassette output line, mean-

ing it changes the h igh/low state of the output line to

the opposite state. In other words, the programmer
does not write data to the cassette by sending data

over the data bus to an output line. Instead, he either

tells the line to change states or refrains from telling

the line to change states at a timed interval.

Other serial output is similar to the cassette out-

put. The output port is addressed, and the control

function—toggle, strobe, level high, or level low—
is performed. Speaker, annunciator, and C040

STROBE' output lines are controlled directly by

address decode in a process which ignores the data

bus. The speaker is a toggle output like the cassette

output. The programmer can toggle the high/low

state, but he never knows whether the state is high

or low. The annunciators are on/off outputs which

can be brought high or low. For example, $0058

makes ANNUNCIATOR go low, and $C059 makes

ANNUNCIATOR go high. The 0040 STROBE'
simply goes low for half a microsecond any time

$C04X ison the address bus, then returns high.

Reading or writing to a serial output port is a

control access as opposed to a data access. The MPU
reads from the data bus or writes to it on every 6502

cycle, even in a control access. The programmer
performs a control access with a normal read or

write instruction, but the data that is read or writ-

ten is irrelevantand ignored. This is why statements

like "SPEAKER=PEEK(-16336)" are made in

BASIC to control the speaker and the data is
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ADDRESS BUS
A0-A15, R/W

DATA BUS
MD0-WID7

ADDRESS BUS

ADDRESS BUS EXTENSION

DATA BUS

DATA BUS EXTENSION

Figure 2.7 The Apple lie Bus Structure.
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ignored. The programmer is making a control

access to -16336 ($C030. the speaker port), and the

data is irrelevant.

THE COMPLETED BUS STRUCTURE

The discussion of the bus structure of the Apple

He is now complete. This chapter has presented a

series of diagrams of the bus structure, building in

complexity and completeness as we progressed

from basic ideas to detailed structure. Figure 2.7 is

the final diagram in this series. The author feels that

study of this diagram is very important in the effort

to understand the Apple He computer. It is hoped

that the reader can become comfortable with the

concepts of information flow within the bus struc-

ture, because this chapter is the foundation upon

which all that follows is built.

The remaining chapters are devoted to a more

detailed discussion of the various functional areas of

the Apple lie, beginning with the important subject

of timing. Understanding these detailed discussions

will be much easier if the reader attempts to visual-

ize how each area performs its functions within the

bus structure.

J",i



chapter 3

Timing Generation

and the Video Scanner

Most operational aspects of the Apple He have
now been discussed within the context of the bus
structure. However, this discussion has left out one
of the Apple's most important operational aspects-
timing. Timing synchronizes everything that goes
on in the Apple. To discuss it, we must get into real

nuts and bolts detail about computer operation.

Up to this point, the subject matter of Under-
standing the Apple lie has been of a general nature.

Noattempt was made in Chapters 1 and 2 to explain
the finer points of Apple lie operation. Having
gainedunderstandingof the Apple's bus structure,
you are largely aware of the methods of communica-
tion and control that take place in this computer.
The following chapters will build on this foundation
of understanding, examining and discussing the
detailed features of al 1 functional areas of the Ap pi

e

He.

The perceptive reader is probably getting the
message that the going is about to become stickier.

This book attempts to explain as much as possible
about the operation of the Apple i n understandable
English. There comes a point, however, beyond
which clear illustration is achieved only with such

technical tools as timing diagrams, truth tables,

logic diagrams and schematic diagrams. One of the

goals of Undemtanding the Apple He is to assist

those readers who desire to do so to analyze the

operationof the Apple lie in depth. For this reason,

some technically oriented analysis aids are pre-

sented in this chapter and succeeding chapters.

These techn ical aids will be accompanied by techni-

cal language. Every person reading these words is

capable of understanding the tech n ical sections, but
some readers may not wish to. and others will find it

a struggle. Every effort has been made to assist all

readers in achieving fullest possible understanding
from the least possible effort.

By way of warning, the details of some functional

areas are just plain difficult, but most of the areas
are pretty painless.* In particular, much of the

complexity of the Apple is concentrated in RAM and
its associated circuitry. Some other complicated

*Even thoug-h it is not part of the motherboard circuitry, disk I/O

is the subject of a chapter of Unili'isfiiiidiuplhi' Apple Ih. Read-

ers intrepid enoiigh to tackle this chapter will find d isk I/O to be a

complex but interestinjr area of study.
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circuitry, like the internal workings of the MPU,

will not be discussed at all. Besides the RAM circuit-

ry, the most difficult topics probably are the details

of timing and video generation. Timing comes next,

so put on your overshoes—we're going wading.

TIMING OVERVIEW

The important timing signals in the Apple He all

originate at a small group of circuits called the tim-

ing generator. You should appreciate this when

studying the Apple, because it makes a difficult job

easier. Interrelated digital timing originating from

multiple sources can scramble your brains. With a

single timing source we can assimilate the timing

sequences and then apply them to the various func-

tional areas in the following chapters.

Timing signals are distributed to all areas of the

Apple, but the Apple's timing requirements are

determined primarily by RAM usage. RAM is

accessed alternately by the 6502 processor and the

video scanner. Executing a stored sequential pro-

gram and generating a color televi.sion video signal

are two entirely different tasks, but the two tasks

are synchronized in the Apple. As we shall see, exe-

cution of this double task dictates certai n facts of life

about Apple timing.

The timing generator controls the timing and
affects all areas of the Apple lie. Some of these areas

also affect timing generation (see Figure 3.1). The
external influences areas follows:

1. One of the timing signals, CAS', is enabled or

disabled by CASEN' from the MMU.
2, VID7 of the video data bus and the display mode

affect the generation of the LDPS' and VID7M
video timing signals.

3. An auxiliary card working in coordination with
a Slot 1 peripheral card can disable all of the
timing signals and substitute alternate signals.

This is not normally done in operational Apples,
but it is a capability.

4, Feedback from the video scanner elongates one
system clock period toward the end of each
horizontal television scan.

The elongation referred to in item 4 above is

necessary to keep colors consistent from scan to

scan. It also means the clock period of the 6502 is not
constant but is elongated on every 65th cycle. This
book will refer to this elongated machine cycle as the
long cycle. Because of the feedback from the video
scanner to the timing generator, the two areas are
covered in this single chapter.

Apple timing originates with a 14.31818 MHz
crystal oscillator. The output of the oscillator,

referred to as 14M, isavoltagewhich switches from

low to high and back very close to 14,318,180 times

every second. The reason for using 14,31818 MHz
instead of 14 MHz is that 14,318,180 Hz divided by

four is 3,579,545 Hz, the exact frequency at which

color information is passed in a television set. All of

the distributed timing signals are clocked by low to

high transitions of the 14M clock, so the exact fre-

quencies at which events occur in the Apple are

determined by a television signal specification. The
approximate frequencies at which some functions

occur are:

APPROXIMATE
FUNCTION FREQUENCY

6502 Cycle IMHz
Video Scanner Increment IMHz
Address Bus Access IMHz
RAM Access 2 MHz
COLOR REFERENCE 3.5 MHz
Video Output 7 MHz max.

All of these frequencies are determined by outputs

of the timing generator.

The timing generator circuits consist of a 14.31818

MHz oscillator, a pair of divide-by-two flip-flops,

and a HAL (Hard Array Logic) IC. The HAL is a

special type of IC whose logic functions can be pro-

grammed within the constraints of a format. The

format of the Apple He timing HAL is a 20-pin IC

with eight registered (clocked) outputs driven by

eight external inputs. This HAL, programmed to

Apple's specifications, performs much of the work

in generating timing signals for the Apple He,

THE TIMING SIGNALS

This section is a very brief description of the tim-

ing signals which are the outputs of the timing gen-

erator. All these signals are described in detail later

in this chapter.

PHASE is the 1 MHz clock input to the 6502, It

also is used as a general timing reference in the

MMU and lOU and throughout the motherboard.
PHASE defines when an MPU address is valid,

and whether the MPU or the video scanner is

addressing RAM. It is available at the peripheral
slots.

PHASE 1 is PHASE inverted or PHASE 0'. It

is inverted and gated by DMA' to provide the 1 MHz
clock input to the 6502. PHASE 1 is used as a timing
reference by several motherboard devices and is

also available at the peripheral slots.
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COLOR REFERENCE is a 3.5 MHz clockpulse

which is used to make up the color burst portion of

the video output. The color of any Apple video is

determined by its phase relationship with the

COLOR REFERENCE signal. COLOR REFER-
ENCE is available at peripheral Slot 7.

7M is a 7 MHz clock used only in the generation of

other timing signals. It is also available at the pe-

ripheral slots.

14M is the output of the Apple's 14 MHz clock-

pulse oscillator. It is used in timing generation and

in the shiftingof video patterns in the video genera-

tor. As mentioned in the timing overview section,

14M is the ultimatesoureeof Apple timing.

HAS' (Row Address Strobe) clocks ROW address

information to RAM, and serves as a timing refer-

ence in the lOU and MMU. Among other things,

RAS' defines RAM ROW address time, and RAS'
rising during PHASE 1 causes the video scanner to

increment. RAS' occurs twice every 6502 cycle

—

once for MPU access and once for video scanner
access.

CAS' (Column Address Strobe) clocks COLUMN
address information to motherboard RAM. CAS' is

gated byCASEN' from the MMU duringPHASEO
toenable or disable motherboard RAM. CAS' always
falls during PHASE 1 and falls during PHASE o'if

CASEN'islow.
Q3 is a 2 MHz signal used as a timing reference in

the MMU and lOU. It is also available at the pe-

ripheral slots.

LDPS' (LoaD Parallel in/Seria! out register) is a
video timing term thatdefines a video cycle. Picture
patterns are loaded while LDPS' is low and shifted

out to the VIDEO output line when LDPS' is high.
LDPS' occurs once every 6502 cycle in SINGLE-
RES display modes and twice every 6502 cycle in

DOUBLE-RES display modes.
VID7M is a video timing signal that enables the

14Mciockpulseof the video shift register. It enables
shifting every other 14MinTEXT40and HIRES40
display modes and shifting every 14M in the other
display modes. It also may be delayed or undelayed
in HIRES GRAPHICS mode to control the shifting
of 7-dot groups.

APPLE FREQUENCIES
It is very hard to make precise statements about

the frequencies of some signals in the Apple. This is
because of the clockpulse elongation which occurs
every 65th 6502 cycle. 14M, 7M, and COLOR REF-

ERENCE are not affected by this elongation

PHASE 0, PHASE 1, Q3, RAS'. and CAS' are
affected.

If not for the long cycle, the frequencies of all

timing signals could be computed by dividing

14,318,180 by 14, 7, 4, 2, or l.Inactuality, this works
for computing the fixed frequencies. 14M occurs at

14.31818 MHz; 7M occurs at 7.15909 MHz; COLOR
REFERENCE occurs at 3.579545 MHz. The 1 MHz
and 2 MHz signals are less straightforward.

The period of time required for a 14.31818 MHz
signal to go through a complete high/low cycle is

1/14318180 seconds or about 69,8 nanoseconds (69.8

billionthsofaseeond). All synchronized durations in

the timing generator are multiples of this time
period which we will call the PERIOD for this

discussion.

The normal 6502 machine cycle lasts 14 PERI-
ODS or about .978 microseconds. The long cycle

lasts 16 PERIODS or about 1.12 microseconds.
There are three frequencies involved here; the

primary frequency at which the 6502 isoperated for

64 out of 65 cycles, 1.0227 MHz; the secondary fre-

quency at which the 6502 operates for 1 out of 65
cycles, .8949 MHz; and the composite frequency
which actually is the number of machine cycles per
second, 1.0205 MHz.
The 2 MHz signals are similar to PHASE Oexcept

that on iy one of every 130 cycles is elongated. Their
normal duration is seven PERIODS or about ,489

microseconds. Their long duration is nine PERI-
ODS or about .629 microseconds.

The durations and frequencies ofthe signals of the
timing generator are shown in Tkble 3.1 below. The
values are arithmetic derivations of 14.31818. car-

ried to ten place accuracy. Actual frequencies will

vary as the 14M oscillator varies from 14,318,180 Hz
due to thermal environment and crystal tolerance.

Also shown in Table 3,1 are correction factors for

the 50 Hz lOUs and 14.25 MHz oscillators found on
Apple lie PAL (Phase Alternating Lines) mother-
boards. PAL motherboards are designed for coun-
tries using a 50 Hz television scan instead of the
American 60 Hz scan. Those PAL motherboards
with discrete circuit 14M oscillators use a 14.25045
MHz crystal instead of 14.31818, and those with
hybrid circuit 14M oscillators operate at 14.25 MHz.
The reason for the different frequency is so the 50
Hz Apple He horizontal television scan will approx-
imate the 50 Hz standard of 64 microseconds. As a
side effect, 50 Hz Apple execution speed is slightly
slower than 60 Hz Apple execution speed.
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Table 3.1 Durations and Frequencies of Timing Signals.

SIGNAL

NORMAL
DURATION

(nsec)

LONG
DURATION

(nsec)

AVERAGE
DURATION

(nsec)

PRIMARY
FREQUENCY

(MHz)

SECONDARY
FREQUENCY

(MHz)

COMPOSITE
FREQUENCY

(MHz)

PHASE
RAS',CAS',Q3
COLOR REF

7M
14M

977.7779019

488.888951

279.3651148

139.6825574

69.84127871

1117.460459

628.5715084
979.9268644

489.9634322

1.022727143

2.045454286

3.579545

7.15909

14.31818

.89488625

1.590908889

1.02048432

2.04096864

SCAN NOTES:

There are 912 14M periods in a horizontal scan.

There are 262 horizontal scans in a 60 Hz vertical scan.

There are 312 horizontal scans in a 50 Hz vertical scan.

PAL NOTES:

Multiply NTSC frequency by ,9952696502 for discrete circuit PAL frequency.

Multiply NTSC duration by 1.004752832 for discrete circuit PAL duration.

Multiply NTSC frequency by .9952382216 for hybrid circuit PAL frequency.

Multiply NTSC duration by 1.004784561 for hybrid circuit PALduration.

More information on export Apples is given later

in this chapter and in Chapter 8. However, much of

the discussion in this book assumes we are talking

about American Apples, This is particularly true of

topics mentioning- frequencies or durations or

details of television scanning and video generation.

Owners of PALbased Apple He's should read the

section on export Apples in Chapter 8 to get an good
idea of theareas of difference between 50 Hz and 60

Hz Apple lie's.

It is reasonable to wonder why the exact frequen-

cies in the Apple should be of any concern. In fact,

for most purposes, the exact frequencies are not

important. They are important when discussing teN

evision compatibility, because television signals

require some specific frequencies which are not

exact multiples of 1 MHz. Frequency is also impor-
tant in so far as it affects MPU execution speeds.

Knowledge of 6502 clock speed is very important for

Apple programs with precision timing loops. For
the most part, we will continue to refer to frequen-
cies in very rough estimates such as 1 MHz or 3,5

MHz.

THE TIMING DIAGRAM
Timing is usually summarized in timing dia-

grams. Figure 3.2 is a timing diagram showing the

outputs of the timing generator and some related

signals. The timing diagram is a series of line

graphs of voltage as a function of time. Voltage

changes vertically in the diagram as time passes

from left to right.

In thefollowingdiscussionsof timing signals, the

reader is encouraged to refer to Figure 3.2 as neces-

sary to clarify relationships in his own mind. Time
periods will be measured in millionths of a second

(microseconds) and billionths of a second (nano-

seconds).

Figure 3.2 shows three 6502 machine cycles—two

normal length cycles and one long cycle. For each

normal machine cycle, there is one PHASE cycle,

two RAS', CAS', and Q3 cycles, three and a half

COLOR REFERENCE cycles, seven 7M cycles and

fourteen 14M cycles. For reference, the period of

14M is about 70 nanoseconds and the period of a

normal PHASE cycle is about 978 nanoseconds.

The signals illustrated in Figure 3.2 are the tim-

ing generator outputs, plus AX, HO, and VID7. AX
(Address Multiplex) is a signal which is used only

inside the timing HAL. It was used in the Apple II to

gate ROW or COLUMN addressing to the multi-

plexed RAM address bus. It can be viewed in the

Apple lie at pin 18 of the HAL.
HO, the least significant bit of the video scanner, is

an output of the lOU and an input to the HAL. Its

level alternates approximately when PHASE
rises for 64 out of 65 MPU cycles. Every 65th cycle.

^^..



3-6 Understanding the Apple lie

o

Ok
c

e
5
O)
o
o
o>
c
1

S!

o>

= 3 <i = < 9 =>
=t < < < <5 < 5 ^ =< X <: <

x;

< X < en
CC •! O C3

« CO< < o
2 ouj
3: woe S o i:i

=> _l =>

o



Timing Generation and the Video Scanner 3-7

though, HO stays low for one extra period. It will

shortly be shown that there are 65 cycles in a horiz-

ontal video scan line. The double period with HO low,

shown in the middle of Figure 3.2, occurs at the
rightedgeof the Apple display window.
Look, for a moment, at PHASE at the left sideof

Figure 3.2. When PHASE falls for the first time
COLOR REFERENCE is high, but when PHASE
falls at the end of the next cycle, COLOR REFER-
ENCE is low. This alternating relationship between
PHASE and COLOR REFERENCE is a conse-

quence of the fact that there are 3.5 eve! es ofCOLOR
REFERENCE in one cycle of PHASE 0. The rela^

tionship can be defined in terms of HO. COLOR
REFERENCE is low when PHASE falls during
HO'. COLOR REFERENCE is high when PHASE
falls during HO.

TheHO/PHASEO/COLOR REFERENCE phase

relationship is as described above for 64 out of 65

PHASE cycles. It must be this way during video

display periods to conform to the overall scheme for

controlling the colorsintheGRAPHICSmodeof the

Apple. The relationship is thrown off, however, by

the fact that there are an odd number of PHASE (I

cycles (65) in a horizontal scan. If this were not

corrected for, the relationship would reverse every

horizontal scan.

The correction occursafter the double period with

HO low. The HAL, monitoring HO and the timing
signals, detects the fact that the relationship has

changed. It corrects the relationship by delaying

generation of the 1 MHz and 2 MHz signals for one
halfof aCOLOR REFERENCE period. Thedday
extends the high duration ofPHASE and AX, and
itextends the low duration of RAS', CAS\ and Q:i. tt

also causes the extension of the current 6502 ma^
chine cycle (the long cycle). The point at which this

delay takes place is shaded in Figure ?,.2.

With the exception of LDPS' and VID7M, the

timing signals remain fixed in the cyclic patterns

illustrated in Figure 3.2. LDPS' and VID7M will

vary with the Apple display mode and, in HIRES40
mode, with VID7 of the video data bus. The video

timing shown in Figure 3.2 is for HIRES40 mode,
and VID7M and LDPS' are shown reactingtoVIDT.
Chapter 8 contains timing diagrams showing other

variations of LDPS' and VID7M.
The signals of Figure 3.2 do not actually rise and

fall instantly. It takes them about six nano,secondsto

riseandfall. Also, it takes a small amount of time for

the outputs of an IC to respond to changes in its

inputs. The delay from input change to output
response is referred to as propagation delay.

It is very difficult to illustrate minute propaga-
tion delay in a diagram with the time scale of Figure
3.2. Figure 3.3 more accurately depicts the delay
hierarchy that exists. The rising edge of 14M is the
master reference of Apple timing, and the basic
features of propagation delay are:

1. RAS', CAS', Q3, PHASE 0, PHASE 1. LDPS'.
VID7M. 7M, and COLOR REFERENCE are
all clocked by the rising edge of 14M. COLOR
REFERENCE and 7M are outputs of a 74S109
with a delay of roughly nine nanoseconds from
14M rising. RAS', CAS', Q3, PHASE 0, PHASE
1, LDPS'. and VID7M are outputs of the 16R8
HAL with a delay of roughly 14 nanoseconds
from 14M rising.

2. PHASE is routed to the6502 through one logic

device. Internal 6502 actions cause a further
delay before the 6502 data clock (the falling

edge of the 6502 PHASE 2 clock). The typical

6502 internal delay is not specified in data
sheets. The delay between PHASE falling at

the peripheral slotsand PHASE 2 fallingat the

6502 was measured by the author at 28 nanose-
conds.* This delay should varv considerably
from 6502 to 6502.

.S. The video scanner in the lOU is clocked bv the
rising edge of RAS' during PHASE l" The
delay between the rising edge of I4M and a
change in HO was measured by the author at 80
nanoseconds.** In other words, HO changes at

approximately the .same time PHASE! rises.

This delay should varv considerablv from lOU
to lOU.

TIMING SIGNAL DISTRIBUTION

Figure 'AA shows the distribution of timing gen-
erator outputs throughout the motherboard. Each
motherboard device receives the signals it requires
to stay synchronized with the overall Apple timing
scheme. Note that all timing generator outputs are
connected to pins of the auxiliarv slot, but only
PHASE 0, PHASE 1, Q3, 7M, nnd COLOR REF-
ERENCE are available at the peripheral slots.

Peripheral cards must perform their functions with-

out the benefits of monitoring 14M. RAS' CAS'
LDPS'. and VID7M.

*S.viiert<'k SyB.W2 (markinE 8807. S10891. 370-fi502) in a Elevi-

siim B Apple He computer.

"AM! lOU (markinp 8307 MAA, 344-0030-A) in a Revision B
Apple lie computer.
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DETAILED DESCRIPTION

OF THE TIMING SIGNALS

The following sections describe in detail how the

timingsignalsof the Apple He are used. Please refer

to Figures 3.2 (timing diagrann) and 3.4 (timing

signal distribution) as needed while reading these

discussions.

PHASE and PHASE 1

PHASE and PHASE 1 provide the primary 1

MHz timing reference of the Apple He computer.

They could easily (and more properly) be called IM
and IM' to avoid confusion with the 6502 PHASE
clock input and 6502 PHASE 1 internal clock. As

the names IM and IM' imply, PHASE 1 is simply

the exact inversion of PHASE 0. PHASE 1 is high

when PHASE is low and vice versa.

PHASE 1 is inverted and gated by DMA' high to

become the 1 MHz PHASE Oclockpulse input to the

6502. As such, its frequency determines the execu-

tion time of instructions in the Apple computer. The
duration of a PHASE Oor PHASE 1 cycle is equal to

the duration of a 6502 cycle. This duration is .98

microseconds in a normal cycle and 1.12 microsec-

onds in a long cycle.

The PHASE cycle period is almost coincident

with a 6502 machine cycle but slightly leads it.

Speaking of PHASE 1 and PHASE as positive

gating signals, PHASE 1 occurs approximately

during the first half of the 6502 machine cycle and

PHASE occurs approximately during the second

half. The time relationships ofPHASE 1, PHASE 0,

and the 6502 machi ne cycle are shown in Figure 3.5,

Clockpulse action takes place when the 6502

PHASE clockpulse input line switches from high

to low or low to high. These transitions trigger

actions inside the 6502 which will be discussed in

greater detail in the next chapter. A high to low

transition of PHASE causes the 6502 to begin a

new machine cycle after a short delay.

Time in

Nanoseconds

7M COLOR REF

14 HAS' CAS' 03 PHASE 1 PHASED LOPS' VID7M

42 6502 PHASE 2

30 HO

Figure 3^ Propagation Delay Hierarchy.
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3-10 Understanding the Apple He

PHASE 1

PHASED

/

V

1 /

/ V

6502 MACHINE CYCLE

Figure 35 The 6502 Mach ine Cycle Slightly Lags the PHASE Clockpulse.

In addition to triprperinfc 6502 events, PHASE
and PEIASE 1 are used as a lime reference on the

nnotherboard. During PHASE 0, the 6502 address is

valid so address decfKlinp from the address bus

takes place durinsj PHASE 0. RAM is addressed by

the MPU during PHASE 0, and by the video

scanner during- PHASE 1. Videodata from RAM is

latched at PHASE rising, and the video data bus
contains latched RAM data from the auxiliary card

durintr PHASE 0, and from the motherboard dur-

ing PHASF) 1. Also, since scanner access is during
PHASE 1, the RAM read/write control is set to

"read" during PHASE 1, even if the 6502 R/W line

is set to "write."

14M, 7M, and COLOR REFERENCE
I4M and COLOR REFERENCE (3.5M) are util-

ity clocks which are u.sed in the generation of video.

The frequency of Apple video can be as high as 7
MHk, so generating the video signal requires fast

clocks. 7M is a utility clock available at the periph-
eral slots, but not used on the motherboard except in

the timing HAL.
14M, 7M, and COLOR REFERENCE are unaf-

fected by the long cycle and have fixed frequencies
of 14.318180 MHz, 7,15909 MHz and 3.579545 MHz
respectively. 14M is used strictly as a clockpulse in

the video generator, butCOLOR REFERENCE is

used differently. Short bursts of the COLOR REF-
ERENCE signal are placed on the videooutput line
once every horizontal scan. A television set is capa-
ble of reproducing the continuous COLOR REF-
ERENCE signal from these short bursts, allowing
theCOLORREFERENCEinputto the television to
become the phase reference for color generation.
The Apple produces color on a television by shifting
the PICTURE signal in relation to the COLOR
REFERENCE.*

7M is available at pin 36 of the peripheral slots.

COLOR REFERENCE isavailableatpin35of Slot

7 only. 14M is not available at the peripheral slots.

RAS',CAS',andQ3
RAS', CAS', and Q3 are 2 MHz signals. Q3 is used

as a timing reference in the MMU and lOU, and is

available at the peripheral slots. It is named Q3
because it is identical to the Q3 signal (the Q3 output

of a 74S195)of the Apple II. Q3 is also used to strobe

the COLUMN address to auxiliary card RAM.
RAS' and CAS' are RAM timing signals that

strobe the ROW and COLUMN addresses to mother-

board RAM. It can be seen from Figure 3.2 that a

RAS'/CA S' sequence occurs twice every 6502 cycle.

The PHASE 1 sequence controls the video scanner

access to RAM, and the PHASE sequence controls

the MPU access to RAM. The falling edges of RAS'
and CAS' strobe the ROW address and COLUMN
address to RAM. while RAS' selects ROW or COL-
UMN address lines at the multiplexed address out-

puts of the lOU and MMU. There is a continuing

cycle of RAM access:

1. Select ROW address via RAS' high.

2. Strobe ROW address via RAS' falling.

3. Select COLUMN address via RAS' low.

4. Strobe COLUMN address via CAS' falling.

RAS' is wired directly to all of the motherboard
and auxiliary card RAM chips, and to the lOU and

*This book refers to the signal which controls the intensity of the

Apple display as the PICTURE signal. When the PICTURE
signal is at the white level, the electron beam in the television

picture tube strikes the picture screen with enough intensiG' to

cause lightemission. The PICTURE signal SYNC, and COLOR
BURST are the three components of the Apple VIDEO signal.

More information on this subject is contained in Chapter 8.
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1

MMU as well. It serves as a general timing refer-

ence in the lOU and MMU, and RAS' rising during
PHASE 1 is the clockpulse which increments the

video scanner.

CAS' is connected directly to the eight mother-

board RAM chips. It always falls once during
PHASE 1, but it only falls during PHASE if

CASEN' from the MMU is low. When the MPU
is accessing motherboard RAM, the MMU holds

CASEN' low, enabling CAS' during PHASE and
subsequent data transfer between motherboard
RAM and the data bus. When the MPU is accessing

any device other than motherboard RAM, the MMU
holdsCASEN' high, d isabling CAS' during PHASE
0, and isolating motherboard RAM from the data
bus.

CAS' is not used as the COLUMN address strobe

or the RAM enabling signal on the auxiliary card
RAM. Q3 is the auxiliary card COLUMN address
strobe, and communication between the data bus
and auxiliary card RAM is enabled or disabled at

the auxiliary RAM card bidirectional data bus
driver. The enable/disable signal for this function is

EN80' from the MMU.
The three signals which provide the timing refer-

ence in the the custom ICs are PHASE 0, RAS', and
Q3. The relationships of these signals and some
major events that they control are illustrated in

Figure 3.6. Remember that in all instances, the
events will occur substantially later than their gat-
ing inputs because of the long propagation delays in

the MMU and lOU.

LDPS'andVID7M
LDPS' and VID7M are timing signals used in the

generation of video. These signals vary considerably
with the Apple display mode, and they are discussed
in greater detail in Chapter 8 than they are here.

The generation of the PICTURE signal is a load/

shift process. Text or graphics patterns are loaded
from a ROM which is addressed by latched RAM
data. The patterns are then shifted out as the PIC-
TURE signal. LDPS' is the load/shift reference for

PICTURE signal generation. While LDPS' is low,

patterns are loaded in the video generator. While
LDPS' is high, they are shifted out. LDPS' always
drops low near the end of PHASE L In DOUBLE-
RES video modes, LDPS' also drops low near the
end of PHASE 0.

VID7M is the clockpulse enable signal for the

PICTURE signal load/shift register. When VID7M
is low, 14M risingcauses the register to load or shift.

In TEXT40 and HIRES40 display modes, VID7M is

a 7 MHz signal {thus the name VID7M). This 7 MHz
signal enables loading or shifting every other 14M
rising, and is usual ly identical to the 7M clock, but in

Increment

video scanner

PHASED

RAS'

03 /

J

^

VIDEO VIDEO
ROW COLUMN

Latch MPU row
address in lOU

r

\

I

n
/

MPU MPU
ROW COLUMN

VIDEO
ROW

Figure 3;6 Timing DIagiam: MMU and lOU Signals.
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HIRES40 delayed video cycles, VID7M is the inver-

sion of the 7M clock.

In the LORES40 and DOUBLE-RES display

modes, VID7M is a constant low. This enables pat-

tern loading or shifting- every time 14M rises, so

patterns are shifted out twice as fast as in TEXT40
and HIRES40 display modes.

TELEVISION SCANNING
To understand the operation of the video scanner,

it is necessary to understand a little bit about televi-

sion operation.* The television display is achieved

by scann ing an electron beam across the screen . The

PICTURE signal level controls the beam intensity

and the resulting light intensity as the viewer sees it.

The electron beam scans much faster horizontally

than it does vertically, so the scan or raster is made
up of many nearly horizontal lines as shown in Fig-

ure 3.7, The scanning circuitry is internal to the

*Chapter 8 contains a more detailed description of television

operatiim. The important concepts here are television scanning

and synchronization.

television, but the signal input synchronizes the

scanning with horizontal and vertical sync. The
horizontal sync causes the beam to return very

quickly to the left side of the screen, and the vertical

sync causes the beam to return very quickly to the

top of the screen. The horizontal and vertical sync

must occur approximately at' television horizontal

and vertical frequencies for the television to become
synced. In American television, the horizontal scan-

ning frequency is 15,734 Hz and the vertical scan-

ning frequency is 59.94 Hz.

Horizontal and vertical sync occur while the PIC-

TURE signal is at a black
,
or blanking, level . After

the horizontal sync causes the beam to go to the left

side, the beam traces left to right while the PIC-

TURE signal controls beam intensity.

The Apple must generate the television signal

which is a combination of horizontal sync, vertical

sync, picture level, and a color burst. It does this by

scanning memory for video output with a counter

which has recurring periods approximately equal to

the horizontal and vertical periods of a television.

This counter is the video scanner.

Figure 3.7 Exaggerated View of a Television Scan.
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THE VIDEO SCANNER
The video scanner is a counter inside theJOU that

counts like a television scans (see Figure 3.8). The
low order bits (HPE'-H5-H4-H3-H2-H1-H0) form
the horizontal section which sequences through its

counts once for every horizontal scan. The hiph

order bits <V5-V4-V3-V2-V1-V0-VC-VB-VA) form

the vertical section which sequences through its

counts once every vertical scan. In the lOU. outputs

of the video scanner are used to develop horizontal

and vertical sync for the video signal.

Since states of the video scanner synchronize the

television scan, the video scanner can be thoujjht of

as scanning the TV screen as it scans memory. The
electron beam is always in the same spot on the

screen when agiven memory location is accessed by
the scanner.

The video scanner increments when RAS' rises

during PHASE 1. Just like the MPU, the scanner

operates at 1 IVIHz. There is a 1-microsecond period

for which every state of the scanner is held until the

scanner increments to the next state. During one

microsecond, the electron beam travels the width of

one TEXT40 character, one LORES block, or seven

HIRES40dots.
Table 3.2 shows the states of the horizontal and

vertical sections as well as some events that are

initiated at certain states. The vertical states are

shown in groups of four because of limited space.

The events include sync, the color burst, iVlIXED
mode switching between GRAPHICS and TEXT,
VBL (Vertical BLanking). and HBL (Horizontal

BLanking). The purpose of this table is to present an

overview of the video scanner as it controls events

related to the display scan. ,The nature of these

events is discussed in Chapter 8. The details of

memory scanning are discussed in Chapter 5.

Horizontal Scanning
The video scanner is divided into the horizontal

section and the vertical section. The horizontal sec-

tion is made up of HO—H5 plus HPE' (Horizontal
Preset Enable). These seven bits are mechanized as
a 65-state counter which increments every other
time RAS' rises. The 65 states of the horizontal
counter are 0000000 and 1000000 through 1111111.
HPE' is low only during one of the 65 states

(0000000), and when it goes low, it causes the hori-
zontal section to preset to 1000000.
One horizontal SYNC pulse is output from the

lOU for every time the horizontal section of the
video scanner goes through its 65-state sequence, so

the 65-state sequence represents one horizontal

scan. During 40 of the states, picture information is

output on the video line. During the remaining 25

states, the picture is blanked. The blanking period

includes the left margin, right margin, and retrace

(quick movement of the beam from right to left).

The duration of the horizontal sequence is equal to

64 normal 6502 cycles and one long cycle. This takes

63.695 microseconds, which gives a horizontal fre-

quency of 15,700 Hz. This is very close to the stan-

dard television horizontal frequency of 15.734 Hz.

HO.theleastsignificantbitofthe video scanner, is

output directly to pin 40 of the lOU. No other

scanner bits are lOU outputs, but some of them are

delayed and output as SEGA, SEGB, and SEGC.
Also, outputs such as the multiplexed RAM address,

GR-^2, WNDW and others are gated by the scanner

and reflect the scanner states.

Vertical Scanning

The vertical section of the video scanner is made
up of VA—VC and VO—V5. The vertical section

incrementsevery time there is an overflow from the

horizontal section, meaning it increments when the

hor'izontal count is lllllll just before HPE' goes

low. The vertical section counts horizontal scans.

The nine bits of the vertical section are mecha-

nized as a 262-state counter. The 262 states are

011111010-111111111, It is a straightforward

binary counter which presets on o\'erflow to

011111010. A typical vertical count .sequence is

VERTICAL HORIZONTAL
1 11 100000

111100001

iinooooi

lllllll

0000000

1000000

The vertical preset secjuence is

VERTICAL HORIZONTAL
111111111

011111010

011111010

lllllll

0000000

1000000

Once each vertical sequence, the lOU sends verti-

cal sync, ,so the 262-state sequence represents a ver-

tical scan. During 192of the scanner states, picture

information is output on the video line. The 70

blanked horizontal lines represent the top margin,

the bottom margin, and the retrace to the top of the

screen.

There are exactly 17030 (65 x 262) 6502 cycles in

every television scan of an American Apple. The

duration of the television scan is equal to 262 hori-

zontal scans. This is 16,688 microseconds which
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Figure 3.8 Functional Diagram: The Video Scanner.
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Table 32 Video Scanner States (1 o( 2).

HDRIZOnSVL scmswG

HDR. CK HDR.
saancN NO EVENT
P 543 lUi

1 001 100 53 BURST
1 001 101 54 KJRST
1 001 110 55 HJRST
1 001 111 56 HJRST

1 0US 00Bi 57

1 SLfB 001 58

1 010 010 59

1 010 011 60

1 010 100 61

1 010 101 62
1 010 110 63

1 010 111 64
1 011 000 00 HBL'

1 011 001 01
(

1 011 010 02

1 011 011 03

1 011 100 04
1 011 101 05

1 011 110 06
1 011 111 07
1 100 000 08
1 100 001 09
1 100 010 10
1 100 011 11

1 100 100 12
1 L00 101 13
1 100 110 14
1 100 111 15
1 101 000 16
1 101 001 17
1 101 010 18
1 101 011 19
1 101 100 20
1 101 101 21
1 101 110 22
1 101 111 23
1 110 000 24
1 110 001 25
1 110 010 26
1 110 011 27
1 110 100 28
1 110 101 29
1 110 110 30
1 110 111 31

AMERICAN VEETTCAL SCfiNNING

VERTICAL DISPLAY VEKl'lCAL
SBCriClN LINE MQ EVENTS
543 210 CBA

111 100 IXX 228-231
111 101 0XX 232-235
111 101 IXX 236-239
111 110 0BQC 240-243
111 110 IXX 244-247
111 111 0iXX 248-251
111 111 IXX 252-255 PRESET
011 111 01X 256-257
011 111 IXX 258-261
100 000 0XX 000-003 VBL', GR
100 0t)0 IXX 004-007

i t100 001 0XX 008-011
100 001 IXX 012-015
100 010 0XX 016-019
100 010 IXX 020-023

100 011 0XX 024-027
100 011 LXX 028-031
100 100 0XX 032-035
100 100 IXX 036-039
100 101 0XX U4W-04J
100 101 DOC 044-047

100 110 0XX 048-051
100 110 IXX 052-055
100 111 0XX 056-059
100 111 LXX 060-063
101 000 0XX 064-067
101 000 IXX 068-071
101 001 0XX 072-075
101 001 IXX 076-079
101 010 0XX 080-083
101 010 LXX 084-087
101 011 0XX 088-091
01 011 IXX 092-095
L01 100 0XX 096-099
L01 100 IXX 100-103

101 101 0XX 104-107
101 101 IXX 108-111

101 110 0XX 112-115
101 110 IXX 116-119
101 111 0XX 120-123
101 111 LXX 124-127

RffitSPEflN VERTICAL SCAbWIHG

VERTICAL DISPUQf VEOTICAL
SBCTICW LINE hO mofps
543 210 CBA

011 010 IXX 268-271
011 011 0XX 272-275
011 011 IXX 276-279
011 100 0XX 280-283 TEStT

011 100 IXX 284-287
i011 101 0XX 288-291

011 101 IXX 292-295
011 110 0XX 296-299
011 110 IXX 300-303
011 111 0XX 304-307
011 111 IXX 3^-311
100 000 0XX 000-003 VBL', GR
100 000 IXX 004-007

1 \100 001 0XX 008-011

100 001 IXX 012-015
100 010 0XX 016-019
100 010 LXX 020-023
100 011 0XX 024-027
100 011 IXX 028-031
100 100 0XX 032-035
100 100 IXX 036-039
100 101 0XX 040-043
100 101 IXX 044-047
100 110 0XX 048-051
100 110 IXX 052-055
100 111 0XX 056-059
100 111 IXX 060-063
101 000 0XX 064-067
101 000 IXX 068-071

101 001 OXX 072-075
101 001 IXX 076-079
101 010 0XX 080-083
101 010 IXX 084-087
101 011 0XX 088-091
101 011 IXX 092-095
101 100 0XX 096-099
101 100 IXX 100-103
101 101 0XX 104-107

101 101 IXX 108-111
101 110 0XX 112-115
101 110 IXX 116-119

101 ill 0XX 120-123
101 111 IXX 124-127
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Table 32 Video Scanner States (2 of 2).

HDRIZONIW. scBume

HDR. CK HDR.

SBCTICN MO EVQff

P 543 210
1 ill 000 32

1 111 001 33

1 Ul 010 34

1 111 011 35

1 ill 100 36

1 ill 101 37

1 Ul 110 38

1 lii Ul 39 VERT+l

000 000 40 HBL

1 000 000 41
1 '

1 000 001 42

1 000 010 43

1 000 011 44
1 000 100 45

1 000 101 46
1 000 110 47

1 000 111 48
1 001 000 49 SMnFC

1 001 001 50 SiNC
1 001 010 51 SYNC
1 001 011 52 SYNC

AMfcKECflN VERTICAL SCAMJING

::alVtMi'ICAL DISPLAY VKKl-K

SBCnCM LINE MO EVENTS
1

543 210 CBA
110 000 0XX 128-131

110 000 IXX 132-135

110 001 0XX 136-139

110 001 iXX. 140-143

110 010 0yx 144-147

110 010 IXX 148-151

110 011 0XX 152-155

110 011 IXX 156-159

110 100 0'XX 160-163 TEXT

110 100 IXX 164-167
'

110 101 0XX 168-171

110 101 IXX 172-175

110 110 0XX 176-179
110 110 IXX 180-183

110 Ul 0XX 184-187

110 Ul IXX 188-191

111 000 0XX 192-195 VHL, GR
I

111 000 IXX 196-199

i 1111 001 0XX 200-203

111 001 IXX 204-207

111 010 EKX 208-211

111 010 IXX 212-215
111 011 0XX 216-219

111 011 IXX 220-223
111 100 0XX 224-227 SYNCjTJIT

' '

NOTK; Shml t'<l iirOHS IlKlK aU' display blanking.

EUROPEAN VERTICAL SGRMUNS

VtSiTlCAL DlSPIAy VERTICAL
SECTICM LINE H3 EVENTS
543 210 CBA
U0 000 0XX 128-131

110 000 IXX 132-135

110 001 0XX 136-139

110 001 IXX 140-143

110 010 0XX 144-147

110 010 IXX 148-151

110 011 0XX 152-155

110 011 IXX 156-159

110 100 0XX 160-163 TEXT
110 100 IXX 164-167

\110 101 0XX 168-171

110 101 IXX 172-175

110 110 0XX 176-179
110 110 IXX 180-183

110 Ul 0XX 184-187
110 Ul IXX 188-191

Ul 000 0KX 192-195 VBL, GR
111 000 IXX 196-199

\ \Ul 001 0XX 200-203
111 001 IXX 204-207

111 010 0XX 208-211

lU 010 IXX 212-215

Ul 011 0XX 216-219

Ul 011 IXX 220-223
111 100 0XX 224-227 lEXT
Ul 100 IXX 228-231

1Ul 101 0XX 232-235 i
Ul 101 IXX 236-239
111 110 0XX 240-243
111 110 IXX 244-247
Ul Ul 0XX 248-251
111 111 IXX 252-255 PRESET

011 001 0XX 256-259 GR
011 001 iXX 260-263 1
011 010 0XX 264-267 SYNC

Ki\('s a vertical frfqiK-ncy of TjilO^ Hz. This is very
cldse Ut the standard AmtTican tt>k'visi(m vertical

fretiiieiicy u{ h^.).m FIz.

In a standmvl television jiiL-ture. aRcrnatinK ver-

tical scans are interlaced. This means that every
other downward scan is displaced vertically half of
thedistance between two hori/.onta,! scans. Inlerlac-
iriKKives an effective vertical resolution of r>25 lines.

There is no verlica! interlace in the Apple display.
This accounts for a disparity in vertieal/horijLontal
freipicncy relationships between Apple video and

broadcast television video. In the Apple, the hori-

Konta!fro(iiiency isafi^tin-iesthe vertical frequency.

In American broadcast television, the horizontal

frequency is 2f>2„5 times the vertical frequency.

Export Apples and the Video Scanner
The television systems of many countries, includ-

inj^ those of F^virope, have SO Hz scanning: rates

instead of the 6() Hz rate of America. The Apple He
can be madetosui>portr)() H/, television scanning by

installing: a 14.25 MHz crystal and a 50 Hz lOU.
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The lower frequency crystal changes the period of a
horizontal scan from about 63.7 microseconds to

about 64 microseconds. The 50 Hz lOU adds 50
horizontal scans to the vertical scan to yield a verti-

cal rate of about 50 Hz.

The 50 Hz lOU and 14.25 MHz crystals are

installed in special motherboards that have PAL
(Phase Alternating Lines) color encoding circuitry

built-in. PAL is a 50 Hz television system used in

many countries including all major western Euro-
pean countries except France. Asof thiswriting, the

14M oscillator is made of discrete circuits and the

crystal used is 14.25045 MHz (see Figure 3.9). How-
ever, Apple has developed a hybrid oscillator which
is used in the Apple He and will probably see use in

the Apple He. The frequency i n the export version of

the hybrid oscillator is 14.25 MHz. Both of these

frequencies yield approximate horizontal scan dura-
tions of 64 microseconds (63.998 from 14.25045 and
64.000 from 14.25).

In the 50 Hz lOU, the vertical section of the video

scanner presets on overflow to 011001000 instead of

011111010. There are 312 states represented by
011001000-111111111. This gives a vertical fre-

quency of 50.08 Hz. Even though there are 50 extra
horizontal scans in the 50 Hz Apple, there is noextra
vertical resolution. In either scanning system, there
are 192 horizontal scans in which picture informa-
tion is displayed.

The Flash Counter and
Power-up Reset Circuit

FO—F4 of Figure 3.8 make up the flash counter.
This counter counts television scans, and I call it the
flash counter because F4 is used to switch flashing
text between NOEMALand INVERSE. Flashing
text doesn't necessarily have to be in sync with the
display scan, but the video scanner provides a handy
uninterrupted recurring signal (the scanner over-
flow)which the lOU uses for a time reference. Other
functions which depend on the flash counter for a
time reference are the delay before activating the
keyboard auto repeat function, the frequency of the
keyboard auto repeat function, and the time-out
period of the power-up reset.

The flash counter is not mentioned in any pub-
lished Apple literature that I know of. The Figure
3.8representation and the "flash counter"and "FO—
F4" nomenclature are mine, not Apple's. The reason
for my assumption of the existence of the flash
counter is that the flashing text, power-up reset, and
auto repeat functions always toggle just after a
video scanner overflow. Also, these features operate

at frequencies that suggest they are controlled by a
simple binary counter incrementing, or perhaps
decrementing, when the video scanner overflows.
Another circuit not mentioned in Apple literature

is the power-up reset circuit. When the Apple He is

first turned on, the lOU holds the RESET' line low
for about 33 milliseconds. If you prevent the video
scanner from counting by pulling CLKEN' high,

the RESET' line stays low until you enable the 14M
clock and let the scanner count for a while. When the

RESET' line does go high, it does so approximately
when the video scanner overflows, as closely as I can
observe. My deduction is that the video scanner
presets to 000000000/0000000 at power-up, and that
the RESET' line is allowed to rise 32.6 milliseconds
later when the scanner overflows for the first time.
The Figure 3.8 power-up reset circuit will generate
such a reset.*

Figure 3.8 shows generation of an AUTOSTRB
signal which is an artificial keyboard strobe. The
KEYSTROBE soft switch is set when either KSTRB
(the real keyboard strobe) or AUTOSTROBE goes
high. When a key is held for 534—801 milliseconds,

the AUTOSTRB starts to alternate at 15 Hz, re-

peatedly settingtheKEYSTROBEsoftswiteh{Fig-
ure 7.1)to simulate rapid keypresses.

F3 of the flash counter is the clockpulse for gener-
ating the delay before auto repeat. This can be
deduced from the 267-millisecond variation in the

delay. The delay could be produced from a 2-bit

counter or from a 3-bit shift register like the one
shown in Figure 3.8. In either case, KSTRB must
reset the delay generator so that pressing a key
interrupts the auto repeat function until the delay

times out again.

The variation in duration of the delay before auto

repeat is a mild problem for me. This delay should

be nearly constant if a typist is to become skillful at

performing keyboard auto repeat functions. I feel

that a variation of .267 seconds here is too great, and
that it prevents me from really making the key-

board "sing." The variation could be reduced greatly

if the 3-bit shift register in Figure 3.8 were replaced

by a 4-bit VPE counter, identical to the first four

bits of the flash counter except that it is cleared

when KSTRB is high or AKD is low. The overflow

from this counter would be an auto repeat enable

signal, delayed from the initial keypress by 534—
551 milliseconds.

•The power-up reset duration can only be measured with no Di8l<

II controller in any peripheral slot, because the controller 100

msec power-up reset will mask the FOU 33 msec power-up reset.
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JO
AUX SLOT

{7.8) 55 FRCTXr 10.4^^5, ^

E5

lOU

(8.5)

GR*2 iry
80C0L'

LS10

SEGB

40 HO

-• 17

-» \A

GND

NOTES.

rji Connections provided for alternale oscillator,

EOn Revision A motherboards, E5-2 is connected Oirectly to D1-7 Ttie
addition of FRCTXr gating in Revision B makes the OOUBLE-RES
graphics modes possible.

T

-H RAS' )

< CAS' )

>{ VID7M )

h: LDfS' )

C91 C90 C92
-220 4^220 lb220

J^pF J^pF J^pF

Figure 3.9 Schematic: The Timing Generator.
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The durations of events controlled by the flash

counter are generally exact multiples of the dura-
tion of a vertical scan. The exception is the power-up
reset time out which lasts 512 horizontal scans (the
clear-to-overflow period of the verti cal section of the
video scanner). Durations and frequencies of events
controlled by the flash counter are listed in Ikble
3.3. With the exception of the power-up reset, dura-
tions will be about 1.2 times longer in 50 Hz lOUs.

THE LONG CYCLE
The discussions have alluded to the long cycle in a

limited way, but we are now in a better position to

understand the reasons for it.

Video output begins each horizontal scan when
the horizontal count reaches 1011000. For color
coherency, the video output needs to begin at the
same point in relation to COLOR REFERENCE on
every scan. Since there are 3.5 COLOR REFER-
ENCE cycles in a video scanner cycle, the phase of
COLOR REFERENCE at the start of a video shift

alternates 180 degrees each scanner cycle. Because
of the 180 degree phase alternation each cycle, a
7-dot HIRES40 pattern represents different colors
when it is stored in an even RAM add ress than when
it is stored in an odd RAM address.
There are 65 video scanner cycles per horizontal

screen line. Since this is an odd number, there would
be an odd number of 180 degree phase alternations
per horizontal line. This would cause the starting
phase relationship to alternate every horizontal line.

By delaying video shift timing half of a COLOR
REFERENCE period once every horizontal line,
the same beginning phase relationship occurs every
horizontal line. As a side effect, all 1 MHz and 2
MHz signals are elongated once every horizontal
line.

TIMING GENERATOR HARDWARE
Timing generation in the Apple consists of mak-

ing a lot out of a little. By this I mean that the 14M
clock is divided and processed to make the slower,
more complex signals. Most of the processing is per-
formed in the timing HAL.
I4M comes from a crystal controlled 14.31818

MHz oscillator via one fourth of a 74LS125 tri-state

driver (see Figure 3.9). 14M is pretty symmetrical,
but symmetry is not important since only the rising
edge of 14M is used in the Apple.
The tri-state 14M driver is always enabled unless

the Apple has a special peripheral card installed in

Slot 1. It is possible for a Slot 1 card to isolate the
14M line from the motherboard oscillator by bring-
ing CLKEN' high. An auxiliary card can then sub-
stitute its own master clock signal for the disabled
motherboard 14M signal. With peripheral Slot 1

emptyora peripheral card with pin 19open installed

in Slot 1, the CLKEN' line is open and pull-down
resistor R28 keeps the 14M tri-state driver enabled.
The CLKEN' feature could be used by diagnostic

cards designed to check outand troubleshoot Apples.
It could also be used in some mad hacker scheme too

insane for me to envision. If a mad hacker happens
to read this, my advice, if you want to change the
14M frequency, is to ignore the CLKEN' line and
change the crystal.

7M and COLOR REFERENCE generation is

straightforward frequency division. 7M is 14M
divided by two. COLOR REFERENCE is 7M di-

vided by two. The connections are such that COLOR
REFERENCE toggles when 7M falls (see Figure
3.2). The frequency division takes place in a 74S109
dual flip-flop. An S109 is used here instead of an
LS109 because the S109 has more driving power,
and 7M is distributed to all of the peripheral slots.

Table 3.3 Events Controlled by the Flash Counter.

EVENT
DURATION/
FREQUENCY REMARKS

Power-up reset

Flash cycle

Delay before auto repeat

Auto repeat frequency

32.6 msec
1.87 Hz
534—801 msec
15 Hz

512 horizontal scans

Vertical freq./32

32-48 vertical scans

Vertical freq./4

"^^^^
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14M, 7M, and COLOR REFERENCE are inputs

to the HAL. This single IC generates all of the

remaining tinning signals—PHASE 0, PHASE 1,

RAS', CAS', Q3, LDPS', and VID7M.

The Timing HAL

HAL (Hard Array Logic) and PAL (Programma-

ble Array Logic) are a relatively recent develop-

ment in microelectronics. They are skeletal logic

structures whose actual logic functions can be speci-

fied , in the case of HAL, or programmed, in the case

of PAL.
The Monolithic Memories series ofHALand PAL

isavailabie in a variety of skeletal structures having

STTL signal I/O characteristics. An engineer can

choose a HAL/PAL, then design and debug his

application using field programmable PALs. If

there is enough volume to merit it, the debugged IC

can then be ordered directly from the manufacturer

as HAL. In the case of the Apple lie, there is, of

course, enough volume to merit purchase of HAL
from the manufacturer.

The HAL used in the Apple He is a HAL16R8
which contains eight D flip-flops fed by multiple

and/or input logic arrays. The flip-flops are all

clocked by 14M rising, so the HAL outputs all expe-

rience approximately the same propagation delay

from 14M rising (about 14 nanoseconds). The 16R8

outputs are tri-state, and the outputs are disabled if

an auxiliary card brings the pulled down ENTMG'
line high. All timing generator signals are con-

nected to the auxiliary slot so an auxiliary card can

substitute its own signals for the PAL outputs. The
ENTMG' line is open on every auxiliary slot card

that I know of.

Figure 3.10 is a 16R8, programmed to operate as

the Apple lie timing HAL. I filled in the X's to

match the timing signal characteristics of the Revi-

sion B Apple He. The Revision A HAL must be

different than the Revision B HAL, because GR+2 is

distributed to the Rev A HAL and gated GR+2' is

distributed to the Rev B HAL. The GR/GR' X's must
therefore be swapped in the Rev A HAL layout as

opposed to the Rev B HAL layout.*

*A second difference with the Rev A HAL is that the COLOR
REFERENCE has a different phase relationship with the other
signals than that illustrated in Figure 3.2. The Rev A PAL would
thus result in non-standard colors if plugged into a Rev B
motherboard.

Figure 3.10 is certain to be different than the

actual Apple HAL in minor details. There is little

room for variation, however, in the substance of the

resulting logic equations. It was not at all obvious to

me how some ofthe required logic functions could b«

performed with the available inputs. I was only able

to come up with a working layout after considerable

head scratching. Apple's effort in visualizing the

timing generator as a HAL application and in pro-

ducing such an efficient design is impressive.

'Ikble3.4 is a list of logic equations reduced from

Figure 3.10. Most readers will find these equations

easier to analyze. Both T^ble 3.4 and Figure 3.10 are

presented here for reference, however, and com-

plete analysis will not be particularly valuable for

most readers. A good grasp of the Figure 3.2 timing

diagram is much more important in understanding

the Apple. For those who are interested in the HAL
layout, here are some interesting features.

1. All outputs are the inversion of the flip-flop out-

puts, so setting a flip-flop causes its output line

to go low and vice versa.

2. The RAS'. AX, CAS', Q3, PHASE 0, and

PHASE 1 logic is best thought of as set/hold

logic. The set terms do not have feedback from

the flip-flop they are controlling, but the hold

terms only come true if the flip-flop they are

controlling is already set. The flip-flop sets if

any set term comes true, and a flip-flop, once set,

will stay set if any set term or hold term is true.

3. RAS', AX, CAS', and Q3 are set up as a shift

register. If Q3 is high, a low level is shifted to

RAS' then AX then CAS' then Q3 (with special

logic on Q3 since CAS' won't fall during PHASE
if CASEN' is high). If Q3 is low, a high level is

shifted to AX then RAS' then simultaneously to

CAS' and Q3.

4. The delay logic that causes the long cycle is the

H2 and H3 terms of the RAS' flip-flop.

5. CASEN' from the MMU is not PHASE gated,

so the CAS' flip-flop must set during PHASE 1

whether CASEN' is high or low (see the S2 term

on the CAS' flip-flop).

6. The SEGB, gated GR+2', VID7, and 80COL'
inputs to the PAL are used only in generation of

LDPS' and VID7M. Also, none of the otherHAL
outputs are affected by LDPS' and VID7M.
LDPS' and VID7M generation is discussed in

Chapter 8.
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HO H^
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SEGB H^
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CASEN' H>
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NOTE: Base draw Ing is from "B ipolar LS1 1984 Databook," fifth edition, reprinted with permission from Monolittiic IVIemories,

Inc, Tfie Xs were filled in by Jim Sather.

Figure 3.1 The Timing HAL Layout.
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Table 34 Timing HAL Logic Equations.

PIN ASSIGNMENTS

ARRAY INPUTS OUTPUTS OTHER INPUTS

10-2 = 7M Q0'-19 = RAS' CP-1 = 14M

11-3 = CLR REF Ql'48-AX OE'-ll - ENTMG'
12-4 = HO Q2'- 17 = CAS' VCC-20 = +5V

I3-5-VID7 Q3'-16 = Q3' GND-10 = GROUND
14-6 = SEGB Q4'-15 = *0
15-7 = GATED GR+2' Q5'-14 = *l

I6-8 = CASEN' Q6'-13 = VID7M
17-9 = 80COL' Q7'-12 = LDPS'

SIGNAL EQUATIONS NOTES

RAS' S1=Q3
H1=RAS".AX'
H2=RAS".CLRREF.H0.*0
H3- RAS" • 7M' • HO • *0

FALL AFTER Q3 RISES
RISE AFTER AX RISES
LONG CYCLE DELAY
LONG CYCLE DELAY

AX S1 = RAS"»Q3
H1=AX'.Q3

FALL AFTER RAS' FALLS
RISE AFTER Q3 FALLS

CAS' 51 = AX'»CASEN"
52 = AX'.*1
H1=CAS".RAS"

MMU, MAY I?

NUTS TO MMU DURING *1
RISE AFTER RAS' RISES

Q3 51 = AX'.<l'l»7M'
52 = AX' • *0 • 7M
H1=Q3'.RAS"

AX' . *1 • CAS' ALSO WORKS
CAS' NO WORKEE
RISE AFTER RAS' RISES

"to Sl^fO.RAS'.QS'
H1=<J'0'.RAS"
H2^ *0' • Q3

TOGGLE AT RAS' • Q3

*1 S1 = *0'.RAS'«Q3'
Hl=<t.0.RAS"
H2= «I>0 . Q3

*0 INVERTED

VID7M S1=GR".SEGB
52 = GR' . 80COL"
53 = GR'«7M

54 = VID7'»*1»Q3'.AX'
55 = HO' . CLR REF • t>l • Q3' • AX'
T1 = VID7M.AX
T2 = VID7M . *0
T3 = VID7M • Q3

LORES GRAPHICS IS HIGH SPEED
DOUBLE RES IS HIGH SPEED
SAME AS 7M IF NOT HIRES

HIRES DELAY CHECK AT *1 • Q3' • AX'
NO DELAY AT RIGHT DISPLAY EDGE
TOGGLE THROUGH AX
KEEP TOGGLING THROUGH $0
KEEP TOGGLING THROUGH Q3

LDPS' 51 = Q3' • AX' . 80COL" • GR'
52 = Q3' • AX' • *1 . GR'
53 = Q3' • AX' • *1 . SEGB
54 = Q3' • AX' . *1 . VID7'
55 = Q3' . AX' . *1 . CLR REF • HO'
56 = Q3' . AX • RAS" . *1 . VID7 •

SEGB' • GR"

DOUBLE RES CAUSES DOUBLE LDPS'
TEXT MODE
LORES
NOT DELAYED HIRES
RIGHT DISPLAY EDGE CUTOFF

HIRES DELAYED LDPS'

.^-^^"'

.:i;?-
if
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SWITCHING SCREEN MODES IN TIMED LOOPS
A horizontal scan in the Apple takes exactly 65

machine cycles of the 6502. A vertical scan takes

exactly 17030 machine cycles. This information can
be used to switch screen modes in timed loops to g:ive

apparent combination screen modes.

For example, the screen can be split so that half of

each horizontal line is LORES and the other half of

each horizontal line is HIRES by switching between
modes in alternating' 33- and 32-cycle loops. Sim-

ilarly, the screen can be split so that half of all the

horizontal lines are LORES and the other half are

HIRES by switching back and forth every 8515
cycles. The latter can be accomplished usinsr the

sample programs listed in Figures 3. 11a and 8.11b.

The assembly language program of Figure ^.11 a.

when assembled, is a subroutine that performs the

screen splitting. The BASIC program of Figure

3.11b sets up a color display and calls the machine
language subroutine.

The example program causes the Apple to be in

LORES for 131 TV lines and in HIRES for U\ TV
lines. The display is aligned vertically by holding

down any key on the keyboard. The result of running
this program is the split screen display pictured in

Figure 8.14.

In the Apple He, it is possible to read the state of

VBL' (the inversion of the Vertical BLanking gate)

at address $C019. VBL goes high just after the last

displayed address is scanned at the bottom right of

the Apple screen, and it goes low at the same hori-

zontal point in the last undisplayod horizontal scan
at the top of the screen. Either of these points can be
located within an accuracy of seven MPU cycles by
simply polling VBL'. For example, when the follow-

ing polling loop falls through, the display scan wiU
be from zero to six cycles past the end of VBL. and
from 19 to 25 cycles before the first display memory
is scanned.

VBLOFF EQU $C019 MINUS => VBL'
PLUS => VBL

POLLl LDA VBLOFF
BMI POLLl FALL THROUGH

AT VBL
POLL2 LDA VBLOFF

BPL POLL 2 FALL THROUGH
AT BEGIN VBL'

Once (hispoint is located, a program can (lerform

a switching action in the blanking period before any
horizontal scan line by wailing for fi5 cycles per

horizontal scan. The following oxamiile provides a

stable display of HIRES graphics for the first 9(i

lines and LORES graphics for the secon<l 9(t lines.

VBLOFF EQU $C019 MINUS => VBL', PLUS => VBL
HIRES EQU $C057
LORES EQU $C056
POLLl LDA VBLOFF

BPL POLLl FALL THROUGH AT VBL'
LDA HIRES 4 CYCLES
LDX #6 2 CYCLES
JSR WAITXIK 6000 CYCLES (SEE FIG 3.11a)
LDY #23 2 CYCLES
JSR WAITX10 230 CYCLES
LDA LORES 4 CYCLES; 6242 CYCLES = 55 x 96 + 2

P0LL2 LDA VBLOFF
BMI POLL2 FALL THROUGH AT VBL
BPL POLLl
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SOURCE file: split SCRE™ ...inin, ...... ......

tsm0 2

00^3 )
* Hrm-;!i/LORE.S SPLIT *

Mm 1 . 851S/aS15 *

mm
T * BY JIM SAFHEBi *

f,
» 2/15/1S83 *

aaoa
mm

7

a
^........,.

CBBD 9 KHI) B3U scauiJ

coia 18 Klil:STKB ?w scuia

cai4 u PftGEl VJJS 5Ca54

CB^6 12 l/)REb EUU $Ca56

amn 13 *

0000 U * THi!^ PROGHAM lUGGLF.S THE H1RE.S/L0RES SWITCH

0000 15 * EVBBV 8515 CYCLES

.

mm 16 *

HE"^'' 043Jl-rM' FTr.F HAMR IS SPLIT SCHEEU.0BJ8

IFdB: n ORG siFse

1F08:AC 14 CM la 3PL1T LDV PACtl

lFe3:ft0 27 19 SLEW LDY (39 ;SLEM SCBEEN IF KEY PRESSED.

u-a5;2e 27 IF 2a JSR WAITXia

u-aB;Ac le Ctl 21 LUY KBDSTHB

LFei3;AC se ca 22 KEYCHK LIIY KBU

IFOE:

W

F3 23 BMI SLEW

IFIB:6'J ni 21 HX 11 ; TOGGLE HI SES/WRES SWITCH

lrl2:2') 01 2'-, AM) • sal

LF14:1A 21. TAX

lFl^:[iC 'j6 CM 11 U5V [J)RES,X

1K1H:A2 HU 28 [JJf. • 8

1fia;2« il If 2'J .ISK WAITXIK ;WAIT mm CYCLES

IFlinAB Jl 10 LDV ii-i

1F1F:2B 21 IF \\ .ISfi WAITXla ;WAiT 498 CYCLES

lF2i:l8 \i Cli-'

IK2):90 lib a Ba; KEYCHK

\r'i'>: 34 •

1F2S: )) * TIMIWi: W>UTINFS:

1K25: 36 • WAITS10 WAITS V-REG TIMES IB CKCLES

.

IF2'j: 37 • IMIMMUM WAIT 20 CYCLES)

IK25t 3a * WAITKIK WAITS X-HB". TIMES 1900 CYCLES.

IF25: 39 *

ll-'2'j:ua Bl 40 UWPW HNK SKIP
IK27:88 41 WAITXla DEV ;WAIT Y-BEG TIMES 10

lf28:8i) AZ SKIP iJEY

[fJ'J:EA 4) NOP
lF2A:na I--J 44 BNE (J30Pli1

lF2C:6a 4') m-s
LF21):1tl 46 [;:^:pik P!JA

:f2k:68 47 PLA
IFJFlEA 48 NOP
IFWiLfl 49 m;>p

IF51:A0 f.2 'j3 WAITXIK iJJY «9B ;WArr X-REG TIMES 100B
1F1J:2W 27 IF 'j1 JSR WAITXID
1F36:EA ^2 NOP
1m :CA •ii DEX
lF3a:nB FJ •A UNE ],(»P1K

1F3A:6B •A Krs

•'• SUGCKS^ FUL ASSEMIll.V: NO ERBORS

Figure 3.1 la Assembler Listing: Timed Execution Screen Splitting.

Locating VBL within seven cycles may not be
accurate enough for your application. It would not
suffice for screen mode switching at a specific posi-
tion during display time. VBL can be located pre-
cisely by finding the point where VBL switches
from off to on within seven cycles, then slewing
backwards in 17029-cycle polling loops until VBL is

sensed off. The video scanner state will then be at
precisely one cycle before VBL (scanner =
OlOlUlll/lllllll). VBL switching from on to off
can be similary located, and any video scanner state

can be located by detecting VBL on or VBL off, and

then waiting an appropriate number of cycles. For

example, the program in Figure 3.12 will result ina

LORES graphics display with a 20-character text

message in the middle of the screen.
Any of the screen splitting routines of this appli-

cation note can be called from BASIC programs or

programs written in other languages. Many varia-

tions of these routines are possible. Any number of

unusual Apple displays can be created with a com-

bination of timed loops and polling for VBL.

,,Jsr"

§
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10 REM
11 REM
12 REM SET UP LORES AND HlRtS AHD CALL !] PL i T SCREEN.
13 REM
14 REM
20 PRINT CHR$ (4);"BL0AD SPLIT SCREEN. OBJa"
30 HGR : HOME : VTAB 21: PRINT "1 7 D 2 8 E B 4 5 A 3 6 C 9 t'

3"
40 DIM COLR(39) ,X(21)
100 FOR A = TO 39: READ COLR(A): CULOk= COLR(A): VL I N 0,39 AT A: NEXT A
200 FOR A = TO 21: READ COLR(A): READ X (A) : HCOLOR= COLR(A)
210 HPLOT X(A),0 TO X(A),159: NEXT A
220 FOR A » 8319 TO 15383 STEP 128: POKE A, 64: NEXT A
300 CALL 7936
400 REM LORES DATA
410 DATA 1, 0, 7, 7, 0, 13, 13, 0,2, 2, 3, 3, 3, 0,14, 14, C, 11,11,0
420 DATA 4, 4, 0, 0, 5, 0, 0,10,0, 3, t), 6, 0,12, 0,9, 0,15, 0,8
500 REM HIRES DATA
510 DATA 4,0,3,20,4,21,3,4 1,4,4 2,7,62,7,3 3,7,104,3,105,7,12 5,3,126,7,159 3,161
520 DATA 7, 180, 3, 182, 3, 206, 7, 22i;, 3, 2 3 3, 7, 24 7, 3, 26 2, 3, 26 3, 7, 27y

Figure 3.1 1 b BASIC Listing: Call Split Screen.
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SOURCE FILE:
0000
0000
0000
0000

0000
0000
0000
0000
002C
0030
C00C
C019
C050
C051
C056
F819
0000

NEXT
1P00:

1F00:8D
1F03:AD
1F06:A9
1F08:85
1F0A:A9
1F0C:85
1F0E:A2
1F10:A0
1F12:3A
1F13:20
1F16:CA
1F17:10
1F19:A2
1F1B:BD
1F1E:9D Bl
1F21 :CA

1F22:10
1F24 :AD
1F27:30
1F29:AD
1F2C:10
LF2E:
1F2E:A5
1F30:A2
1F32:20
1F35:20
1F38:A5
1F3A:A5
1F3C:AD
1F3F:EA
1F40:30
LF42:

1F42:A2

LIL TEXT WINDOW
^ **********************************************

* *

* LITTLE TEXT WINDOW *

* *

* DEMONSTRATES PRECISE VBL DETECTION *

* *

* Jim Sather 8/15/84 *

2

3

4

5

6

7

3

9

10

11

12

A-ik*******************************^************

H2 EQU
COLOR EQU
COL40 BQO

13 VBLOFF EQU
14 GRAFIX EQU

TEXT EQU
LORES EQU
HLINE EQU
*

NAME IS

ORG
0C C0
56 C0
27

2C

OC
30

2F

00

19 F8

F7

15

8E

C0
F7
19

FB
19 C0
FB

00
11

84 IF

8D IF
00

00

19 C0

EE

05

15

16

17

18

OBJECT FILE
19

20

21

22

23

24

25

26

27 FILL
28

29

30

31

32

33 MSGLP
34

35

36
37 POLLl
38

39 P0LL2
40
41 *

42
43
44

45
46

47

48
49

50

51

52

IF

05

JSR
IDA
IDA
IDA
NOP
EMI

$2C
$30
$C00C
$C019
$C050
$C051
$0056
$F819

HLINE RIGHT TERMINUS
LORES COLOR BYTE
80COL RESET ADDRESS
MINUS => VBL', PLUS =>

LORES HLINE SUBROUTINE

VBL

LIL TEXT WINDOW. OBJ0
$1F00

STA
IDA
LDA
STA
IDA
STA
UJX
LDY
TXA
JSR
DEX
BPL
LDX
LDA
STA
DEX
BPL
LDA
BMI
LDA
BPL

IDA
LP17029 LDX

JSR

COL40
LORES

#39
H2
#$0C
COLOR
#47

#0

HLINE

FILL
#21
MSG,X
$5B1,X

MSGLP
VBLOFF
POLL!
VBLOFF
P0LL2

$00
#17
WAITXIK
RTSl
$00
$00
VBLOFF

LP17029

LDX #5

SINGLE-RES DISPLAY

FILL SCREEN USING HLINE
RIGHT COORDINATE = 39

COLOR = HIRES40 GREEN
CLEAR LINES 47-0

LEFT COORDINATE =

;GET VERT COORDINATE FROM X

INSERT MESSAGE

MESSAGE AT LINE 11, POSITION 10

FIND END OF VBL
FALL THROUGH AT VBL

{2) FALL THROUOl AT VBL'

(3) NOW SLEW BACK IN 17029 CYCLE LOOPS
(2)

(17000)

{12)

(3)

(3)

(4) BACK TO VBL YET?
;(2}

(3,2) NO; SLEW BACK

(2) YES; END VBL IS PRECISELY LOCATED

Figure 3.12 Atsemblef Listing: Locating VBL Precisely (1 of 2).

M'ii
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1F44:20
1F47:A0
1F49:20

1F4C:48
1F4D:68
1F4E:AD
1F51:A2
1F53:AD

1F56:20
1F59:A5

1F5B:EA

1F5C:AD

1F5F:A0

1F61:20

1F64 :A5

1F66 :CA

1F67:D0

1F69;A2

1F6B:20

1F6E:A0

1F70:20

1F73 :A2

1F75:EA
1F76:D0

1F78:

1F78:D0

1F7A: 88

1F7B:88

1F7C:EA
1F7D:D0

1F7F:60

1F80:48

1F81:68

1F82:EA

1F83:EA

1F84:A0
1P86:20

iF89:EA

1F8A:CA
IF8B:D0

1F8D:60
XF8E:

IF8E:00

1P8F:AA

1F92:F4

1F95:E5

1F98;E5
1P9B:A0

1F9E:EE
lFai:F7

84 IF
49
7A IF

FF FF
08

51 C0
8D IF
00

50 C0
03

7A IF
00

EA

10

84 IF

32

7A IF
08

DB

01

F9

62

7A IF

F3

CC E9
F4 EC
A0 D4
P8 F4
D7 E9
E4 EF
AA A0

53

54

55

56
57

58

59

JSR
LDY
JSR
PHA
PLA
UOA
LDX

60 TXTTIME EDA
61 JSR
62 WA
63 TOP
64 LDA
65 LDY
66 JSR
67 LDA
68 DEX
69 BNE
70 LDX
71 JSR
72 LDY
73 JSR
74 LDX
75 NOP
76 BNE
77 *

78 DOOP10 BNE
79 WAITX10 DEY
80 SKIP DEY
81 NOP
82 BNE
83 RTS
84 LOOPIK PHA
85 PLA
86 NOP
87 NOP
88 WAITXIK LDY
89

90

91
92
93 RTSl
94 *

95 MSG
96

JSR
NOP
DEX
BNE
RTS

DFB
ASC

WAITXIK
#73
WAITX10

$FFFF
#8

TEXT
RTSl
$00

GRAFIX
#3
WAITX10
$00

TXTTIME
#16
WAITXIK
#50
WAITX10
#8

TXTTIME

SKIP

LOOP10

#98
WAITX10

LOOPIK

$00
"*Little

(5000) NOW WAIT 5755 CYLES FOR TEXT WINDOW
(2)

(730)

;C3)

;(4)

(4)

(2)

(4)

(12) WINDOW RIGHT = WINDOW LEFT + 21
(3)

;{2)

(4)

(2) WINDOW LEFT = WINDOW RIGHT + 44
(30)

C3)

;(2)

(3,2) SWITCHING TIME = 8 X 65 - 1 = 519
(2) WAIT 17030 - 519 = 16511
(16000) BEFORE WINDOW LEFT
(2)

(500)

(2)

;(2)

(3)

WAIT Y-REG TIMES 10

WAIT X-REG TIMES 1000

SWITCH IN THE BLACK
Text Window* "

***
SUOCESSPUL ASSEMBLY: NO ERRORS

Rgure 3.1 2 Assembler Listing: Locating VBL Precisely (2 of 2).
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SOFTWARE APPLICATION

APPLE TIMING LOOPS

It is not fTonerally known that the fi502 clock of the

Apple is not fixffi frcqiioncy, and there is some con-

fusion mImjuI what that frequency is. This is not

important in most Ajiple programs, but the fre-

quency ami stal>ility oflhe Mi'U clock are important

factors in tirecision timed loop assembly lanjruajre

f)ro(^ramH.

The A }iplv II Reference Manualfor He Only inac-

curately (fives the PHASE frequency as 1.022727

MHi!.Thisis]'1.;J1818(lividedby 14,anditwouldbe

the PHASE (I frequency if there was no long cycle,

The composite frequency of the Apple is 1.02048432

MM^, which is 14,31818 x (65/(65 x 14 + 2)). The

average period of duration of an Apple 6502 ma-

chine cycle is .9799268644 microseconds. Thi,s is the

value which should be useci for computing exact

time durations of Apple profjrams. In PAL-based

Apple He's with 14.25045 MHKosciUators, the aver-

age machine cycle duration is .9845842925 microse-

conds. In future PAL-based Apple He's with the

14.25 MHz hybrid oscillator, the averag'e machine

cycle duration will be .9846153846 microseconds.

When very precise time measurement is neces-

sary, the projrrammer has to consider the impact of

clockpul.se .jitter, which is caused by the long cycle.

Since the Apple He has no real time clock, timed

output must be done with prop:ram loops which take

a specific numiier of clock pulses to execute. When
possible, these bops should be written in multiples

of 65 cycles. This will eliminate loop output jitter.

< )therwiae the application must be able to tolerate a

140-nanosecond jitter. 140 nanoseconds is the dif-

ference between a normal cycle and a long cycle.

The programmer should be aware of Apple clock-

pulse jitter and determine its affect on his particu-

lar application.
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HARDWARE APPLICATION

AN APPLESOFT EMULATOR FOR THE TIMING HAL
Analyzing the Apple He HAL timing outputs

can be pretty difficult, especially when you begin

looking at the LDPS' and VID7M variations. Fig-

ure 3.13 is an Applesoft program which draws

timing diagrams of the HAL outputs based on

logic equations like those used to specify a HAL/
PAL program. The program lets you vary the

SEGB, gated GR+2', CASEN'. 80COL', and VID7
inputs to the HAL and see the resulting timing

diagram plotted out on the HIRES screen.

Figure 3.14 shows two sample timing diagrams

plotted by the HAL emulator. The plotting always

starts with the signals in the states shown at the

left of Figure 3.14, and HO always stays low for

two counts after the first time it falls. This results

in the plotting of the long cycle. If you initialize

the DOS TOOLKIT HRCG program before run-

ning the emulator, the names of the signals will be

drawn on the left side as shown in Figure 3.14.

The HAL emulator can also serve as a design

aid for those persons interested in experimenting

with alternate timing schemes for the Apple He.

By changing any of the equation definitions in

lines 2000—2470, you can check out how the tim-

ing signals would look if the HAL were pro-

grammed differently. Also when you run the

emulator, it allows you to specify scanning instead

of plotting. If you select scanning, the emulator
will scan through all possible starting states of the

HAL outputs, excluding LDPS' and VID7M. For
each initial setting, the emulator prints the num-
ber of 14M cycles before the outputs reach the

states pictured at the left in Figure 3.14. This

verifies that a given set of HAL equations cannot

cause the timing chain to hang in some invalid

sequence. It takes several hours for the emulator
to scan all the possibilities for a set of equations, so

turn on your printer and bo prepared to wait if

you decide to perform a complete scan.

An interesting design problem that some readers

might wish to tackle is the right side cutoff of

HIRES delayed video. LDPS' and VID7M logic

equations are such that the last video cycie is always

cutoff after Q'.V • AX' (see PHASE 1 during the long

cycle). It would be preferable if this cutoff was
delayed by one 14M period when the last video cycle

is HIRES delayed because, as things are, you cannot

plot orange dots at the far right of the display in

HIRES4() mode. I grappled with this problem and

was unable to come up with a working set of HAL
logic equations that would solve it, not even if the

video generator video ROM was programmed so

that HIRES hit 7 mirrored HIRES bit (J. I finally

gave u;) on the problem although I wouldn't [pro-

nounce it unsolvable. Perhaps a reader more re-

sourceful than I can work it out. No fair rewiring the

motherboard or switching to a 35()-nanosecond video

ROM.
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100 REM

III ^ APPLE HE HAL/PAL TIMING EMULATOR

III Z BVaiMSATHER 2/14/84

150 Ri>l

160 REM „.„,
200 REM ********** INITIAL SIGNAL DATA

210 DATA 0,0,0, 1-0. 1'S'^i-e'^'l'^ ,,,^

III Z ^A^'i r.oll\\Z ^l^lar.;:MSIC«AL,- = W(SIG«AC..) : NKXT

230 REM
oAn avM ********** TITLES

25 ,X "14M "."^S' ","AX "/-CAS' ","Q3 ;V;PHS0 ;y'PKSl"

255 DATA "m " "CREF ","7M " ,"VID7M" ,"IX)P3' " , -VID?

260 DrTJTLES?(U): FOR SIGNAL = TO 12: READ TITLE? (SIGNAL) : WEXT

Ilia ^M ******** CLEAR SCREEN AND PREPARE TO DRAW WAVEFORMS

]l\'y lZ,'-4^E,'f79Jnr^S (SCAN,": GET B? : HOME : IF B$ = "S" THEN OyrO 4000

\lll Z\Z "SEgL-"SE(^B" 0K° Y/N-rGET BS : IF B$ < > "Y" THEN SEGB = NOT SEGB: GOTO 1040
1040 PRINT SLGB- SLGB UK- VN

-J^ I
„ .. ^^ ^a ^ fg^ gx% : GOTO 1050

1050 PRmT ™::"f .t

OK?
-^.^^^'l^^l e^ / >

.yn THEN CSEN% = ^JOT CSEN%: GOTO 1060
1060 PRI^T ™M = CS^"^,,,

^^o' .-..''^T BS. IF B$ < > "Y" THEN COL80% = NOT COL30%: GOTO 107(J

\IZ pr!n FNTER V ™ateS "••"f^R a ='i To 7: PRINT V(X)",";: NEXT : PRINT V(8,;= HTAB 18

in"; V I
V(^;?^(3KV(4).v;5r:v(6,,V(7.,V(8):_,PRINT :

= «:VCNT =

1094 PRINT "SEGli="SEGB" GR'="GX%" CASEN' ="CSEN%" 30COL'= COL80*

10CI6 PRINT - PRINT "VID7=";: FOR A = 1 TO 8 :
PRINT V(A);: NEXT

ml V™ l! HGR : HCOL0R= 3: PRINT CHR? (17);: REM CTRL-Q HOMES CURSOR

10^9 KOR SIGNAL - TO 12; PRINT TITLES (SIGNAL) :
NEXT

1100 RKM

1101 RFM ********** PLOT LEFT TO RIGHT FOR/NEXT LOOP

1105 FOR X = 36 TO 276 STEP 4: HPLOT X,5 TO X,l TO X + 2,1 TO X + 2 ,5 TO X + 3,5

1120 FV3R SIGNAL = TO 11: FOR TERM = 1 TO 8 :W(SIGNAL,TERM) = 0: NEXT : NEXT

1130 RAS% = W(W,0):AX = W(1,0):CAS% = W(2,0):Q3 = W(3,0):P0 = W(4,0):Pl = W(5,0)

1140 H0 = W(6,0):CREF = W(7,0);S7M = W(8,0) :V7M = W(9,0) :LDPS% = W(10,0):VID7 = W(11,0)

2000 REM
2010 REM ********** BEGIN EQUATION DEFINITIONS

2020 REM

2030 R1;M AVAILABLE INPUTS > S7M,CREF,H0 ,VID7 ,SE)GB,GX%,CSEN% ,VD80%

2040 REM OUTPUTS > RAS% ,AX,CAS% ,03 ,P0 ,P1 ,V7M,LDPS%

2H60 REM % IS TAG FOR ACTIVE LOW SIGNALS LIKE CASEN'

2070 REM
2080 REM *•*****•** RAS' (RASI)

2090 W(0,1) = Q3
2100 W(0,2) = NOT RAS% AND NOT AX

2110 W(0,3) = NOT RASI AND CREF AND H0 AND P0

2120 W(0,4} = NOT RASI AND NOT S7M AND H0 AND P0

2130 REM ********** AX

2140 W(l,l) = NOT RAS% AND Q3

2150 W(l,2) = NOT AX AND Q3
2160 REM ********** CAS' (CASI)

2170 W(2,l) = NOT AX AND NOT CSENI
2180 W(2,2) = NOT AX AND PI

2190 W(2,3) = NOT CASI AND NOT RAS%

2200 REM ********** Q3
2210 W(3,l) = NOT AX AND Pi AND t»T S7M
2220 W(3,2) = NOT AX AND P0 AND S7M
2230 W(3,3) - NOT Q3 AND NOT RASI
2240 REM ********** PHASE (P0)

2250 W(4,l) = P0 AND RAS% AND NOT Q3
2260 W(4,2) = NOT P0 AND NOT RAS%
2270 W(4,3) = NOT P0 AND Q3

Figure 3.13 BASIC Listing: An Apple iie Timing HAL Emulator (1 of 2).
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2280 REM ********** PHASE 1 (PI)

2290 W(5,l) = HOT P0 AND RAS% AND NOT Q3
2300 W(5,2) = P0 AND NOT RAS%
2310 W(5,3) = P0 AND Q3

2320 REM ********** VID7M (V7M)

2330 W(9,l) = NOT GXI AND SEGB
2340 W(9,2) = GX% AND NOT COL80%
2350 W(9,3) = GX% AND S7M
2360 W{9,4) = NOT VID7 AND PL AND NOT Q 3 AND NOT AX
2370 W(9,5) = NOT H0 AND CREF AND PI AND NOT Q3 AND NOT AX
2380 W(9,6) = V7M AND AX
2390 W(9,7) = V7M AND P0

2400 W(9,8) = V7M AND Q3
2410 REM ********** IXiPS' (LDPSI)

2420 W(10,l) = NOT Q3 AND NOT AX AND NOT COL80% AND GX%
2430 W(10,2) = NOT Q3 AND NOT AX AND Pi AND GX%
2440 W(10,3) = NOT Q3 AND NOT AX AND Pi AND SEGB
2450 W(10,4) = NOT Q3 AND NOT AX AND PI AND NOT VID7
2460 W(10,5) = NOT Q3 AND NOT AX AND PI AND CREF AND NOT H0
2470 W(10,6) = NOT Q3 AND AX AND NOT RASI AND Pi A^D VID7 AND NOT SEGB AND NOT GX%
3000 REM

3020 REM ********** THE FOLLOWING DEFINITIONS ARE EXTERNAL TO THE HAL/PAL.
3040 REM ********** H0

3045 IF NOT RASI OR NOT PI OR Q3 THEN 3060
3050 HCNT = tCNT + 1: IF HCNT < > 3 THEN W(6,l) = NOT H0 : GOTO 3070
3060 W(6,l) = H0: GOTO 3080

3070 REM ********** CREF
3080 IF S7M THEN W(7,l) = NOT CREF
3090 IF NOT S7M THEN W(7,l) = CREF
3100 REM ********** 7M (S7M)

3110 W(8,l) = NOT S7M
3120 REM ********* VID7
3130 IF RAS% AND NOT Q3 THEN VCNT = VCNT + 1: IF VCNT < 9 THEN W(U,1) = V{VCNT) : ODTO 3150
3140 W(ll,l) = VID7
3150 REM
3160 REM ********** DEFINITIONS NOW COMPLETE
3170 REM NOW "OR" ALL THE TERMS FOR EACH SIGNAL AND DRAW THE SIGNALS.
3180 REM
3190 IF NOT SCAN AND P0 AND NOT Q3 AND RAS% THEN HPLOT X,0 TO X,102: REM REi''ERENCE LINES
3195 IF NOT SCAN AND PI AND NOT Q3 AND NOT AX THEN FOR Y = 7 TO 95 STEP 8: HPLOT X - 2,Y: NEXT
3200 FOR SIGNAL = TO 11:Y - SIGNAL * 8 + 13: FOR TERM = 8 TO 2 STEP - 1

3210 W(SIGNAL,TERM - 1) - W ( S IGNAL , TERM - 1) OR W( SIGNAL, TERM ) : NEXT TERM
3215 IF SIGNAL < 6 OR SIGNAL = 9 OR SIGNAL = 10 THEN W(SIGNAL,1) = NOT W(SIGNAL,1)
3217 IF SCAN THEN NEXT SIGNAL: RETURN
3220 HPLOT X,Y - 4 * W(SIGNAL,0) TO X.V - 4 * W(SIGNAL,1) TO X + 3,Y - 4 * W(SIGNAL,1)
3230 W(SIGNAL,0) = W (SIGNAL, 1) : NEXT SIGNAL: NEXT X
3240 PRINT CHR$ (4);"PR#2": END
4000 REM *******************************************************************************
4005 REM
4010 REM SCAN ALL POSSIBLE INITIAL CONDITIONS TO MAKE
4020 REM CERTAIN PAL SYNCS UP CORRECTLY.
4030 REM
4050 SCAN = 1: FOR SIGNAL = 1 TO 7: PRINT TITLE$ (SIGNAL) ; : NEXT : PRINT " X": POKE 34,1
4060 FOR SIGNAL = TO 8:W(SIGNAL,0) = S(SIGNAL)
4070 IF SIGNAL < 7 THEN HTAB SIGNAL * 5 + 2: PRINT S(SIGNAL);
4080 NEXT SIGNAL
4090 FOR X = 1 TO 100:HCNT = 0:CFLAG = 0: GOSUB 1120: REM UPDATE SIGNAI^S
4100 FOR SIGNAL = TO 8:W(SIGNAL,0) = W(SICMAL,1): IF W(SIGNAL,0) < > I(SIGNAL) THEN CFLAG = 1

4120 NEXT SIGNAL: IF CFLAG THEN NEXT X
4140 PRINT " "XJSIGNAL =7: IF X = 100 THEN PRINT CHRS (7) CHR$ (7) CHR? (7) ; : GET B$
4160 SIQJAL = SIGNAL - I
4165 IF SIGNAL < S THEN PRINT CHR$ (7) "ALL POSSIBILITIES SCANNED": POKE 34,0: END
4170 S(SIGNAL) = NOT S(SIGNAL): IF S(SIGNAL) = THEN GOTO 4160
4130 GOTO 4060

Rguro 3.13 BASIC Listing: An Apple Ite Timing HAL Emulator (2 of 2).
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I 4 f.1
niumnnnniuihJfinnruuuuuuinnnhm^

AX
L A
q:^
PH
PH
HS
CR
7M
'J I

LD
U I

S '

SI

EF
rLTUT-Turui

D7n
PS ' %r
D7

TjTJTTJTjnLnjx TLTiJXJnjnj-ijnL T_n_m^^

S E G E = G R ' = C A S E N • = 8 C L ' = 8

1.
1 1 D 7 = 1 1 1 1 1 1

V:: E b B = G R ' = 1

U 107=10 100 1 10

CASEH

'

=1 80l:ijL =0

Figure 3.14 HIRES Dumps from the Timing HAL Emuiator.
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chapter 4

The 6502

Microprocessor

^LJ
The 6502 MPU (Micro Processing Unit) is the

device in the Apple lie which executes stored

sequential programs. It is a single 40-pin integrated

circuit that executes 6502 machine language pro-

grams as it reads them from the data bus. It can be

thought of as the brains of the Apple.
The 6502 was designed by MOS Technology in the

mid 1970s as part of their MCS6500 series micro-

processor family. It has been a popular choice as a

microprocessor for personal computers, being used
incomputers produced by Apple, Atari, Commodore,
Ohio Scientific, Rockwell International, and other

manufacturers. The6502 gives adequate computing
speed and versatility at a very low cost. Its pro-

gramming language is very simple, making it an
ideal MPU fortheoccasional computer programmer.
The most important 6502 related knowledge for

an Apple owner to attain is programming knowl-
edge. The ability to read and write 6502 assembly
language programs greatly expands the horizons of
an Apple computerist. 6502 assembly language is

not, however, a major topic of this book. These pages

are concerned primarily with the hardware imple-

mentation of the 6502 in the Apple He computer.

Volumes have been written about various aspects of

the 6502, especially programming.- The choice of

6502 topics in this chapter was governed by the

unique features of 6502 use in the Apple, and by the

goal of this book to fill information gaps in Apple

literature available to the public.

Manufacturers of the 6502 are:

MOS Technology, Inc.

950 Rittenhouse Rd.

Norristown, Pa. 19403

Synertek, Inc.

P.O. Box 552

Santa Clara, Ca. 95052

Rockwell International

Microelectronic Devices

P.O. Box 3669, RC55
Anaheim, Ca. 92803
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6502 SIGNALS

There are 40 pins on a 6502, three of which serve

no function. In addition to the address output and

data input/output, there are four outputs (R/W,

PHASE 1. PHASE 2, and SYNC) and six inputs

(READY. IRQ', NMI', PHASE 0, SET OVER-
FLOW', and RESET'). There are three power

supply connections. One pin requires +5 volts and

two pins require ground. Figure 4.1 shows the 6502

pin assiRnmenls. Figure 4.2 shows the 6502 hard-

ware implementation in the Apple. A brief discus-

sion of the 6502 sig-nals with Apple implementation

notes follows,

Clockpulses-PHASE 0, PHASE 1, PHASE 2

The 6502 has most of its required clockpulse gen-

eration circuitry built-in. It requires only an exter-

nally generated time base which can be implemented
in several ways. In the Apple, the PHASE time
base is developed independent of 6502 internal cir-

cuits and fed as the clockpulse input to the 6502.

The 6502 generates its required PHASE 1 and
PHASE 2 clocks from the PHASE input. PHASE
1 is high during the first half of a machine cycle, and
PHASE 2 is high during the second half of a
machine cycle. PHASE 1 is not thesimple inversion

of PHASE 2, There is a slight delay between the
PHASE 1 transitions and the PHASE 2 transitions.

The rising edge of one always follows the falling

edge of the other. The PHASE 1 and PHASE 2
clocks are available at pins 3 and 39 of the 6502.
PHASE 1 and PHASE 2 are not connected in the
Apple He but are used only inside the 6502.

VSSiCHOUNDI — 1 4Q — BESET'

BEflOlf — 2 S -^ PHASE 3

PHASE 1
-^

36 — SET OVEflFLOW

IHQ' — 3T — PHASES

nc — 36 NC
imy —

35 NC
SVNC — 6502 MPU ^ fi;w

vcccsn — 33 — M
AO 32 — 01

41 — 31 — 02

A2 -^ 30 — D3

A3 -^ 29 D<

AJ — a — 05

AS — 27 — DG

A6 — 26 k-07
A7 — 16 a AIS

AB — \T n A14

A9 — K n A13

AM— 19 n H2
An — a 21 — V5S (GROUND)

Figure i1.1 6502 Pin Assigr ments.

AddressandR/W'
During every machine cycle, the 6502 places an

address on its address output. In association with
the address it outputs, it brings itsR/W line high or
low, thereby telling the world whether it wants to

read or write data. With 16 address lines, the 6502 is

capable of producing 65536 different values at its

address output.

The 6502 address and R/W outputs are not tri-

state in the Apple, but these signals are connected to

the address bus through external tri-state bus
drivers. This enables peripheral cards to gain
access to the address bus via the DMA' line.

£>ata Bus

The data input/output of the 6502 is eight lines.

This gives the 6502 its overall classification as an
8-bit microprocessor. Data direction is inward
except during PHASE 2 of write cycles. In the
Apple lie, the 6502 data lines are connected d irectly

to the data bus.

RESET'

The RESET' input to the 6502 causes the 6502 to

start or restart. A RESET' causes the 6502 to dis-

able interrupts and begin program execution at an

address stored in locations $FFFC and $FFFD of

ROM. 6502 operation is inhibited while RESET' is

held low. The RESET' sequence begins when
RESET' transits from low to high.

In the Apple He, the RESET' line is connected to

pin 31 of the peripheral slots, to the keyboard
RESET key, and to pin 15 of the lOU, A peripheral

card can cause RESET' to drop, respond to RESET',
or ignore RESET'. The lOU responds to RESET',
but it also causes RESET' to drop when power is

first applied to the computer.

Interrupts- IRQ' and NMI'
The interrupts cause the 6502 to stop its sequen-

tial program execution and execute interrupt han-

dling routines. Interrupts are normally associated

with input/output functions, but they are a way for

any type of device to get the microprocessor's atten-

tion. The IRQ' (Interrupt ReQuest) is enabled or

disabled by program control, so the 6502 doesn't

have to respond to an IRQ'. The NMI' (Non-Maskable
Interrupt) cannot be disabled by program control.

An NMI' causes the 6502 to perform an interrupt
sequence after the current 6502 instruction has been
executed. The 6502 saves its program location count-
er and its Status Register (with BREAK flag reset)

J^^
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inanareaofRAM called the stack. Itdisablesinter-

rupt requests, then begins program execution at the

address stored in $FFFA and $FFFB of memory.

The NM r input to the 6502 is edge sensitive, mean-

ing the 6502 responds only to a high to low transition

of NMl'. To generate a second interrupt, the NMI

line must be brought high, then low again.

An IRQ' causes the 6502 to perform an interrupt

sequence after the current instruction has been exe-

cuted if the program has interrupt requests enabled.

The IRQ' sequence is identical to the NMI' sequence,

except that fheaddressof the IRQ'handlingroutine

is stored at $FFFE and $FFFF. The IRQ' signal is

not edge sensitive, so the IRQ' must go high before

interrupts are enabled again, or the same interrupt

will be answered more than once.

The interrupt inputs to the 6502 are connected to

the peripheral slots in the Apple. There are no

motherboard devices which generate 6502 inter-

rupts, and I/O in the Apple He is normally accom-

plished without interrupts. The Apple He mouse is

IRQ' based. Most real time clock cards are capable

of generating interrupt requests, and cards which

dump Apple memory to disk are based on non-mask-

able interrupts. The IRQ' line is tied to pin 30 of the

peripheral slots, and the NMI' line is tied to pin 29.

READY

Bringing the READY input to the 6502 low dur-

ing the PHASE 1 clock in a read cycle causes the

6502 to go into its wait state. In the wait state, the

6502 holds the current address and does nothing.

The wait state lasts until READY is sensed high

during PHASE 2. If the high to low transition

occurs during a write cycle, the wait state will not

begin until the next read cycle.

The wait state of the 6502 can be used for interfac-

ing to slow memories, single step operation, slow

step operation, or just plain stopping the MPU
indefinitely. It has no impact on the Apple's video

circuitry or on RAM refresh, so the video display

appears frozen on the screen when the 6502 is halted

via the READY line. The READY line in the Apple
is connected only to pin 21 of the peripheral slots.

This 6502 capability has gone largely unexploited in

the Apple.

SYNC
The 6502 SYNC output goes high when the 6502 is

performing an op code fetch. This is the first cycle in

the execution of any instruction in which the 6502
fetches the 1-byte operational code of the instruc-

tion. The SYNC signal can be used for single

instruction execution steps (in conjunction withthft'

READY line) and otherwise identifying the op code

of a 6502 instruction. The SYNC output of the 6502

is connected only to pin 39 of the peripheral slots in

the Apple He.

SET OVERFLOW
A high to low transition on the SET OVER-

FLOW line sets the overflow flag of the 6502. The
overflow flag is normally set or reset as a logical

result of some 6502 instructions, but the SET
OVERFLOW input forces the flag regardless of

instruction execution.

The SET OVERFLOW input has limited value

as a control input, because it must be used only in

conjunction with instructions that affect the over-

flow flag or in avoidance of such instructions so as

not to interfere with them. It is not connected in the

Apple He,

6502 CONNECTIONS IN THE APPLE He

F igure 4 .2 show s the 6502 hardware implementa-

tion in the Apple He. R/W connections are routed to

the address bus through external drivers, and data

lines are connected directly to the data bus. The

PHASE clock is PHASE 1 from the timing gener-

ator, inverted and gated by DMA' from the peri-

pheral slots. All other signals are connected directly

to the peripheral slots.

The method of tying the 6502 control inputs to

multiple sources is called wire-ORing or collector-

ORing. A logical OR function is achieved by tying

lines directly together. As an example, if Slot OR
Slot 1 OR any other slot pulls pin 29 low, the 6502

will sense a non-maskable interrupt. In a wire-GR

circuit, the line is pulled high by a voltage througha

resistor if no card is pulling the line low. Peripheral

cards should not try to pull the wire-OR lines high.

They either pull the line low or presenta high imped-

ance to the line, usually by driving the line with open

collector TTL circuits. The 6502 literature specifies

that 3000ohm pull-up resistors be used for wire-OR

inputs to the 6502, and the Apple He uses a 3300ohm

SIP (Single In line Package) resistor for this

function.

The tri-state address bus driver is necessary for

DMA operations because the 6502 addressand R/W'

connections are not tri-state. The address drivers

used in the Apple are LS244 8-bit tri-state bus driv-

ers for the address lines and one fourth of an LS125

for R/W,

mfî^^
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6502 MEMORY USAGE

Use of the 6502 in the Apple dictates various
aspects of the memory layout. For example, ad-

dresses $0—$1FF are always RAM in a 6502 sys-

tem. Apart from design dictates, the 6502 also uses
parts of memory so that they are normally not aval 1-

able for Apple programs.

Pag:eOandPagel($0-$FFand$100-?lFF)ofa
6502 system must be RAM simply because the 6502
has special read/write uses for Page and Page 1.

Page locations are used as indirect address loca-

tions in 6502 machine language. Additionally, the
6502 has a zero page addressing mode which
speeds and compacts programs making heavy use of

zero page locations for various storage functions. As
a result, bigmachine language programs like Apple-
soft BASIC make heavy use of zero page locations. If

BASIC isoperatingandyou indiscriminately POKE
values into zero page locations, you will deep six

BASIC. This is because the critical pointers of

BASIC will be lost. The following program must
crash:

10 FOR A = TO 2 55 :

POKE A,0 : NEXT A : END

Page 1 is the 6502 stack. The stack of a micro-
processor is an area of RAM which it uses as a last

in-first out memory. To the computer program, the
stack is like a stack of playing cards which it can
discard to or draw from. Coneeptualiy, data is

stored to the top of the stack or withdrawn from the
top of the stack. The stack is actually part of RAM.
While the program pushes data to or pullsdata from
the stack, the MPU must increment or decrement a
read address and keep track ofwhere in memory the
"top|^ of the stack is. In the 6502. the location of the
top" of the stack is stored internaily in an 8-bit
register called the Stack Pointer. When the stack is

accessed, the 6502 addresses a location in Page 1 of
RAM determined by the Stack Pointer. Virtually all

machine language programs access the stack via
Jump SubRoutine and RelYirn from Subroutine
instructions, so at no time can a program indiscrim-
inately modify Page 1.* The following BASIC pro-
gram will crash as surely as the earlier one:

10 FOR A = 256 TO 511 :

POKE A,0 : NEXT A ; END

Exceptions are copy protection schemes which cati for pro-
mrtimsng without JSR, RTS. PHP, PLP. PHA, or PLA instruc-
tions. In these schemes, criticai data is stored in Pape 1 of
memory, and ntiost attempts to exam ine memory result in the loss
of the critical Page! data.

The 6502 also dictates that the highest memory
location is $FFFF, and that it will be assigned to

ROM. That $FFFF is the highest address is an
obvious consequence of the fact that the 6502 has 16
address lines. In asimilar vein, the eight data lines

of the 6502 dictate that memory is organized into

8-bit locations. The reason for assigning the highest
address to ROM is that the 6502 RESET, NMI. and
IRQ vectors must be stored in locations $FFFA
through $FFFF. In particular, the RESET vector
in ROM enables the Apple to immediately begin
executing a non-erasable program at power up.

Since the 6502 has no special input/output control
features, it must control input/output functions
with commands decoded from the address bus. In

the Apple, addresses are assigned to the peripheral
slots and built-in I/O functions which could beother-
wise assigned to memory. This is referred to as

memory mapped I/O. It was logical in the Apple
design to assign the address space between RAM
and ROM to I/O. That way there are three contigu-

ous addressing groups: RAM (.$0—$RFFF), I/O

(SCOOO—$CFFF). and ROM (!i!D0OO—.?FFFF).

6502 TIMING IN THE APPLE lie

The 6502 was designed to be similar to the Motor-

ola Mr6800 microprocessor, but improved. The
clock requirements of the 6502 are the same as the

MC6S()()—two alternating positive pulses. In the

MC6800, the two clocks must be generated exter-

nally and input. In the 6502, the two clocks are

generated internally from the PHASE clock

input. This is one of the 6502 improvements.

The relationship between the PHASE clock

input and the PHASE land PHASE 2 6502 clocks is

shown in Figure 4.3. The PHASE 1 and PHASE 2

clocks are not symmetrica! but are low slightly

longer than they are high. The high period of one

clock always fits neatly inside the low period of the

other. The PHASE 1 and PHASE 2 transitions arc

clocked by the transitions of the PHASE input in a

repetitive cycle. The falling edge of PHASE is

followed by the falling edge of PHASE 2 and then

the rising edge of PHASE 1. The rising edge of

PHASE is followed by the falling edge of PHASE
1 and the rising edge of PHASE 2. To put it differ-

ently, PHASE falling clocks the end of PHASE 2

then the beginning of PHASE 1, and PHASE
rising clocks the end of PHASE 1 then the begin-

ning of PHASE 2.

The effect of the long cycle on 6502 clocks is to

elongate PHASE 2 by 140 nanoseconds. This has no
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Figure 43 6602 Clockpulse Relationships.

particular ill effects outside ofprogram timing con-

siderations mentioned in the previous chapter. By

lengthening PHASE 2. all response criteria for

communicating with the 6502 become less critical.

The following timingdiscussions are valid for either

a normal cycle or a long cycle, but the diagrams

picture normal cycles. The timing specifications of

the 6502 are not affected by the long cycle.

The 6502 PHASE 1 clock is not the same as the

PHASE 1 signal developed in the timing generator.

PHASE 1 from the timing generator is simply

PHASE inverted. It was named PHASE 1 because

of its kinship with the 6502 PHASE 1 clock. Seman-

tic ambiguity is a great way to confuse those who
would understand. The term which is distributed to

the peripheral slots, address decode, and RAM is

PHASE 1 from the timing generator. The 6502

PHASE 1 clock is used only inside the 6502. In this

chapter only, "PHASE 1" refers to the 6502 PHASE
1 clock. Outside of this chapter "PHASE 1" refers to

the inversion of PHASE 0, distributed from the

timing generator.

The Apple He uses a 6502A which has less critical

timing specifications than the 6502 (no designation

letter) that was used in the Apple 11. The 6502A is

rated for use in 2 MHz computers, but Apple uses

the 6502A in their 1 MHz computer to provide

greater error margins in Apple lie timing.*

*Th6 Apple IIReferenceMavualfor Ik Only says that the 1 le uses

a 6502B, and it shows 6502B timing specs in the MPU timing

diagram. Also, the MPU socket on my motherboard is lalwled

6602B. But Apple applications engineer Peter Baum informed

me that it was all a mistake, and that only 2 MHz 6502s (6502As)
were used in the Apple lie, Peter also said that the reason for

using 6502AS instead of 1 MHz 6502s is that error margins are

increased at a cost of only 10.25 per 6502,

, 1

Timing specifications in the 6502 are referenced

to the rising and falling edge of the PHASE 2 clock

(at the .4V point). Important timing specifications

for Synertek 6502As are shown here, with Mos

Technology and Rockwell International ratings

shown in parenthesis when they differ:

1. The 6502 address and R/W' line will be valid

within 140 nanoseconds (150 nsec Mos Technol-

ogy) after the falling edge of PHASE 2. They

will stay valid until at least 30 nanoseconds

after the next falling edge of PHASE 2, The

address becomes valid during the first part of

PHASE 1.

2. 6502 write data will be valid within lOOnanosec-

onds after the rising edge of PHASE 2. The

write data will remain valid until at least 60

nanoseconds (30 nsec Mos Technology; 30 nsec

Rockwell) after the falling edge of PHASE 2,

3. 6502 read data must be valid at least 50 nanosec-

onds <40 nsec Rockwell) before the falling edge

of PHASE 2 and must be held valid at least 10

nanoseconds after the fallingedge of PHASE 2.

PHASE 2 falling is the 6602 data transfer clock,

4. The maximum delay between PHASE falling

and PHASE 2 falling is 65 nanoseconds. The

maximum delay between PHASE rising and

PHASE 2 rising is 75 nanoseconds. These values

are specified only by Synertek and only with a

100-picofarad load on PHASE 2.

The time periods represent worst case conditions

over an operating range from to 70 degrees centi-

grade. Worst case timing specifications are shown

in Figure 4.4, Synertek time values are used because
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that seems to be the brand used in the Apple He, and
because Synertek values are used in the timing spec-
ification given by Apple in the He reference man-
ual.* Also, only Synertek publishes a specification

for the important PHASE to PHASE 2-delay. Ten
nanoseconds could probably be subtracted from the

clockpulse delay specifications to reflect the fact

that there is no load on PHASE 2 in the Apple.

The Synertek, MOS Technology, and Rockwell
International 6502s are probably all made the same.

When one company gives tighter specifications than

another, it obligates itself to test its microprocessors

using more difficult criteria.

Figure 4.5 is a diagram showing the timing rela-

tionships actually found in one Apple. The mea-
surements were made in an Apple He using a
Synertek 6502 marked 8307 (January 7, 1983?),

S10891, 370-6502 (no letter designator?). Figure 4.5

may be considered fairly typical of 6502 timing in

•See Figure 7-1 on page 142 of the^ pple [I Reference MmntaIfw
Ik Only, The reference manual timing chart shows Synertek
6502B specifications, and it is inaccurate since it shows the speci-

fications referenced to PHASE falling-. All 6502 specifications

are referenced to PHASE 2 falling.

the Apple He, but one must be wary of an experi-

ment with only one sample. The important features

of Figure 4.5 are:

1. PHASE 1 and PHASE 2 transitions occur
roughly 30 nanoseconds after PHASE failing

at the peripheral slots. Delays measured from
PHASE rising are longer because the 74S02
clockpulse gate takes longer to bring its output

high than it does to bring it low (see Figure 4.2),

2. The 6502 address becomes valid at the address

bus 124 nanoseconds after PHASE falls at the

peripheral slots. This indicates a setup time of

under 100 nanoseconds from PHASE 2 failing.

Using the worst case conditions for a 6502A, the

6502 address in an Apple He will always be
valid at the address bus before Q3 falls.

3. Write data becomes valid at the data bus 108

nanoseconds after PHASE rises. With a 42-

nsec delay from PHASE rising to PHASE 2

rising, this indicates a write data setup time of

66 nsec with the Apple in a normal room
temperature environment. 6502 write data must
be valid before CAS' falls for it to be read by

PHASE 2 lalls 65 nsec maximum
attar PHASE tails.

PHASE

PHASE 2

PHASE 2 begins to rise

75 nsec maximum alter

PHASE Ofises.

Address and R^W
are valid 140 nsec

maximum after

PHASE 2 falls.

Write Data Is

valid KM nsec

maximum after

PHASE 2 begins

to rise.

c

Read Data must be field valid

lOfisec minimum after

PHASE 2 falls-

Write Data will be heW
60 usee minimum after

PHASE 2 [alls.

Read Data must

be present 50

nsec minimum
before PHASE 2

falls.

Figure AA Some Worst Case 6502A Specifications.
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motherboard RAM. CAS' in the Apple falls

209 5 nanoseconds after PHASE rises, and the

6502A sets up write data well before this. The

write data valid before CAS' criterion would

not be met by a 1 MHz 6502 exhibiting worst

case timing characteristics. Incidentally, the

worst case 1 MHz 6502 would not meet this test

in the old Apple 11 either, but the tiniing would

be about 20 nanoseconds less critical

4 Read data from motherboard RAM becomes
'

valid at the 6502 about 215 nanoseconds before

PHASE falls or about 247 nanoseconds before

PHASE 2 falls. This varies with theRAM chips,

and the computer under test had OKI Semicon-

ductor 200-nsec RAM chips installed. You could

use much slower RAM chips in the Apple He,

and the read data would still be set up long

before necessary for 6502 reading. Auxiliary

card RAM data becomes valid about 80 nsec

later, but this is still far ahead of PHASE I

falling.

6502 performance creates guidelines for mother-

board and peripheral slot devices which communi-

cate with it. Some of these guidelines are listed

below. Specific timing of 6502 communication with

various Apple devices will be discussed m chapters

covering those devices, so Chapters 5-9 should be

studied to clarify the details of 6502 communication

in the Apple.

1 The 6502 address can be read by a peripheral
'

card before Q3 fallingduringPHASE mtime

to trigger a DMA action that same eye e

2. Write data from the 6502 can be clocked to a

peripheral by the falling edge of PHASE 0.

3. Read data should be valid on the data bus by 50

nanoseconds before the end of PHASE 2, and

should stay valid at least 10 nanoseconds after

PHASE 2 has fallen. The minimum specified

PHASE falling to PHASE 2 falling delay is 5

nanoseconds, and the maximum delay of data

through the 74LS245 peripheral slot data bus

driver is 18 nanoseconds, so read data from

peripheral cards should be valid 63 nanosec-

onds before PHASE falls.

The requirements for read data being on the data

bus before and after PHASE 2 can be met in a

peripheral card by gating read data with I^^^?;
SELECT'. This signal does not overlap P^^**^

2, but the data stays valid on the peripheral data

bus and main data bus until after PHAhE £

anyway. When either ofthese buses is floated {when

all devices on the bus present a high impedance to

the bus), the last valid data on the bus at the time

it was floated remains valid until the bus is

brought back under positive control. Therefore,

if the peripheral data bus is floated just before

PHASE 2 falls, the last valid data before the bus

was floated will still be propagated through the

bidirectional bus driver, and the 6502 will still read

the data correctly.*

APPLE PROGRAMMING
There are four levels at which programs can be

written in the 6502 based Apple: 6502 maehme lan-

guage, 6502 assembly language, high level compiler

language, and high level interpreter. The order of

listing is from most difficult to least difficult.

A 6502 machine language program is a series

of numeric bytes. The bytes are stored in sequence in

memory where the 6502 accesses them by incre-

menting the address bus and reading the program

while executing. 6502 machine language instruc-

tions consist of one, two, or three bytes in succession.

E ach instruction consists of an op code and possibly

a 1- or a 2-byte operand. Execution of a 3-byte

instruction requi res three cycles to fetch the instruc-

tion plus additional cycles to execute the instruction.

The 6502 has a set of internal registers wh ich are

manipulated by the program. A 6502 program per-

forms its functions by overseeing the '"terplay

among the internal registers and memory. The b5a^

internal register complement is made up of five

8-bit registers and the 16-bit Program Counter. The

following is a list of the registers and their functions:

REGISTER
Program Counter

Accumulator

X-Register

Y-Register

Stack Pointer

Status Register

FUNCTION
Contains current address of

instruction being executed.

Principle arithmetic and

logical register.

Index register.

Index register.

Contains current stack

address.

Contains flags indicating

6502 operating modes and

logical results of

instructions. J

•AH of the tri-state buses in the Apple lie hold the previous data

va d or B lone time when they are floated. There are several

inH wher^ this characteristic determines
operat.or,al fea-

nrTand some where it is necessary for correct operation o a

device
Someoftheseinstancasarenotedint^^

of following chapters.

bM^-^
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Generally, programs center around the Accumula-

tor and memory with the X- and Y-registers bemg

used for address indexing. Values of the Program

Counter. Stack Pointer, and Status Register are

automatically kept by the 6502 and don't usually

have to be accessed directly by the program. Provi-

sions exist for d i rect control of the Stack Pointer and

processor status. The Program Counter is controlled

by the flow of the program.

The following is a 3-instruction 6502 machine

language program listed in hexadecimal:

OP
CODE

ADDRESS
LOW

ADDRESS
HIGH

AD
85

00

89

1(>

ID

The first instruction loads the 0502 Accumulator

from address $1D89. The second instruction stores

the 6502 Accumulator contents at address $16. The

final instruction is a BREAK instruction which

terminates the program. The purpose of the pro-

gram is to transfer the contents of J1D89 to $16.

Machine language programs may be entered and

executed from the Apple monitor using methods

described in the Ai>i)li' 11 Rcfctrurc Mtnixai for lie

0)ih/.

Assembly language is a way of writing machine

language programs with computer assistance. Many
aspects of machine language programming are per-

formed better by computer than by humans. Some
such aspects are remembering op codes, addition

and subtraction of addresses, remembering ad-

dresses of subroutines, and checking for syntax

errors. Assembly language assists the programmer
with these and other details and allows the use of

English language symbology for addresses, oper-

ands, and opcodes, A prime goal in computer lan-

guage development is English language compat-
ibility.

The same program that was listed above in

machine language is listed here in assembly
language.

LABEL a? ooDB ADDRESS oorworr

RESTORE LCft

STA
BRK

$1D89 RESTORE SAVED POINTER
$16

This program contains English language which
cannot be exectited by the 6502. A computer can,
however, take this program and convert it to a 6502
machine language program. A program that does

this is an assembler. An assembler takes an assem-

bly language source program and assembles from
it a machine language object program.

6502 programs can be assembled in disk-based

Apples using any of several commercially available

assemblers. This is the best way for most Apple

owners to write extensive 6502 programs. Com-
pared to almost any computer, minicomputer, or

microprocessor machine language, 6502 machine

language is very simple to use. This extends to 6502

assembly language. There are only 56 mnemonic

codes to learn, and the logical selection of mnemon-

ics makes this a simple learning task.

The simple instruction set has advantages and

disadvantages. The chief disadvantage is that in

some instances a program will require more instruc-

tions to accomplish a purpose than it would if power-

ful special purpose instructions were available. This

can result in loss of speed and waste of memory

space in some programs. One should not get the idea

that the 6502 is without powerful features. It has a

very versatile set of addressingmodes and a decimal

mode which speeds execution of certain types of

programs considerably. It's just that there are more

powerful and complex microprocessors around.

Another way to produce machine code involves

the use of compilers. Programs may be written in

high level languages such as BASIC, Pascal, and

FORTRAN. High level language programs consist

of powerful symbolic commands such as "PRINT"

and "-". A 6502 cannot execute such commands, but

computer programs (compilers) can examine such

commands and produce 6502 machine language

code which will cause the 6502 to perform the indi-

cated functions.

A compiler is like an assembler in that it takes a

symbolic language source program and translates it

to a machine language object program. It is differ-

ent from an assembler in that whole machine lan-

guage routines are generated by a single compiled

instruction. Only one machine language instruction

is generated by an assembly language instruction.

High level languages are much more powerful than

assembly language in easing the task of the pro-

grammer. However, machine language code com-

piled from high level languages by a compiler is

generally less efficient than code assembled from

assembly language programs. The programmer has

direct control over the machine code generated in

assembly language, and human minds generate

more efficient code than compiler programs. With

compilers, as with assemblers, symbolic source code
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must be entered with the assistance of a text editor.

The compiler source code must be compiled into

machine language object code before a program can
be run.

In some ways, this process of converting a high
level language program to machine code is a nui-

sance. The object code must be compiled before it

can be run and debugged. In an alternate process, a
high level language program can be interpreted as

it is run. The interpreting program examines the

high level language commands during program
execution, and it directs program flow to resident

machine language routines which perform the ind i-

cated functions. This is the process used with the

Applesoft and Integer BASIC languages supplied
with the Apple He computer.

Both the compiling and interpreting processes

are available for high level languages in the Apple.
In addition to the Applesoft and Integer BASIC
interpreters in common usage, compilers are avail-

able that will compile stored Applesoft and Integer
programs into machine language routines. These
routines will execute much faster than an interpret-

er performing the same function, because the time-
consuming interpretation process is separated from
execution. Compilers and interpreters for other
high level languages are also available.

Which language should you program in—assem-
bly language or a high level language? The answer
depends not only on the programmer's background,
experience, and personal preference, but also on the
requirements of the particular application. Assem-
bly language is fastest and provides the most effi-

cient use ofmemory space. Some programs requiring
speed or large amounts of memory can be written
only in assembly language. Machine code compiled
from high level language source code offers a great
cornbination of programming ease and speed of exe-
cution. BASIC programs interpreted and executed
by the firmware interpreter supplied with the
Apple are the easiest of all to write and debug, but
very slow in execution.

Whatever language you program in,the6502will
be executing machine language code. All of the
important Apple operating systems—BASIC, Pas-
cal, DOS, ProDOS, the monitor, and the Mini-
Assembler—are machine language code which was
originally written in assembly language.
An important footnote while discussing Apple

programming languages and operating systems is

tk n»»"*^^'"^
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the DMA' line or co-process with the 6502 from the

auxiliary slot. These secondary MPUs greatly
expand the possibilities of what one' might find
operating in the Apple. Of particular importance is

the Z80 card and the associated CP/M operating
system. CP/M (Control Program for Microproces-
sors) is a disk operating system developed by Digital
Research company for which many programs are
available. The Apple with Z80 card is potentially the
most important CP/M computer.

DMA IN THE APPLE

DMA (Direct Memory Access) refers to a form
of fast I/O in which the I/O device directly accesses
memory, In DMA, the MPU is removed from the
data transfer path between the device and RAM.
There is no program sequence loadingdata from the
source and storing it at the destination.

The videoscanner access toRAM while PHASE
is low is a form ofDMA referred to as simultaneous
DMA. It is possible because RAM can be accessed
twice as fast as the MPU access in the Apple, and
because actual MPU data transfers occur only dur-
ing a short period at the end of the 6502 machine
cycle. This simultaneous DMA is completely trans-
parent to the MPU. It has no effect on program
execution since it does not affect the 6502 machine
cycle.

A second form of DMA is cycle stealing. In cycle
stealing DMA, the clock input to theMPU is stopped
for a machine cycle, and the DMA device accesses

RAM while the MPU is stopped. Thus, a cycle is

stolen from the MPU. This type ofDMA slows pro-
gram execution.

Cycle stealing DMA is implemented in the Apple
He. The DMA' line is wired to pin 22 of the pe-

ripheral slots, and any peripheral card can directly

accessRAM by pulling DMA' low while PHASE is

low and holding DMA' low until PHASE goes high
then low again. Pulling DMA' low forces the MPU
address bus driver to a high impedance state and
gates off the PHASE clock input to the MPU. With
DMA' low, even though PHASE goes high at pin

40 of the peripheral slots and everywhere else on the

motherboard, PHASE does not go high at pin 37of
the MPU. The 6502 waits with PHASE 1 high,

PHASE 2 low, and inward direction of the MPU
data bus connection. The MPU is thus isolated from
the address bus and data bus, and the peripheral

card can take control of both buses and the R/W'
line. DMA devices should communicate with the

data bus at the end of PHASE as the 6502 does. In

*lSiJ
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the Appie, PHASE 1 belongs to the video scanner.

and devices do not respond to addresses except dur-

ing PHASE 0.

Figure 4.6 shows the timing for stealing a cycle

from the 6502 in the Apple He. The DMA device

access is similar to 6502 access. The address bus

should contain a valid address before RAS' rising

during PHASE 1 so the MMU will have time to

respond with control of the multiplexed RAM
address bus and CXXX line before RAS' falls.*

Write data to RAM should be set up before CAS'

fails, and read data can be clocked to the DMA
device by PHASE falling.

It would be wise not to steal too many cycles at a

time, because if the clock is stopped too long, the

6502 will lose its internal data, and the program will

crash. It is not clear how long the clock can be

stopped before the 6502 operation becomes unreli-

able. The MOS Technology data sheet lists the max-

imum PHASE pulse width at 520 nanoseconds.

This is clearly not accurate because every Apple in

the world operates very well with a 629-nanosecond

PHASE pulse on one out of 65 cycles. The Oshoime

Jf & S-B>t Mirroprocenmr Hayidbook (copyright 1981,

McGraw-Hill, Inc. by Adam Osborne and Gerry

Kane) states that you cannot stretch the PHASE 1 or

PHASE 2 clock on MCS6500 microprocessors.

Osborne and Kane must have read the same data

sheet. The Synertek data sheet for SY650X micro-

processors shows a maximum cycle time of 40

microseconds. This seems to indicate that you can

perform DMA in the Apple for 40 consecutive

PHASE cycles without adversely affecting the

Apple. The Rockwell International datasheet shows
a maximum cycle time of 10 microseconds which is

probably a good number.
It happens that Steve Wozniak, the original

designer of the Apple II, knows a great deal about
this subject. In a conversation with the author, Mr.
Wozniak revealed that his first design for the Apple
II used a different method of scanning memory for

video output than the simultaneousDMA used in his

final design. When he was designing the Appie II,

RAM chips which could be accessed at 2 MHz were
justbecoming available. As a consequence, the early
design had a 1 MHz 6502 from which 40 out of 65
cycles were stolen for memory scanning, The 6502,
therefore, effectively ran at about 385 KHz (25/65 x
1 MHz). What Mr. Wozniak found out was that you

•There is no published specification for MMU address bus to

multiplexed RAM address bus and CXXX propagation delay. I

believe, but I don't guarantee, thatDMA peripherals will work if

they control the address bus before RAS' rising during PHASE
1. See Chapter 5 for more information on MMU signals.

could hold off the clock on a new 6502 for 40
microseconds, but that as the chip cooked in, this

hold-off capability deteriorated. He found it neces-

sary to keep new 6502s handy so he could replace the
MPU when the Apple started to malfunction. The
6502s were not failing. They were just becoming

unable to retain data for 40 microseconds with the

clock stopped. Mr. Wozniak speculates that the rea-

son for this is a deter ioriation in capacitance of

internal elements after the 6502 is run for a while,

Mr. Wozniak never determined the maximum reli-

able hold-off time of the 6502 experimentally. The
availability of faster RAM chips enabled him to

design the superior version of the Apple II which

was eventually released. His feeling is that it is safe

to hold off the clock to a 6502 for five microseconds,

which is the value used in Microsoft's Z80 card for

the Apple II.* He also cautions that any experimen-

tal determ ination of this capability would have to be

performed on new 6502s, used 6502s, and very used

6502s.

It's pretty obvious that the DMA' line can be used

for more than just direct access to RAM. Since 6502

control of the Apple is via address decode, any

device controlling the address bus can control the

Apple. For example, a very simple peripheral card

could change Apple screen modes via pushbutton. It

would just have to steal a single cycle from the 6502,

and gate $C05X to the address bus duringPHASE
to select a screen mode depending on which button

had been pressed. The most common use of the

DMA' line in the Apple is to operate an MPU other

than the 6502 from a peripheral slot, A Zilog Z80

card, Motorola MC6809 card, Intel 8088, or what

have you can be plugged in to allow control of the

Apple by the owner's favorite MPU, These cards

gain access to the Apple via the DMA' line.

The DMA' line has no effect on video scanner

access to RAM since the video scanner is isolated

from the address bus. In other words, the scanner

access to RAM is transparent to the DMA device,

just as it is transparent to the motherboard MPU.
The 6502 designers intended that the READY

line be used for DMA. Their idea was to stop the

6502 in a read cycle, and bring an external tri-state

address bus driver to high impedance with the

READY line while DMA took place. The READY
line in the Apple has no effect on the tri-state

*The Apple lie version of Microsoft's Z80 card does not perform

DMA, but Is a separate microcomputer with 64K ofRAM which

resides in the auxiliary slot and processes simultaneously with

the 6502 on the motherboard. The Z80 cannot access mother-

board circuits, but both the 6502 and the Z80 can access auxiliary

card RAM.

':'?t;t
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address bus driver, so DMA can only be accomp-

lished by pulling the DMA' line low. The DMA' line

can be pulled low in conjunction with the READY
line, but after a number of cycles the 6502 will lose

its internal data, because it has no input clock. This

situation can be changed by soldering jumper X4

and cutting jumper X5 on the motherboard. With

these jumpers reconfigured, pulling DMA' low will

not prevent the 6502 PHASE clock from rising

and falling. It is therefore possible to design pe-

ripheral cards that perform DMA indefinitely with

the 6502 in its wait state. When the DMA operation

is complete, the 6502 is able to resume operation as if

nothing had happened.

There is a priority system of DMA operation in

the Apple in which the lowest peripheral slot has

priority if more than one peripheral tries to perform

DMA at the same time. The priority system is

implemented by a DMA in/DMA out priority chain

which goes from slottoslot. Pin27istheDMA input

on each peripheral slot which tells a card that no

higher priority card is performing DMA. Pin 24 is

the DMA output by which DMA from lower priority

cards is disabled. Slot 1 hasthehighest priority and
Slot 7 has the lowest priority. Piri 24 on each slot is

tied to pin 27 on the next slot with Slot 1, pin 27 and
Slot 7, pin 24 not connected as shown in Figure 7.6.

In the priority system, when pin 27 is low, a card
should not attempt DMA because a higher priority

card is performing DMA, The card should also

bring pin 24 low so lower priority DMA cards are
disabled. If pin 27 is high, a card may perform
DMA. It should bring pin 24 low while performing
DM A. and bring it high while not performing DMA.
Non-DMA cards are always designed with pin 24
jumpered to pin 27 so they can be inserted between
DMA cards in the peripheral slots. This keeps the
priority chain intact. There can be no empty slots

between DMA cards in a priority chain.

The DMA priority chain can be used to prioritize

other functions besides DMA. Apple did this with its

12K firmware cards which substitute peripheral
card ROM for motherboard ROM. Several firm-
ware cards can be placed in a priority chain which
prevents ROM on two separate cards from being
simultaneously enabled. If two groups of cards use
the DMA chain for different purposes, they may
have to be separated by an empty slot or by a card
with pin 27 or pin 24 open. For example, a firmware
card in Slot 4 would interfere with the operation ofa
DMA card in Slot 5. Even when a firmware card is

enabled, cycles are available when RAM or I/O is

accessed in which the DMA priority line stays high.

A DMA device down line from the firmware card
will operate if it needs only to steal an occasional

cycle and can wait for the firmware card to accesi
RAM.

6502 INTERRUPTS IN THE APPLE lie

There are actually four types of 6502 interrupt

RESET', NMI', IRQ', and the BREAK instruction.

Each has its own unique characteristics and pur-

poses as determined by the 6502 design. The hard-

ware interrupts are connected to the peripheral

slots, and RESET' is also connected to the RESET
key and to pin 15 of the lOU. The BREAK instruc-

tion is a software interrupt. The response of the

6502 to interrupts in the Apple is determined by
programs contained in the EO—FF ROM,

RESET'

Except for RESET', the general idea of the inter-

rupts is to interrupt the MPU, perform an interrupt

handling routine, and then return to the interrupted

program. The general idea of RESET' is to inter-

rupt the MPU and go to a coherent program start.

There are no provisions in the 6502 response to a

RESET' for saving internal registers and returning

to the place where the program was interrupted.

The 6502 response to RESET' is as follows:

1. Pull three meaningless values from the stack.

2. Fetch the RESET routine address from $FFFC
and $FFFD. low byte first.

3. Set the IRQ' disable bit of Status Register; leave

other Status bits as they are.

4. Begin execution of RESET routine.

The reason for the three meaningless stack

accesses is that RESET' is a modified form of the

other interrupts with R/W' forced high. Accord-

ingly, the Stack Pointer is decremented while the

three values are beingread from memory, as if data

were being pushed to the stack. Normally, the Stack

Pointer is incremented during pull operations and

decremented during push operations.

The RESET' sequence creates a "fingerprint" on

the address bus which the MMU uses to detect a

system reset, even though RESET' is not connected

to the MMU. Any time the address bus contains

three Page 1 addresses in sequence followed by

$FFFC, the MMU assumes that a system reset is

occurring, and resets all of its soft switches. Unfor-

tunately, the MMU does not distinguish between

ascending Page 1 references and descending Page 1

references, so Page 1 resident programs which read
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$FFFC or vector to the contents of $FFFC/$FFFD
via "JMP ($FFFC)" inadvertently reset the MMU
soft switches.*

One of the actions taken by the MMU when it

detects a system reset is to disable high RAM for

reading. For this reason, the 6502 action 'following-

the reset sequence is deternnined by the contents of

the EO—FF ROM. The contents of $FFFC/$FFFD
in this ROM are $FA62, the address of the reset

handler. This handler performs a number of house-
keeping functions such as initializing- the video dis-

play mode. It also performs several operations that
make the Apple lie reset fairly unique among
microcomputers.

One unique feature of the Apple reset is that the
reset handler eventually passes program control to a
RAM vector. This means that the ultimate response
of the Apple's RESET key is controllable by soft-

ware. At power up, the RAM RESET vector ($3F2
and $3F3) is set, and from that point, it may be
changed to any 6502 address by whatever program
is controlling the Apple at a given moment. If the
Apple has no disk drive, the RAM RESET vector is

set at power up to enter BASIC. If there is a disk
drive, the Apple enters the bootstrap routine con-
tained in ROM on the disk controller. The RAM
RESET vector is usually set by software loaded
from the disk.

The automatic startup of the disk at power up is a
feature thatwas added to the Apple II monitor when
disks became popular. The new monitor was called
the Autostart Monitor, and the Apple He reset
handler is the Autostart Monitor with add itions that
accommodate Apple He features like the open Apple
and close Apple keys and the 80-column display.
Autostart firmware only boots the disk on a reset

thatoccursat po\ver up. Other resets cause program
flow to go to the address contained in the RAM
RESET vector. The firmware uses a code at $3F4 to
determine whether a given RESET' was in itiated at
power up or not. The code is never properly set at
power up, but the power-up reset sets the code so the
following resets will not be "cold starts. " The power-
up byte ($3F4) must be the excIusive-OR between
$A5 and the contents of $3F3, or a power-up reset
will be performed when RESET is pressed. Any
program can scramble the power-up code and force
a cold start" when RESET is pressed.

If the open Apple or close Apple key is being held
down when a reset occurs, special versions of the
reset handler are performed. A close Apple (right
Please see Tkble 4. 1 near the end of th is chapter for details of the

''602 instructions.

Apple) reset forces performance of the firmware
diagnostic routines. After the diagnostics, all of
RAM is blanked, and the following reset will be a
power-up reset. An open Apple (left Apple) reset
causes meaningless values to be stored in two loca-
tions of every memory page from Page $01 through
Page $BF before the power-up byte is checked. The
power-byte is among those locations modified, so the
power-up reset is performed and the disk is booted.
Theopen Apple reset thus overides software control
of the power-up byte, and forces a disk boot any time
the operator desires it.

It is obvious that it is not necessary to modify two
bytes in 191 memory pages to fix the power-up byte
for a forced disk boot. It should be equally obvious
that this is Apple's way of protecting commercial
programs from examination by you, the owner of
the Apple He. This particular protection scheme is

only formidable enough to protect data from the
most casual attempts at observation, and Apple
realizes that. But by clobbering a little data, Apple
avoided pulling the rug out on the software suppli-
ers who had fixed the power-up byte in their Apple
II programs so users couldn't reset their computers.

NMI' and IRQ'

The NMT and IRQ' lines are both connected only
to the peripheral slots in the Apple. The IRQ' is the
normal I/O interrupt signal because it can be
enabled or disabled under program control. The
idea of a non-maskable interrupt is to take action
which has higher priority than any programming
purpose. For example, an Apple may be required to

take emergency action in the event of a failure in a
manufacturing robot that it is controlling. The non-
maskable interrupt can also be used in monitoring
the Apple operation from a remote panel or single

instruction step execution of 6502 programs. These
applications would, of course, require peripheral
card designs.

The interrupt sequence is similar for either NMI'
or IRQ'. The 6502 first completes execution of the

current instruction. Then the following sequence
occurs in the case of NMI' or IRQ', with interrupt

requests enabled:

1. Program Counter is pushed on stack, high byte
first.

2. Procevssor Status is pushed on stack with
BREAK bit reset.

3. Contents of interrupt vector (NMT = SFFFA—
$FFFB; IRQ' = $FFFE~$FFFF) are fetched,

low byte first.
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4. Interrupt routine is begun with interrupt re-

quests disabled.

There is a basic hardware difference between

NMI' and IRQ' in the 6502. NMI' is edge sensitive

like a clockpulse input, and IRQ' is level sensitive.

A typical order of events with NMI' is;

1. The NMI' line drops low.

2. The NMI handling routine is executed with

interrupt requests disabled.

3. The NMI' line is brought high.

4. Normal program flow is resumed with inter-

rupt requests enabled or disabled as they were

before the non-maskable interrupt occurred.

A second non-maskable interrupt will not interrupt

the routineof the first as long as the NMI' line is held

low. Thus, while NMI' is not maskable by program

control, it is hardware maskable in the sense that

any interrupting device can prevent further inter-

rupting by holding NMI' low. Recall that part of the

NMI sequence is the disabling of interrupt requests,

so the IRQ' cannot interrupt an NMI' handler unless

the handler enables it.

A typical order of events with IRQ' is:

1. The IRQ' drops low.

2. The interrupt routine execution is begun with

interrupt requests disabled.

3. The interrupt is acknowledged and IRQ' goes

high.

4. The interrupt routine execution is completed

and normal program flow is resumed with
interrupt requests enabled.

Interrupt requests are disabled by the IRQ' se-

quence just as they are in the NMI' sequence. This

prevents the still low IRQ' from immediately gener-
ating a second interrupt. The program maskable
IRQ' can be used in any variety of implementation
methods. The program must acknowledge and ena-

ble interrupts in a manner consistent with the pro-

tocol of the interrupting hardware. The point with
IRQ' is to acknowledge the interrupt before ena-
bling further interrupts, so that multiple interrupts
are not generated inadvertently. Interrupt acknowl-
edgements in the Apple usually consist of an access
to one of the peripheral slot assigned addresses.

The enabling and disabling of IRQ' can be done
fairly effortlessly in many applications. Either NMI'
or IRQ' saves the Program Counter and processor
Status Register on the stack before vectoring to the
interrupt handler. The Status is saved before the
interrupt disable bit of the Status Register is set. If,

at the end of the interrupt handler, an RTI (ReTVirn

from Interrupt) instruction is executed, the Pro-

gram Counter and Status Register are restored

Along with the rest of the Status Register, the pre^

interrupt state of the interrupt disable bit is re-

stored. Further interrupts are automatically

disabled by the interrupt sequence, and the dis-

able/enable status is automatically restored by the

RTI instruction. The other 6502 registers {Accumu-
lator, X-register, Y-register, and Stack Pointer) are

not automatically saved by interrupts. These must
be saved and restored by the interrupthandler if the

application demands it.

In some applications it would be desirable to ena-

ble interrupt handlers to be interrupted. This sort of

processing is handled well by the stack architecture.

Return link information for each interrupt is simply

stacked over each other, possibly several interrupts

deep. All of the interrupts are eventually fully ser-

viced when the congestion is reduced.

Any peripheral card may interrupt the 6502 in

the Apple. If there is a possibility of multiple inter-

rupt sources, the 6502 needs to be able to distinguish

amongtheinterruptingdevices.Thiscanbedoneby

polling. In polling, the interrupt handler cheeks

each peripheral slot to see if it caused the interrupt.

Each card in a polling system must be capable of

responding to an address prompt by placing its

interrupt status on the data bus (normally MD7 of

the data bus).

The peripheral slots have an interrupt priority

chain which works exactly like the DMA priority

chain. Card designs supporting the priority chain

follow the same protocol as described in the section

on DMA. As in other priority operations, Slot 1 has

the highest priority and Slot 7 has the lowest prior-

ity. Cards in a priority chain control interrupts at

lower priority cards and are controlled by higher

priority cards. The priority chain does not eliminate

the need for polling in a multiple interrupt source

environment. Nor is the priority chain necessary to

determine priority since this is determined implic-

itly by the order in which the interrupthandler polls

the devices. Still, there are many conceivable uses

for the priority chain. For example, a card may

perform operations which will not tolerate inter-

rupts from lower priority devices, but will tolerate

interrupts from higher priority devices. Through

the priority chain, system designs can be imple-

mented to selectively enable high priority inter-

rupts only.

There is a way in the Apple to determine priority

of interrupts without any loss of time. This way is to

have the interrupting card contain its own IRQ vec-

tor. In the Apple, any peripheral card can disable

;.ii''
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motherboard ROM and steal ROM addresses. The
interrupting card would only have to steal $PFFE
and $FFFF to vector the Apple to its handler. This

system could use the interrupt priority chain to pre-

vent two cards from simultaneously responding to

$FFFE or $FFFF.
The firmware implementation of NMI' and IRQ'

handlers is very simple. An NMI' vectors straight to

$3FB, where a JUMP instruction to the software

NMI' handler must be stored. The IRQ' is handled

differently. A short firmware routine that begins at

|FA40 is executed. This routines first determines

whether a BREAK instruction or an interrupt

request is being processed. Both IRQ' and the

BREAK instruction use $FFFE and $FFFF as

their vector, and the IRQ' handler must distinguish

between BREAK and an external interrupt request

by checking the status that was pushed to the stack

when the BREAK or IRQ' occurred. When it is

determined that an external interrupt occurred, the

program vectors to the contents of $3FE and $3FF.

$3FE and $3FF should contain the address of the

software IRQ' handler.

In distinguishing between BREAK and IRQ', the

Apple firmware saves the contents of the 6502

Accumulator at memory location $45 and then mod-
ifies the Accumulator. The interrupted accumula-
tor value must be retrieved from $45 if it is required

for processing or restoration. Stacked interrupt

applications requiring the saving of 6502 registers

should save them on the stack. The accumulator
value must be retrieved from $45 before pushing to

the stack in the Apple.
The fact that memory location $45 is modified by

the interrupt handler means that software to which
$45 is critical cannot operate with IRQ' enabled and
IRQ' based peripherals installed. This would seem
to dictate that interruptable programs shouldn't
store important information at $45 or call monitor
subroutines that save the accumulator at $45 when
accumulator contents are critical. This basic rule
was ignored by Apple when it developed DOS 3.2

and 3.3, and it is possible for IRQ' based hardware to

disrupt DOS and even to cause binary files to be
stored on the disk using data from the wrong
memory area.*

The very damaging consequence of the conflict
over location $45 is that much software cannot oper-
ate with interrupting peripheral cards. This situa-
tion can be avoided if the software operates with

S« "Go Ahead and Interrupt your Apple" by Dan Fischer and
Morgan Caffrey, March and April '82 SOFTALK. for more
mfomiation on the IRQ'/$45 problem.

high RAM enabled for reading with a custom inter-

rupt vector and handler resident in high RAM. It

can also be avoided if the interrupting peripheral

disables motherboard ROM via INHIBIT' and sub-

stitutes its own firmware interrupt handler. But in

all probability, the $45 problem will disappear as

Apple's newly released enhancement to Apple He
firmware gains acceptance. The interrupt handler

in the enhanced fi rmware is far more extensive than

that of the origin al Apple I le firmware , and location

$45 is not modified in the new handler. Please refer

to The Apple He Firmware Upgrade in Chapter

6 for a general general description of the enhanced

firmware. Refer to The Enhanced Firmware
IRQ'/BREAK Handler later in this chapter for a

description of IRQ' and BREAK handling with the

new firmware.

The BREAK Instruction

The BREAK instruction is a software generated

interrupt which is not disabled by the IRQ' disable

bit of the Status Register. Its uses are not obvious,

even to an experienced computer programmer who

has not been exposed to it. Why would a program

want to interrupt itself?

One use of BREAK is to make it the terminating

instruction of 6502 programs rather than a RTS
(ReTurn from Subroutine). The idea here is to have a

program terminating routine which directs pro-

gram flow to some sort of system utility. In this sense

the BREAK is a programmable HALT instruction.

A second way of using BREAK is as a debugging

breakpoint. When debugging or investigating soft-

ware, it is often useful to stop a program at a specific

addresstoexamineprogram progress. The BREAK
instruction is a very convenient way of doing this.

Instead of overwriting three bytes of code with a

JUMP instruction, only one byte is overwritten by

the BREAK instruction. The program counter and

processor status are saved on the stack as with IRQ'

and NMI', so a BREAK handler can be written to

insert break points and resume flow after inves-

tigation.

A third use of BREAK is to allow out-of-control

6502 programs to bomb gracefully. A misdirected

program tends to lead program flow to an address

where no program has been stored. But the MPU
doesn't know there is no program there. The 6502 is

like a dog in heat; it will try to execute anything it

finds on the data bus, This can be chaotic in any

system, but especially in a memory mapped I/O

system like that of the the Apple. Printers or disk

drives can start operating when random addresses

are accessed by the MPU. It happens that, at power

'^j^t'i.
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up, much of RAM goes to a state of all zeroes. $00 is

the op code of the BREAK instruction and, as a

consequence, many bombed programs wind up exe-

cuting a BREAK instruction. This is good, because

the BREAK handler is usually designed to neatly

terminate a program and enter a human communi-

cation utility. In this way, the BREAK instruction

redirects the indiscriminant 6502. It is an interrupt

upon crash instruction. The response of the 6502 to a

BREAK instruction consists of the following se-

quence:

1. Program Count + 2 is pushed to the stack, high

byte first.

2. Status Register is pushed to stack {BREAK bit

set).

3. BREAK/IRQ' address is fetched from $FFFE
and $FFFF, low byte first.

4. Program execution is begun at the address con-

tained in $FFFE and $FFFF with interrupt

requests disabled.

The difference between the external interrupt

request and the BREAK command is the BREAK
flag, which is shown in 6502 literature as bit 4 of the

Status Register. The BREAK flag is conceptually

different from the other status flags, however. It is

not tested by any 6502 instructions, and there is no

set or clear instruction for the BREAK flag. It can
only be checked after the Status Register has been
placed on the stack. It is checked by pulling the

Status value from the stack and checking bit 4.

Rather than a bit of the Status Register, the
BREAK flag seems to be a characteristic of the
way processor Status is pushed to the stack.* The
BREAK flag exists only in RAM after a push to the
stack operation in accordance with the following
rules:

1. PHP command sets bit 4 in RAM (no signif-

icance).

2. Push Status resulting from NMI' resets bit 4 in

RAM (no significance).

3. Push Status resulting from IRQ' resets bit 4 in

RAM (identifies IRQ').

*The above concept of the BREAK flag is based strictly on my
ownexperiments. In no literature was I able to find asatisfactory
description of specifically when the BREAK flag isset and reset.
The concept of BREAK status being stored in bit 4 of the Status
Register simply does not fit the way I found BREAK status to be
stored and checked

.
Inside the 6502. there may wel 1 be a bi t of the

Status Register which keeps track ofBREAK status. In any case,
the BREAK status can only be checked by retrieving it from
RAM after a push Status to the stack operation.

4. Push Status resulting from BRK command sets

bit 4 in RAM (identifies BREAK interrupt).

BREAK status is meaningful only in an IRQ'
handler. It can be checked in an IRQ' handler with
the following sequence;

PIA

mo #%000i0000
BNE BREAK.HANDLHl
BEQ OONTINUE.IRQ

In Apple lie firmware, BREAK processing is

initially identical to IRQ' processing. But, after the

interrupt is identified as a BREAK, the paths of

program flow diverge. After the BREAK is de-

tected, the interrupted Status is restored, possibly

enabling interrupt requests. Then all interrupted

6502 register states are stored in $3A, $3B, and $46
through $49. At this point, the program flow vectors

to the contents of $3F0 and $3F1.

The soft BREAK vector ($3F0 and $3Fl) is loaded

at power up with the address of a routine that dis-

plays the interrupted 6502 register states. Also, the

instruction at interrupted Program Count + 2 is

disassembled and displayed, and the system moni-

tor is entered. This BREAK routine is adequate for

terminating programs and inserting debugging

breakpoints. Program status saved by the BREAK
handler is available for restartof flow viathe G(GO)
command of the monitor. After power up, control-

ling software can set the soft BREAK vector to the

address of a custom BREAK handler.

The Enhanced Firmware
IRQ7BREAK Handler
Until recently, Apple has not paid much attention

to interrupt applications in the Apple II or Apple

lie. However, current Apple activity suggests that

those neglectful days have passed. Much effort was
made to make ProDOS fully support interrupting

devices, and the Apple lie was designed with sev-

eral interrupting internal devices and a compre-

hensive firmware interrupt handler, Furthermore,
Apple has developed a firmware upgrade to the

Apple He which contains an Apple lie compatible

interrupt handler that doesn't modify location $45

but saves the accumulator and the rest of the free

world on the stack. The upgrade is described gener-

ally in Chapter 6, but features of the IRQ'/BREAK
handler aredescribed here.* Some knowledge ofthe

* Information here is based on a 9/7/84 preliminary version ofthe

f irmware upgrade. It is possible that some details will change in

the final version.

'if;,
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memory management soft switches on the part of

the reader is assumed in the following discussions.

Operation of these soft switches is described in the

MEMORYMANAGEMENT section ofChapter 5.

In the new Apple He firmware, the IRQ'/BREAK
vector at $FFFE/$FFFF of the EO—FF ROM
points to address $C3FA which is the starting

address of the firmware interrupt handler. Assum-
ing that high RAM is not enabled for reading, this

means that interruptable software must operate

either with INTCXROM set, or with SL0TC3R0M
reset, or with a peripheral card with interrupt

handler at address $C3FA installed in Slot 3. Thus,

in general, interruptable software must operate
with the 80-column firmware enabled. Note that

if software is operating with high RAM enabled for

reading, the contents of high RAM determine the

features of IRQ'/BREAK handling without regard
to the contents of motherboard ROM.
The new firmware interrupt handler is far more

extensive than the old one. Its overall philosophy is

to extend the 6502 response to IRQ' or BREAK
before executing the software handler, and to extend
the 6502 response to the RTI which terminates the

IRQ' software handler. The 6502 IRQ'/RTI combi-
nation automatically handles stack storage (before

software handler) and retrieval (after software
handler) of its Program Counter and Status register.

The new firmware handler extends this combination
so that the pre-interrupt Accumulator, X-register,
Y-register, Apple He memory configuration, and
I/O STROBE' active peripheral slot ($Cn) are also

stored and retrieved from the stack. Rather than
simply containing an IRQ'/BREAK handler, the
firmware contains an IRQ'/BREAK handler at
$C3FA and a post-IRQ' RTI handler at $C3F4.

Initial processing is the same for both IRQ' and
BREAK execution in the new firmware. The Ac-
cumulator, X-register, and Y-register are saved on
the pre-interrupt stack, and the Apple He is set
toafixed memory configuration (INTCXROM set,
all auxiliary card RAM disabled, and high RAM
disabled for reading and writing). White the con-
figuration is being set, the pre-interrupt configur-
ation status is checked and saved in a machine
state byte whose format is: D7—DO equal the pre-
interrupt states of ALTZP, 80STORE • PAGE2,
RAMRD, RAMWRT, HRAMRD, HRAMRD •

BANKl, HRAMRD . BANK2, INTCXROM. This

J*™ne state byte is stored at location $44 if a

f t
-^ 'S being proeessed, and on the motherboard

(itack if an IRQ' is being processed. Programmers
/•eware: if pre-interrupt high RAM is enabled for

reading but disabled for writing, the post-IRQ' RTI
handler enables high RAM for reading and writing!

In the initial IRQ'/BREAK processing, all auxil-
iary card RAM is disabled, including the ALTZP
ranges ($0-$lFF and $DOOO-$FFFF). This cre-

ates the problem of losing access to data on the stack
if ALTZP was set when the interrupt occurred. To
solve this problem Applehas established the follow-

ing convention for coherent ALTZP switching:

1. The auxiliary stack pointer is always set to $FF
after first setting ALTZP.

2. The motherboard stack pointer is always saved
at $100 of auxiliary RAM when setting ALTZP.

3. The auxiliary stack pointer is always saved at

$101 ofauxiliary RAM when resetting ALTZP.

This protocol is critical to interrupt processing be-

cause the software handler will have to go to the aux-
iliary card stack if it needs to access pre-interrupt

stack data and ALTZP was set when the inter-

rupt occurred. Programmers beware: interrupts

must be disabled while switching ALTZP and sav-

ing the stack pointers at $100 and $101!

After initial interrupt processing, the paths of

BREAK and IRQ' processing diverge. If an IRQ' is

being processed, additional data is pushed to the

stack, and the software IRQ' handler whose address
is stored at $3FE/$3FF of motherboard RAM is

entered. The states of the pre-interrupt (mother-

board or auxiliary) stack and the motherboard stack

at entry to the software IRQ' handler are as follows:

ON ON
PRE-INTERRUPT MOTHERBOARD

STACK STACK
PCH Machine State

PCL Active Slot ($Cn)

6502 Status $C3
Accumulator $F4
Accumulator
Accumulator
X-register

Y-register

The active slot number is taken from $7F8 as part

of another convention. Peripheral cards which

respond to $C800—$CFFF addressing must place

their $Cn (n = slot number) identifying number
at $7F8 when they are activated if their $C800—
$CFFF firmware is to be interruptable. If the 80-

column firmware is active, $7F8 contains $C3.

The bytes $C3 and $F4 are at the top of the mother-

board stack at entry to the software IRQ' handler.

Assuming that the handler does not disturb the
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stack, a terminating RTI will result in execution of

the program at $F4C3. This is the address of the

IRQ' RTI handler in the new firmware. The RTI

handler is the reverse of the IRQ' handler. It restores

the interrupted I/O STROBE' active peripheral slot,

memory configuration, Accumulator, X-register,

and Y-register. Then it saves a "STA $C007" (set

INTCXROM)ora"STA$C006"(resetINTCXROM)
followed by an "RTI" on the stack below the inter-

rupted 6502 status. Then this code is executed (via

the RTS at $C4C0). This restores the pre-interrupt

status of the INTCXROM soft switch and returns

program flow to the interrupted program.

If a BREAK is being processed instead of an

IRQ', then nothing is pushed to the stack beyond the

fi.'502 registers. Instead, the machine state is stored

at $44. and fi5()2 register values are retrieved from

the stack. Then INTCXROM is reset (slot ROM
enabled), and the 6502 register values are stored at

locations.$.SA, $'?,B. and $4.'i—$49 as they were with

the old BREAK handler. Finally, a jump is made
to the address specified at $3F0/$3F1 of mother-

board RAM. If this is the address of the old firm-

ware BREAK handler (JFA59). the register data is

fetched from its 7,ero page locations and displayed.

The big difference between this new BREAK
handling firmware and the old firmware is that

INTCXROM is reset and all auxiliary card RAM is

disabled by the new firmware before entry to the

$?!F0/$3FI specified handler. An unfortunate fea-

ture of the processing is that if ALTZP is set when
BREAK is executed, the firmware handler at

$FA59 displays incorrect 6502 register values.

This is because the register values are stored on the

auxiliary stack, then ALTZP is reset, then incorrect

values are retrieved from the motherboard stack

and displayed.

In summary, the new interrupt handler is Apple's
way of making it easy for software publishers to

support interrupts and of standardizing the way in

which software publishers support interrupts. The
approach seems a little heavy handed, but I sympa-
thize with Apple's need to introduce standardiza-
tion into software which comes from from so many
different sources. I question the decision to have
interrupts vector directly to $C3XX firmware since
it requiresthatSO-column firmware be active when
interrupts are enabled, and that the pre-interrupt
I/O STROBE' active slot be saved and restored as
part of IRQ'/RTI handling. An $FXXX resident
interrupt handler could avoid vectoring to $C3XX
It could check INTCXROM. set INTCXROM, then
jump to $C400-any I/O STROBE' active periph-

eral card that was thus deactivated would automat-

ically be reactivated when INTCXROM was reset

after interrupt handling.

I also question the need to reset ALTZP. While
resetting ALTZP does make it easy to have an IRQ'
handler resident in motherboard high RAM, nega-

tive consequences of resetting ALTZP include the

necessity of a stack pointer saving protocol, the pos-

sibility of split motherboard/auxiliary RAM stor-

age of interrupted critical values, and unreliable

operation of the firmware BREAK handler. Tb say

the least, if ALTZP is to be reset, the firmware

BREAK handler should be rewritten to operate cor-

rectly if ALTZP was set at BREAK execution time.

Regardless of my minor objections, the enhanced

interrupt handling firmware works, and it doesn't

clobber location $45. Through it, Apple should

achieve its goal of establishing a workable IRQ' pro-

tocol for the Apple lie that is compatible with IRQ'

protocol in the Apple lie.

Priority Among Interrupts

There are priority considerations among the inter-

rupts which determine what happens when more

than one interrupt occurs at the same time. The

general priority of interrupts is as follows:

Highest RESET'
NMI'
BREAK

Lowest IRQ'

In the event of simultaneous interrupts, RESET'
overrides all other processor actions. If NMI' drops

low while RESET' is low, the processor will not

respond to it. Once the RESET' routine has been

entered, however, the processor can be interrupted

by NMI' or BREAK. For this reason, it may be best

for a peripheral card to disable its NMI' generating

circuitry when RESET' occurs and leave itdisabled

until signaled by the 6502 that the RESET' routine

is accomplished. The idea of RESET' is to reset the

whole sytem, notjust the 6502. All interrupts set the

disable interrupt flag of the Status Register as part

of their initial sequence. This disables external

interrupt requests only (IRQ').

If NMF falls during IRQ' or BREAK execution

(after the interrupt cycle is begun, but before the

interrupt vector is fetched), then the NMI' vector is

fetched instead of the IRQ'/BREAK vector. If an

IRQ' cycle is thus aborted, then the NMI' is handled

first and the IRQ' is handled later when interrupt

request response is reenabled (assuming IRQ' is still

low). If a BREAK cycle is thus aborted, then the
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BREAK is never executed. The NMI' is handled,

and when an RTI is executed, the 6502 program
counter is set to the address of the aborted BREAK
instruction plus two. This is a bug in the 6502 that is

corrected in the 65C02 (the CMOS equivalent of the
6502 that is supplied with the Apple lie firmware
upgrade). When NMF falls during BREAK execu-
tion in a 65C02, BREAK execution is first com-
pleted, then the NMF execution cycle is performed.

In the event of simultaneous BREAK and IRQ'
with IRQ' enabled, the processor would complete
theBREAK instruction, fetching the contents of the

IRQ'/BREAK vector and disabling interrupt re-

quests. Then the IRQ'/BREAK handler would be
executed with bit 4of the top byte of the stack identi-

fying the interrupt as a BREAK. In Apple firm-
ware, the pre-BREAK Status is pulled from the
stack as soon as a BREAK is identified (after some
minor housekeeping in the enhanced firmware).
This would enable interrupt requests in our exam-
ple and allow the IRQ' sequence to begin, assuming
IRQ' was still low. Following the RTI instruction at

the end of the IRQ' handler, the BREAK routine
would be reentered and its course would be run.

THE 65C02 MICROPROCESSOR
A recent development in the 6502 world has been

the introduction of the 65C02 MPU. This MPU
(manufactured by NCR, Rockwell, and alternate
sources) is fabricated using CMOS technology.
instead of the NMOS used in the 6502. The general
advantage of CMOS over NMOS is lower power
consumption, but the 65C02 also has some new
instructions which make it operationally more pow-
erful than its NMOS brother. A 65C02 can execute
any 6502 program that doesn't depend on fine
instruction execution timing, but a 6502 cannot exe-
cute 65C02 programs that utilize the new 65C02
instructions.

Apple uses the 65C02 MPU in the Apple lie
microcomputer, and they intend to convert the
Apple He over to the 65C02. The plan is to retrofit
Older Apple lie's with the 65C02 as part of the firm-
ware upgrade package described in Chapter 6. This
*'" "jaximize compatibility between the Apple lie
and the Apple lie, and make it possible to write
snorter and faster Apple lie assembly language

ftVV^oT^"
^^^^"^^^ the Apple He may become a

fh ficnA
^*^ computer in the future, some data onwe t)5C02 IS given here and in other parts of Under-

^^tng the Apple He.

The 65C02 improvements consist of the addition
of new instructions and addressing modes, and the
removal of some old 6502 bugs. For the most part,
differences between the 6502 and 65C02 are well
documented in the partial NCR 65C02 data sheet in

Appendix C at the back of this book. Descriptions
here will therefore be limited to a few points whose
ramifications are not made entirely clear by the
data sheet. Please note also that details of 65C02
instruction execution are given in Tables 4.3 and 4.4
in an application note later in this chapter.

First, the NCR and Rockwell 65C02s are not iden-
tical. The Rockwell chip executes some instructions
that are not part of the NCR 65C02 repertoire. These
are the zero page instructions RMBn (Reset Memory
Bit n) and SMBn (Set Memory Bit n), and the zero
page relative branch instructions BBRn (Branch on
Bit n Reset) and BBSn (Branch on Bi t n Set). The op
codes of these Rockwell instructions ($X7 and $XF)
represent NOPs in the NCR chip. Apple appears to

be using NCR compatible 65C02s in its computers,
but the Rockwell chip works fine in the Apple He.
Please refer to Tables 4.3 and 4.4 for details of the
additional Rockwell instructions.

The READY line of a 6502 will not halt the MPU
during a write cycle, but the 65C02 READY line

will. This raises the question, "what happens to the
Apple lie data bus if READY is pulled low during a
write cycle and is held low for a number of following

write cycles?" If the 65C02 attempts to control the

data bus constantly for a series of wait state write

cycles, it will compete with motherboard RAM for

control of the data bus near the end of PHASE 1.

Investigation shows that this is not a problem, Dur-
i ng a long series of wait state write cycles, the 65C02
controls the data bus only during that portion of the

machine cycle in which it controls the data bus dur-

ing a normal write cycle. Therefore, its data bus
connection is at high impedance during the majority

of PHASE 1 inall wait state write cycles, and moth-
erboard RAM is free to control the data bus near the

endofPHASEl.
The fact that interrupts do not cause abortion of a

BREAK instruction is listed as an operational

enhancement of the 65C02 on page 3 of the data

sheet. Tne data sheet is referrmg to non-maskable
interrupts, not interrupt requests. In a 6502 or

65C02. IRQ' falling after a BREAK op code fetch

does not interfere with BREAK execution. How-
ever, if NMI' falls after a BREAK op code fetch and
before the interrupt vector is fetched in a 6502, then

the NMI' interrupt vector is fetched, and the NMT
handler is executed. An RTI at the end of the NMI'
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handler causes return to the address {plus two) of

the BREAK instruction and probable program

crashing. This bug is fixed in the 65C02. As the data

sheet indicates. NMI' falling- during BREAK exe-

cution results in NMI' execution after BREAK exe-

cution is complete.

The NCR data sheet refers to the new increment

accumulator and decrement accumulator instruc-

tions as INA and DEA. I don't know why they do

this, because these instructions are clearly just new
addressing modes of the INC and DEC instructions.

The new mnemonics should be INC A and DEC A or

just INC and DEC as given in the Rockwell data

sheet. The addition of the INC and DEC accumula-
tor addressing modes means these instructions have
all the addressing modes of the other 6502 read-

modify-write instructions (ASL, LSR. ROL. and
ROR).

Another notable feature of the 65C02 data sheet is

the 5000-microsecond maximum cycle time in the

AC characteristics table on page 3. I take this to

mean that you can stop the clock for a guaranteed
minimum of 5000 microseconds with PHASE
high, but not with PHASE low. The Rockwell data
sheet is more specific about the difference. It states:

"The input clock can be held in the high state indefi-

nitely: however, if the input clock is held in the low
state longer than 5 microseconds, internal register
and data status can be lost". The sign ificance is that,

when the Apple He DMA' line is held low, it forces
the PHASE input to the MPU to a low state. I

therefore conclude that long term continuous DMA
in the Apple He cannot be performed with a 65C02
any easier than it can be with a 6502. In either case,
long term continuous DMA can only be performed
by pulling DMA' low after the MPU has been
stopped via READY low, and only after the X4 and
Xo Apple lie motherboard jumpers have been con-
figured so the MPU clock is not stopped when DMA'
is pulled low,

A feature of the 65C02 that does not show u p i n the
NCR data sheet is that the new BIT immediate
instruction operates differently than BIT in the
other addressing modes. In the other addressing
modes, BIT sets the negative, overflow, and zero
flags based respectively on operand bit 7, operand
bit 6, and the result of Accumulator • operand. The
65C02 BIT immediate instruction affects only the
zero flag, not the negative and overflow flags.

A final point about 65C02 operation that I'd like to
make is mildly speculative. The 65C02 is pin com-
patible with the 6502, and was designed as a direct
but more powerful substitute for the 6502. To make
it work in the Apple I le, you simply remove the6502
and plug in the 65C02. However, the 65C02 does not
work reliably in the older Apple II. I believe that the
reason for this is that the 65C02 (or at least an NCR
65C02) requires read data to be set up longer than a
6502 operating at the same frequency. RAM read

data in the Apple II becomes valid at the MPU
(about 60 nsec before PHASE 2 falls) much later

than it does in the Apple He (about 250 nsec before

PHASE 2 falls). Whereas the 6502 can handle the

shortRAM read data set up time, the 65C02 seems to

have trouble with it.

I have performed limited experiments with

65C02s in an Apple II, Basically. I found that two

NCR 65C02AS (2 MHz?) and one NCR compatible

GTE G65SC02P-2 (2 MHz) caused intermittent

program crashing that got worse as the peripheral

card data bus load was increased. The Rockwell

R65C02P1 (1 MHz) that I tried caused no program
crashes. The NCR 65C02 program crashes occurred

only with certain data bus sequences. If an RTS
instruction is preceded by a NOP or SBC, and the

Apple II video data preceding the RTS opcode fetch

is $A0, $A2, or $A9, then the carry flag is set during
otherwise normal execution of the RTS instruction.

This unwanted setting of the carry flag occurred as

mentioned with all three NCR typechips. One of the

chips also set the carry flag if the video data preced-

ing RTS was $89. and the another one also set the

carry flag if the video data preceding RTS was $89
or $E9. Note that $89, $A0, SA2, $A9, and $E9 are

all immediate mode 65C02 instructions.

In these experiments, I did not conclusively prove
that the problem with the 65C02 in the Apple II is

short set up time ofRAM read data. This is merely a
highly educated guess upon which I would be will-

ing to bet a paycheck (if only I had one). Setting the
data up quicker definitely helps, because the bugs
mentioned in the previous paragraph do not exist
when the program resides in a 16K RAM card
whose read data becomes valid just after Q3 falls

during PHASE 0. In any case. I am suspicious of the
validity of the NCR claim of 50-nsec minimum read
data set up time in its 65C02.
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6502/65C02 INSTRUaiON DETAILS

Thestate of the address busand data bus on every bus. These address details are of particular interest

cycle of operation are normally of no interest to the

Apple programmer. However, there are non-

obvious features of 6502 command execution which

affect programming of I/O, This is a natural conse-

quence ofdecoding I/O commands from the address

to the assembly language programmer, but they

affect some BASIC programs too.

Table 4.1 contains an example of every type of

instruction sequence found in the 6502. It shows the

state of the address bus and data bus for each cycle

Table 4.1 6502 Instructions.

1 2 3 4 5 6 7

1. DEX SlflBB
SCA

Siasi
IGWOEE

2. ASL i $ia0B
5flA

SlBBl
IGNORE

3. PHfi $LBBB
S4S

siaoi
IGNORE

SPNT W
DATA

4. PLA $1111113

S6B
SlBBl
IGNORE

SPNT
IGNOHE

SPNT+1
DATA

5. BTS
«6B

SlBBl
IGNORE

SPNT
IGNORE

SPNTtl
PCL

SPNT+2
PCH

PCH, PCL
IGNORE

PCH, PCL tl
NEXT OP

6. RTI siaea
54B

SlBBl
IGNORE

SPNT
IGNORE

SPNTH
STATUS

SPNTt2
PCL

SPHTt3
PCH

PCH,P{-[.
NEXT OP

7. BRK SIBBB
sas

SlBBl
INGORE

SPNT W
Sla

5PNT-1 W
SB2

SPNT-2 W
STATUS

5FFFE
I SOLO

SFfFf
IPDiU

8. BEO $ia
(Z"B)

$lBSfl
5F3

SlBBl
SIB

SiaB2
NEXT OP

9. BEQ SIB
(Z = l)

siaoB
SFa

sibb:
Slfl

S19B2
IGBDRE

S1BI2
NEXT OP

IB. EEC SF]
(Z=l) (PK|

$iaOB
SFB

SlBBl
SF] IGNORE

S1BF5
IGNORE

SFF5
NEXT OP

11. LDA #5AA SlflBB

?A9
SlBBl
SAA

12. LDA S7B
STA STB

S10BB
5A5

SlBBl
STB

5BB7B u

DATA
13. ASt, 378 Siaaa

see
SlBBl
STB

SBBTB
OLD DATA

SBBTB W
OLD DATA

SBBTB W
NEW DATA

14. LDA S7B,S
StA $70 ,X

siaao
SB5

SlBBI
^7B

SBBTB
IGNORE

5BB9B w
DATA

15. ASL $ie,x SlBBl
STB

SBBTB
IGNORE

saa98
OLD DATA

see9B W
OLD DATA

SB89B W

NEW DATA
16, LDA 55772

STA S5772
siaao
SAO

SlSBl
S72

S1802
S57

55772 Vf

DATA
17. ASL S5772 siaao

SBE
SlBBl
S72

sibb:
S57

S5772
OLD DATA

S5772 W
OLD DATA

S5772 W
NEW DATA

18. JMP S5772 S1030
g4c

SlBBl
S72

S1902
S57

S5772
NEXT OP

19. JSB S5772 S1330
$20

SlBBl
?72

SPNT
IGNORE

SPNT W
SIB

SPNT-1 W
Se2

S18B2
?57

.

65772
NEXT OP

la. LDA S5772,X
(NO PXi •SBD

SlBBl
S72

5iaB2
557

S5792
DATA

21. LDA S57F2,X
STA SSTF2,X SBD

SlaBl
SF2

S1B82
S57

SS712
ICNOBE

S5B12 w
DATA

22. STA S5772,X
(NO PX)

siasB
S90

SlBBl
S72

51Ba2
S57

S5T92
IGNOHE

S5T92 W
DATA

it: ASL ?5772,X
(NO PX)

siaaa
SIE

siaai
S72

S1B02
S57

35T92
OLD DATA

S5T92
OLD DATA

S579J W

OLD DATA
S5792 W
NEW DATA

24. ASL S57F2,X
(PX>

siaaa
SIE

SlBBl
SF2

S1BB2
S57

S5T12
IGNORE

55812
OLO DATA

$5812 W

OLD DATA
65B12 W
NEW DATA

25. LDA (S78,X)
STA (S7a,X)

SIBBB
SAl

SlBBl
STa

SBBTB
IGNORE

$aa9B
ADL

S8991
ADH

ADH, ADL u

DATA
26. LDA ($79) ,Y

(NO PX)
SIBBB
5B1

Siasi
573

SBBTB
S72

SBB71
S57

5S792
DATA

27 LDA {SIS) ,1
STA (S7a|,V
tPX)

SIBOB
SEl

SlBBl
578

S8OT0
SF2

SaB71
$57

55712
IGNORE

S5B12 u

DATA

in STA (S7a| ,Y
[MO PX)

SieOB
S91

SlBBl
STB

SBBTB
ST2

50871
S57

55792
IGNORE

S5792 W
DATA

29 JKP (S5T72)
(NO PX)

SiaaB
sec

SlBBl
S72

S1B02
SST

SS772
PCL

S5773
PCH

PCH, PCL
NEXT OP

H JHP (S57FF)
(PX)

SlBBB
S6C

SlBOl
SFF

T1BS2
SST

S57FF
PCL

S57BB
PCH NEXT OP

ADDE BUS
DATA BUS

W - WRITE CYCLE
" - WRITE CYCLE IP STORING INSTRUCTION
PX - PAGE CROSSING
NEXT OP - OP CODE NEXT INSTRUCTION
X-REG . $20, y-BEC = $29
STB/STl CONTAIN S57?2 OK S5TF2 AS NEEDED FOR ILLUSTRATION
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Table 42 6502 Instruction Cross Refer*»nce

IMP REL I MM ACC 0PG 0PG
X

SPG
Y

ABS ABS
X

ABS
Y

IND IND
X

IND
If

ADC AND CMP EOR
LDA ORA SBC

11 12 14 16 20
21

20
21

25 26
27

ASL LSR ROL ROR 2 13 15 17 23
24

BCC BCS BEQ BMI
BNE BPL BVC BVS

8,9
1.9

CLC CLD CLI CLV
DEX DEY INX INY
NOP SEC SED SEI

TAX TAY TSX TXA
TXS TYA

1

BIT 12 16

BRK 7

CPX CPY 11 12 16

DEC INC 13 15 17 23
24

JMP 18 29
30

JSR 19

LDX 11 12 14 16 20
21

LDY u 12 14 16 20
21

PHA PHP 3

PLA PLP 4

RTI 6

RTS 5

STA 12 14 16 21
22

21
22

25 27
28

STX 12 14 16

STY 12 14 16

of execution. LDA, DEX, ASL, PHA, and PLA were
chosen to represent classes of instructions whose
execution sequences are identical. Table 4.2 is keyed
to T^ble 4.1. To find an example of any instruction
and address mode, look up the instruction in Tkble
4.2, then see the referenced example in Tkble 4,1.

The op code of all instructions shown in T^ble 4.1
is assumed to reside at $1000. The X- and Y-regis-
ters both contain $20 in all examples, Y-indexed

instructions are represented by X-indexed exam-

ples when Y-indexed execution is identical to X-

indexed execution. When possible, LDA examples

are used to represent storing instructions {STA,

STX, STY), and in these examples the write cycles

of storing instructions have a "w" following their

address. Cycles that are always write cycles have a

"W" following their address. The letters "PX" stand

for Page Crossing. A few examples show the first
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cycle of the next instruction. This is indicated by
"NEXT OP" on the data bus.

At times, the 6502 addresses parts of memory
which have nothing to do with a given instruction.

This occurs when the 6502 is performingan internal

operation in a cycle and really doesn't need to

address anything. Indexing or branching across
page boundaries always results in a superfluous
access to an address in the wrong page.* It takes an
extra cycle for the 6502 to increment or decrement
the high portion of an address computed across a
page boundary. A "LDA $5F72,X", for example,
takes four cycles with no page crossing, and five

cycles with a page crossing. STA instructions in

which the possibility of a page crossing exists allow
an extra cycle whether the page crossing occurs or
not. The Synertek Programm ingManual (May 1978

)

states thatthis is necessary to prevent a superfluous
write to the wrong address.

There are other interesting points about 6502
addressing. The read-modify-write instructions
(ASL, LSR, ROL. ROR. INC, DEC) always perform
a double write to the valid address.* The first write
cycle writes the same data that was read, and the
second write stores the modified data. Pulling data
from the stack results in a superfluous access to a
wrong Page 1 address. All superfluous accesses to

wrong addresses are on read cycles, and the result-
ing data is ignored by the 6502.
Example 30 of Table 4.1 illustrates an obscure

6502 bug; theJMP indirect instruction cannot fetch
the new program counter value from two bytes in

different memory pages. As shown in cycles 4 and 5
of example 30, a "JMP ($XXFF)" gets the next pro-
gram counter state from ?XXFF and $XX00, not
from $XXFF and $(XX+1)00 as you would expect.*
Because of this unexpected operation, Apple He
programmers should not utilize "JMP ($XXFF)"
unless their ultimate motive is to create confusion.
Three software applications of 6502 addressing

details are in the controlling of the serial outputs,
nigh RAM, and the disk controller. The speaker and
cassette are toggle outputs which are usually made
w toggle up and down at an audio rate. The speaker,
lor exainple, should not normally be accessed by
instructions which make a double or quadruple
access to $C030, because that would result in the
speaker hne toggling back and forth at 1 MHz. The
Idea IS to toggle the speaker, wait a thousand
miCFMeconds or so, then toggle it again. Similar
considerations exist for the C040 STROBE'. The

Statements marked by an asterisk in this application note are*»e for the 6502 but not the 65C02.
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programmer may select a single, double, triple, or
quadruple strobe by utilizing one of the following
instructions:

STA $C040
STA $C040,X {X
ASL$C040
ASL$C040,X(X

One strobe

= 0) Two strobes

Three strobes

0) Four strobes*

In BASIC, it helps to be aware of what machine
language instruction actually performs the memory
access when a PEEK or POKE instruction is exe-
cuted. The following instructions perform the actual
memory access in the Apple {where Y = 0):

^^lesoft PEEK - $E76F
Applesoft POKE - $E781
Integer PEEK - $EEF9
Integer POKE - $EET0D

IDh[$50),Y
STA($50),Y
IDA(§CE),Y
STA($CE),Y

Correlating the PEEK and POKE instructions with
examples 26 and 28 of Table 4.1 indicates that
POKE instructions generate a double access to the
POKE'd address, and PEEK instructions generate
a single access to the PEEK'd address. For this

reason, speaker or cassette control from BASIC
should be performed by PEEK instructions: "A -

PEEK(-16336)" or "A ^ PEEK(-16352)." As for

the C040 STROBE', "A = PEEK(-16320)" gener-
ates a single strobe, and "POKE- 16320,0" gener-
ates a double strobe.

The way that high RAM is controlled makes it a
prime candidate for sneaky address bus manipula-
tion. The operation of high RAM is covered fully in

Chapter 5, but a small note about its operation
belongs here. As described in Chapter 5, high RAM
is configured for writing by two successive reads to

$C081. $C083, $C089, or $C08B (see Table 5.5). For
this purpose, one instruction can accomplish the

same as two. "ASL $C081,X" with X = performs
the same task as "LDA ?C081; LDA |C081". Read-
modify-write, absolute indexed, no page crossing

instructions generate two read accesses and two
write accesses (one write access in a 65C02) to the

computed address. This is more cute than valuable,

but it does illustrate the potential of controlling

peripherals by single instruction address sequences

in the Apple.

A more important application of knowledge of

addressing detail can be seen at addresses $B82A
through $B842 of the DOS 3.3 RWTS subroutine.

$B82A is the beginning of the WRITE DATA rou-

tine which writes coded data to a sector of the disk.

Direction of disk operations is accomplished on the

disk controller by a logic state sequencer, which is a

^
'«%!,:

'm^
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programmed hardware controller. Simply put,

writing data to the disk consists of syncing the writ-

ing loop of the logic state sequencer to the writing

loop of the controlling software. The following pro-

gram steps check for write protect, and reset the

logic state sequencer to its idle location:

LDk $C08D,X X = $60 IF SLOT 6.

UCA $C08E,X
EMI WPRDTECT BRANCH IF DISK WRITE

PKTIBCTEXl

The program will fall through the branch if the disk

is not write protected. From this induced idle state,

the software can syne itself to the logic sequencer

with the statement, "STA $C08F,X". This instruc-

tion performs a double access to $COEF (assuming

Slot 6). The first access is decoded in the disk con-

troller to cause the logic state sequencer to leave its

idle state and begin its write loop. The second access

stores actual disk write data in the controller's input/

output register. The controller will only accept data

on the clockpulse after the one which started the

logic state sequencer and on every fourth clockpulse

afterward. The writing technique involves writing

data in software loops that take^exact multiples of

four cycles to execute.

Per.sons wishing to imitate the writing technique

of the RWTS subroutine should not substitute a

"STA $COE F" instruction for the "STA $C08F,X" at

address $B83F of DOS 3.3, "STA $COEF" will start

up the software loop one clockpulse out of sync with
the logic state sequencer, and the controller won't
accept the write data. "STA $COEF,X" will work
with in the X-register. The instruction must make
a double access to $COEF. Another address mode of

instruction which will work is a STA (ZP),Y with no

page crossing.

No doubt, the Apple controller's logic state se-
quencer was designed around the "STA ^COSOX"
instruction, since this makes it possible to have the
disk in other slots besides Slot 6. Given the hard-
ware, Apple disk programmers must understand
addressing details to program the disk on this level.

As a reference for those who have a 65C02 in-

stalled in thei r Apple He, Tables 4.3 and 4.4 show the
instruction execution details of the 65C02. These
tables are nearly identical to Tables 4.1 and 4,2, but
they are different to the extent that 65C02 instruc-

tion execution is different from 6502 instruction

execution. 65C02 instructions and execution cycles

that are different from 6502 instructions and execu-

tion cycles are printed in boldface in Tables 4.3 and
4.4.

Someof the features of 6502 instruction execution

that were pointed out in the preceding paragraphs
are not features of 65C02 instruction execution.

Please note that in 65C02 instruction execution:

1. Indexing or branching across a page boundary
results in a superfluous read access, but the

superfluous access is to the program counter

address rather than to the operand address plus
or minus 256 (examples 10, 21, etc.).

2. Read-modify-write instructions result in only

one write access to the operand address and a

maximum of three read or write accesses to the

operand address (examples 13, 15, etc).

3. The"ASL$C040,X" example thatisgiven above

will result in only three consecutive strobes

(example 23).

4. "JMP ($XXFF)" is performed correctly (exam-

ple 30).
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Table 4^ 65C02 InsTmctions.

1 2 3 < 5 e 7

$CA
51991
IGNORE

?0A
51991
sgnore"

3. PMX 51090
?15

51991
IGNORE

SPNT H
DATA

4. PLA 5iaee
56S

51991
IGNORE

SPMT
IGNORE

SPNT+1
DATA

5((!

51991
IGNORE

SPMT
IGNORE

SPNT-H
.PCL

SPNTt2
PCH

PCH, PCL
IGNORE

PCH,PCL<-1
NEXT OP

6. BTI 51«»9
54(1

S1991
IGNORE

SPNT
IGNORE

SPNT+1
STATUS

SPNT+2
PCL

SPNT+3
PCH

PCH. PCL
NEXT OP

7. BRK 51«a0 51891
INGORE

SPNT W
519

SPNT-1 H
592

SPNT-2 W
STATU?

5FFFE
IROLO

SFFFF
IHOHl

8. BEQ $10
5F»

51e91
519

51992
NEXT OP

(2-li
5I»»«
5Fe

5iaei
Slfl

51992
IGNORE

51812
NEXT OP

(Z-l) (PltJ 5F«
5iaBi
5F3

51992
IGNORE

51lf2
I CHORE

S0FF5
NEXT OP

11. LDA #$KA

I.*?.

51991
5AA

$1««2 D
IGNOFB

12. LDA S7a 51999
?A5

51991
.?.7« ,

59979 w
DATA

SUM D
ICHORK

13. ASL 57a 51999
?(!6

51991
579

59I!79
OLD DATA

$B97f
OLD DATA

5a«79 H
NEW DATA

14. LDA S7B,X
STA S7a,X

51999
SB5

51991
579

51(91
S7»

59999 u
DATA

$1((2 D
ICNOKE

15. ASL S7fl,X 51999 51991
579

«lf«l
S7»

59999
OLD DATA

$>(«(
OLD DATA

59990 M
NEW DATA

IS. LDA 55772
STA S5772

S1B99
SAD

51991
572

51992
557

55772 w
DATA

519(3 D
I CHORE

17. ASL S5772 51999
S9B

^1991
572

51992 55772
OLD DATA

55772
OLD DATA

55772 W
HEW DATA

le. JMP 55772 S199B 51991
572

51092
557

S5772
NEXT OP

19. JSR 55772 S1999
529

S1931
572

SPKT
IGNORE

SPNT W
510

5PNT-1 W
S92

51902
557

55772
NEXT OP

2». LDA 55772,

X

{NO PXl
51999 51991

572
51092
557

55792
DATA

$iaa3 D
IGNORE

21. LDA 557F2,X
STA 557F2,X

51999
5BU

$1991
SF2

51092
557

519I2
557

55S12 u
DATA

5i((] D
IGNOliE

22. STA 65772,

X

(NO PX)
51999
59D

51991
572

51092
557

55792
IGNORE

S5792 W
DATA

23. ASL SS772,X
(NO PX)

51099
SIE

51991
572

51992
557

S5792
OLD DATA

55792
OLD DATA

55792 «
HEH DATA

24. ASL S57F2,X
(PlCl 51E

5l99r"
5P2 557

ri-i«2 ^ •

557
S5B12
OLD DATA

55812
OLD DATA

55812 W
HEW DATA

25. LDA (578, X)
STA (S7a,X)

$1099
SAl

51B91
57B

51911
57i

59999
ADL

50091
ADH

ADH, AOL w
DATA

Si»a2 D
ignore

26. LDA (578) ,1
(NO PX)

iiaafp
?B1

S1901
579

59970
572

59971
557

S5792
DATA

51(«2 D
IGKOBE

«. LDA li-!i),1
STA (S7B),Y
(PXl

$190^
SBl

51891
57§

59979
5P2

50071
557

$•871
$57

55612 w
DATA

9iaa2 D
IGNORE

28. ETA (S7a),i(
(NO PXl

51999

ML—
51991
579

59970
572

50371
?57

$««71
557

55792 W
DATA

29. JHP (55772)
(NO PXl

5199?
56C

51991
572

51902
557

51l«2
557

55772
PCL

S57T3
PCH

PCH, PCL
HEXT OP

39. JMP (SS7FF)
. ^ (PX)

51999 51991
5FF

51902
551

$19(2
557

S57PP
PCL

sssai
PCH

PCH, PCL
NEXT OP

Ti. LDA (47i)
STA (S7il flB2

$1**1
57*

$M7<
572

S((71
«57

S5772
DATA

51992 D
IGNORE

3S. JHP (J5»J,X(
57C

$l«ll
«72

$1.II2

S57
«1»2
557

SS792
PCL

$5793
PCH

PCH , PCL
NEXT OP

33. BBS! ilt.ill" Siii*
SSF

51*ll
«7«

5M7«
S72

5B97t
$72

Sl((2
sia

$1(193

NEXT OP
34. BBSl 471, «lf*

do PI)
SlSit
S9F

Sl««l
57*

$«a7«
572

$(«7<
572

$1992
$1«

$i«a3
IGNORE

51913
HBXT OP

(PX)
$iia«
59P

SlMl
$7(

$«I7I
572

5((7)
?72

$1(»2
sr3

$ica3
IGNORE

518(3
IGtIORK

$fPF6
NKXT OP

3t. *13, *XB "
in. *xr "* «lf»

$•3
37. isc 8S772 •*

85C
51M1
972

81»2
SS7

$fF72
IGHOKE

$PPPF
ignoue

SFFFF
IGNORE

SFFFF
IGNORE

SFFFF
ICHORE

AODR BUS
DATA BUS

« - HRITE CKCLE
w - WHITE CYCLE IF STORING INSTRUCTION
D - ONE ClrCLE EXTENSION OF ADC OR

SBC IF DECIMAL MODE
P - PAGE CROSSING

HEXT OP - OP CODE NEXT INSTRUCTION
• - AVAILABLE IN ROCKWELL BUT NOT NCH 65Ca2
• • - [JNUSED OP CODES (HOPS) IN ALL 65C92
••• - UNUSED OP CODES (HOPS) IM NCR 65C92 ONLI

X-HEG - 529, Y-HEG - 529.
*'8/S7l cont«in 55772 Ol 557F2 as needed for illustration.
Boldfaced type is used wher^ t5C92 is different from 6592.

^feiu,

'^&.
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Table 4A 65C02 Insfrucilon Cross Reference.

IMP REL I MM ACC 0PG 0PG
X

0PG
V

ABS ABS
X

ABS
Y

ABS
IND

0PG
IND
X

0PG
IND
Y

BPG
IND

ABS
IHD
X

UPG
REL *

ADC AND CMP EOR
LDA ORA SBC

11 12 14 16 20
21

2B
21

25 2b
27

31

ASL LSR ROL ROR
DEC INC

2 IJ lb 17 23
24

BBRn BBSn •* 33-
34
35

BCC BCS BEQ BHI
BNE BPL BVC BVS

3,9
10

BRA 9

IB
CLC CLD CLI CLV
DEX DEY INX INV
NOP SEC SED SEI
TAX TAY TSX TXA
TXS TYA

1

BIT 11 12 14 16 20
21

BRK 7

cpx cpy 11 12 16
JMP IH 79

"'a

3J

JSR 19
LDX 11 12 14 16 20

21
LDY 11 12 14 16 20

21
PHA PHP PHX PHY 3

PLA PLP PLX PL¥ 4

RHBn SMBn ** 13
RTI 6

RTS 5

STA 12 14 16 21
22

21
22

25 27
28

31

STX 12 14 16
STY 12 14 15
STZ 12 14 16 21

22
TRB TSB 13 17

02 22 42 62
82 C2 E2 ***

11

X3 XB ***

X7 XF****
36

44 *** 12
1

54 D4 F4 *** 14
5C *** 37

DC FC ***
16

* unused op codes 5X3, $XB, S5C (NCR and Rockwell) at
generate abnormal addressing modes.

** BBRn, BBSn, RMBn, and SMBn are found on Rockwell 6
*** unused op codes for NCR and Rockwell 65C02.

*•** unused op codes for NCR 65C02 but not Rockwell 65C{

Id SX7, £

;C02 but

J2.

XF

not

{NCR

NCR 65C02.

.-a«'

1
'***
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HARDWARE APPLICATION

D MANUAL CONTROLLER

How many times have you been working with

your Apple and had to look up control addresses to

select HIRES NO MIX or LORES MIX or any other

screen mode? It's too bad, but screen mode selection

isn't supported in the Apple firmware by escape

codesor similarly easy interface. The Apple scheme
of controlling operational features via soft switches

is extremely effective for control by programs, but

the operator at the keyboard is left without means of

direct control unless the operating program sup-

ports it. This application note describes a simple

DMA controller which allows the operator to over-

ride program control and manually select among
the Apple features, including screen modes. I call

this circuit D MAnual Controller. Not everybody

likes dis name, but dat's not my problem!

Figure 4.7 is a schematic ofD MAnual Controller.

It works by stealing a single cycle from the 6502 and
placing an address in the $COXX range on the

address bus. This action is initiated when the opera-

tor presses one of eight pushbuttons (or four momen-
tary on-off-on switches). Six slide switches (or six

DIP switches) configure the Controller so the push-

buttons will affect different Apple features—screen
modes, annunciators, disk drives, memory configu-

ration, etc. The concept is to place the operator

switches on a small remote panel, connected by a
16-wire ribbon cable to the cycle stealing peripheral

card. Figure 4.8 is a photo of an earlier prototype
which controlled screen modes only.

D MAnual Controller can control some peripheral
card functions as well as motherboard features.

Those peripheral card functions which can be con-

trolled are the ones normally programmed using
DEVICE SELECT' addresses such as RAM card,

firmware card, and disk controller management.
Tables 4.5 and 4.6 are an operational summary of D
MAnual Controller showing how some features are
controlled. Some of these are only educational or
cute, while others, like screen mode control and
memory configuration, can be very useful. It is

recommended that the configuration switches be
left in the position in which you will most often need
them, so you will have convenient manual control of
the features which are important to you.
Even though T^ble 4.5 shows how to control Slot 6

disk drives using D MAnual Controller, it doesn't
follow that disk I/O can be performed manually. D
MAnual Controller is not capable of transferring

data via the data bus. It can only turn the drives on

and off, select between drives, configure the disk

controller for different functions, and position the

head. Please take note that turning a drive on and
setting READ/WRITE to WRITE will clobber the

data on a disk which is not write protected. It is

suggested that you experiment with no disk or an
unimportant disk in the drive. Manual control of the

disk drive is educational, but its only practical func-

tion would be to assist in the development of ad-

vanced disk programs and formats, or to aid

maintenance technicians and disk hardware devel-

opers. Incidentally, to step the head, turn the phases

on and off sequentially while a drive is rotating.

Stepping through the phases in ascending order

moves the head toward track 34. Stepping in de-

scending order moves the head toward track 0.

D MAnual Controller is based in hardware, and
overrides program control. You can select features

atany time, no matter what software or firmware is

running. This can be very convenient for program-

mers while they are developing programs. The Con-

troller does not lock out program control, though, so

programs which repeatedly select a given mode will

not appear to be affected when the Controller de-

selects that mode. In the Apple He, there is no way to

lock out program control of the $COXX control

functions.

Circuit Operation

The heart of D MAnual Controller ia a 74LS148

priority encoder which detects a button push and

converts it to a 3-bit address. This address is latched

in a 74LS374 when a button is pressed and placed on

A2, Al, and AO of the address bus at the first oppor-

tunity. The state of A7—A3 of the address bus and

R/W during the DMA cycle are determined directly

by the six configuration switches. A15—A8 are

always set to 1 1000000 during theDMA cycle, yield-

ing an address in the $COXX range, the critical

control range of the Apple.

Pressing any of the pushbuttons causes the signal

at pin 14 of the LS148 to go low. This signal is

debouneed and inverted and sent to a 74LS195 shift

register for single cycle generation. If the DMA
priority input is low, the shift register will shift the

button press signal through, and a 1-cycle negative

signal will be felt at pin 2 of a 74LS74 flip-flop. The

LS195 is clocked by PHASE 1 rising, so this 1-eycle
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16 PIN

DIP

JUMPER
TO SWITCH

PANEL

-(17)a15

74LS125
QUAD DRIVEH

Figure 4.7 Schematic: D MAnual Controller.
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Figure 4j8 The Breadboarded Manual Controller.

signal falls and rises just after PHASE 1 rises. The

cycle is further delayed for one hal f of a 7M period i n

thefirstha!fofthe74LS74. The resulting signal at

pin 5 of the LS74 represents the DMA cycle.

When theDMA cycle signal at pin 5 of the 74LS74

goes low, the DMA' line is brought low. Half of a 7M
period later, the data enable signal (LS74-9) of D
MAnual Controller's address bus drivers drops low.

This delay allows the MPU to be isolated from the

address bus before any attempt is made to control

the address bus. At the end of the DMA cycle, the

opposite order is observed. Because of propagation

delays in the LS09feedingthe DMA' line and moth-

erboard IC Cll, control of the address bus is

released before the MPU address bus driver is

enabled.

D MAnual Controller supports the DMA priority

chain so it can operate with some other peripherals

which perform DMA. It respects the DMA priority

inputand will delay its access until a higher priority

device has finished its DMA. It also will steal cycles

from a lower priority DMA card if that card

respects its priority input.

Supporting the DMA priority chain is a little dif-

ficult, because it is the most abused protocol since

"do unto others..." Apple abused itby not publishing

a protocol, and by using the DMA priority chain in

the 12K firmware card. Microsoft abused it in their

older, DMA based ZSOSfi/'rarrf by requiring higher

priority devices to wait several cycles after bringing

the priority line low before the Softcard will get off

the bus. Yet when the Softcard takes over the bus

itself, it gives lower priority DMA cards no similar

consideration. Some DMA based MPU cards don't

support the DMA priority chain at all. Other DMA
cards support or ignore the DMA priority chain in

ways which make sharing of the DMA capability

unpredictable.

D MAnual Controller gets around the unpredict-

ability of other DMA card designs by monitoring

the DMA' line and delaying its own DMA cycle if

DMA' is being held low by another card. This should

work with other DMA designs which make any

attempt to support the priority chain. Here are some

ways to install D MAnual Controller with other

DMA related cards:

1. Z80 Softcard. The Apple He Z80 Softcard

resides in the auxiliary slot and does not per-

form DMA. D MAnual Controller does not

interfere with this card in any way. The older

Table 45 Operation of Soft Switcties from D MAnual Controller.

AAAA A
RW 7654 3 FUNCTION

BUTTON BUTTON BUTTON BUTTON

0/1 2/3 4/5 6/7

W 0000
W 0000
X 0010
X 0011
X 0100

0101
0101
1000

1110

1110

0101

He MEMORY MANAGE
He I^MORY MANAGE
CASSETE OUT TOGGLE
SPEAKER TOGGLE
C040 STROBE
SCREEN MODE CTRL
ANNUNCIATOR CTRL
DOUBLE-RES GRAPHIX
FIRMWARE CARD CTRL
DISK HEAD CONTROL
DISK CONTROL

80STORE RAMRD RAMWRT

ALTZP SL0TC3R0M 80COL

PUSH ANY BUTTON

PUSH ANY BUTTON

PUSH ANY BUTTON

GR/TXT NMIX/MX PG2/PG1

AN0 ANl AN2

ENA/DSBL ENA/DSBL ENA/DSBL

PHASE-0 PHASE- 1 PHASE-2

OFF/ON DRIVE 1/2 SHIFT/LOAD

INTCXROM
ALTCHARSET

LORES/HIRES
AN3
ENA/DSBL
ENA/DSBL
PHASE-

3

READ/WRITE
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Table 4A Selection of 16K RAM Card or lie High RAM from D MAnuol Controller.

AAAA A

RW 7654 3

R 1000

W 1000

R 1000 1

W 1000 1

FUNCTION

BANK 2 CTRL

BANK 2 CTRL

BANK 1 CTRL

BANK i CTRL

BUTTON OR 4

READON - WRTOFF
WRTCOUNT=0

READON - WRTOFF
WRTCOUNT=0

READON - WRTOFF
WRTCOUNT=0

READON - WRTOFF
WRTCOUNT=0

BUTTON 1 OR 5

READOFF
WRTCOUNT+1

READOFF
WRTCOUNT=0

READOFF
WRTCOUNT+1

READOFF
WRTCOUNT=0

BUTTON 2 0R 6

READOFF - WRTOFF
WRTCOUNT=0

READOFF - WRTOFF
WRTCO[JNT=0

READOFF - WRTOFF
WRTCOUNT=0

READOFF - WRTOFF
WRTCOUNT=0

BUTTON 3 OR 7

READON
WRTCOUNT+1

READON
WRTCOUNT=a

READON
WRTCOUNT+1

READON
WRTCOUNT=0

SofU-anI which plug's into a peripheral slot does

perform DMA. If you use this type of Softcard,

then install D MAnual Controller in a higher

priority siot. It wili steal a cycle from the Sofi-

cnrd without affecting its operation. Switch S2

on the Softrnrd must be on for this configura-

tion to work. Solder the He jumper on D MAn-
ual Controller if operating in an Apple He, but

leave the He jumper unsoldered if operating in

an Apple II.* Other peripheral slot MPU cards

which support the DMA priority chain should

work in this configuration.

2. Firmware Card. Apple's 12K firmware card

uses the DMA priority line even though it does

not perform DMA. Since D MAnual Controller

only needs a single cycle, it will work with a

firmware card enabled in a higher priority slot.

It just waits until the MPU accesses a non-ROM
address, then steals a cycle. If a secondaryMPU
card like the Soffrard happens to be in a lower

priority slot, the firmware card can interfere

with that card's operation. This can be pre-

vented by opening the DMA IN jumper on D
MAnual Controller. Lower priority firmware

cards are not interfered with by D MAnual Con-

troller, because the Controller does not generate

addresses in the firmware card range. The
firmware card rules also apply to the SCRG

*In the Apple He, 3,'?00-ohm pull-up resistors are used on the

wire-OR lines instead of 1000-ohm resistors. This results in a

switching time which is too slow for stealing cycles from the

Sitflenrd. Soldering the He jumper will speed switching time by
parallelinK the 3.'?00-ohm motherboard resistor with a 1500-ohm
resi stor. If other DMA card desiRners begi n to add th is 1500-ohm
resistor, the He jumper should only be connected on one of the

cards. Incidentally, D MAnual Controller is a good candidate for

installation in SlolSof the Apple lie, because it will work in Slot

3, even though a RAM/80-column card is plugged into the auxil-

iary slot.

quirkLoader and other memory expansion cards

which use the DMA priority chain to prioritize

multiple card configurations.

3. Disk or Cassette I/O. Disk and cassette I/O in

the Apple are normally performed in precise

timing loops. Any DMA device which is acti-

vated in the midst of such loops will interfere

with them and the associated data transfer.

Therefore, you should never operate a pushbut-

ton of D MAnual Controller while cassette or

disk I/O is being performed, especially during

write operations. Some hard disk or eight inch

floppy disk Apple interfaces are DMA based.

Any such devices should probably be mounted

in a higher priority slot than D MAnual Con-

troller, so that if they support theDMA priority

chain, the integrity of disk data transfer will be

insured.

4, DMA cards which do not support the prior-

ity chain. Cards like these are like citizens who

do not meet their responsibilities to society. Do

not operate the pushbuttons of D MAnual Con-

troller when such cards are active. Only one

card at a time can perform DMA in the Apple.

Readers who wish to are encouraged to build D
MAnual Controller for their own use. They may also

purchase the Controller, assembled and tested. The

Controller is being manufactured by the Southern

California Research Group, Readers of this book

may order a D MAnual Controller by contacting;

D MAnual Controller

Southern California Research Group
13793 Christian Barrett Drive

Moorpark CA 93021

(805) 529-2082

(800) 821-0774 In CA, for orders only

(800) 635-8310 Outside CA, for orders only

SJS-"



chapter 5

RAM and Memoiy

Management

One might think that RAM and its associated cir-

cuitry should be a relatively easy subject. You write

to it and read from it. What else is there?

Well, the MPU does write to and read from RAM.
but the video scanner reads from RAM too. Addi-

tionally, both the MPU and video scanner access

auxiliary card RAM.* And then there is the 64K
dynamic RAM chip with its ROW address, COL-
UMN address, and refresh requirement. Add all of

this to the most involved bank switching scheme
ever imagined and you have a lot of functional and

operational complexity.

When RAM is accessed by the MPU, motherboard
circuitry must activate signals which tell the RAM
chips to pass data to or receive data from the data
bus. Control of Apple lie data bus communication is

the task of the MMU. An MPU program configures
the Apple memory by setting up MMU soft switches,
and when the MPU accesses an Apple He device, an
MMU data bus management signal either directly
or indirectly activates the device. Apple refers to

'MostdiscussionnfRAMin Ihidfrxtn ml ingthe Apple lie assumes
thata 64K RAM card is installed in the auxiliary slot.

this broad control function as memory manage-
ment, and as will be seen, managing RAM in the

Apple lie is the ma.jor part of the task of managing

memory.
In this chapter, we will examine the requirements

of the 64K dynamic RAM chip, and the ways in

wh ich they are met in the Apple He. We will also see

how the MMU monitors the address bus to manage

the overall configuration of the Apple He memory

map.

THE 64K DYNAMIC RAM CHIP

64K RAM chips are 65,536 bit read/write memo-

ries. As is indicated in the bus structure diagram in

Figure 2.7, it takes eight chips to make up the 65,536

bytes of read/write memory on the Apple He moth-

erboard. This -Standard chip is available from a

number of manufacturers in a variety of speeds.

With a 2 MHz access rate, the Apple does not put a

particularly stringent speed requirement on its

RAM.
The RAM chip is a 16-pin device requiring two

power supply inputs, +5V and ground. Figure 5.2
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shows the pin assigninents of the 64K RAM chips

(see RAM chip F6). There is a data input to accept

write data, a tri-state data output to transfer read

data, and a R/W control input to identify read and

write cycles.

It takes 16 bits to address 64K of RAM, but there

are only eight address inputs to the RAM chip. The

16-bit address must be multiplexed onto the 8-bit

RAM address input lines in the form of a ROW
address followed by aCOLUMN address. Think of

the 65.536 mennory cells as lying in a 256 x 256

matrix.* The first 8-bit address input to aRAM chip

specifies which ROW the addressed cell lies in, and

the second 8-bit addre.ss specifies the COLUMN.
RAS' falling clocks the ROWaddress to RAM. CAS'
falling clocks the COLUMN address to RAM and

initiates the read or write action.

Figure 5.1 shows the tinriing' ffenerator signals

which control RAM access in the Apple. The nature

of these signals is dictated by 64K dynamic RAM
chip requirements, 1 MHz 6502 timing require-

ments, and the alternating access between the MPU

* As mentioned in Chapter 2, thishiiok refers to a unit of memory
which .stores a hit of information as a cell. Each RAM chiji has

Hr^rjIiB eells. and is capablt' of storing ()r>.,5S(i bit.s of information.

TheeiRhtassot'iatt'di'ollsu'hieh.stjirea byte of information in the

Aiijilc are referred to as a memory location. The A])[)le lie has
(),'>,:).'!(! R.AM iocHtions on the motherboard.

and the video scanner, PHASE and RAS' provide
the timing reference for scanner ROW/COLUMN
addressing and for MPU ROW/COLUMN address-

ing, RAS' and CAS' are applied directly to the RAS'
and CAS' inputs of all of the motherboard RAM
chips, but CAS' does not fall during PHASE
unless the MPU is accessing motherboard RAM, On
the 64K auxiliary RAM card, RAS' is applied to the

RAM chip RAS' input, and Q3 is applied to the RAM
chip CAS' input.

RAS' falling clocks the ROW address to the RAM
chip. The address input to the chip must contain the

ROW address when RAS' falls and the COLUMN
address when CAS' falls. Placing the correct ad-

dressing signals at the address input to the RAM
chips is the function of the RAM address multi-

plexing circuitry in the lOU and the MMU. CAS'
initiates the data transfer by dropping low after

RAS' has already dropped low. Motherboard RAM
must be capable of responding to a read access

within 374 nanoseconds of RAS' falling and within

234 nanoseconds of CAS' falling. Auxiliary card

RAM must be capable of responding with read data

within 356 nanoseconds of RAS' falling and within

147 nanoseconds of Q3 falling. The motherboard
and auxiliary card requirements are met by 200-

nanosecond or faster 64K dynamic RAM chips,

which means they are met by any 64K dynamic
RAM chips that are generally available.

6502
PHASE2

PHASED

RAS'

CAS'

Q3

COLUMN

6502 wtite data
valid on data bus
before CAS' falls

during PHASED.

Figure 5.1 RAM Timing Signals.
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Dynamic RAM must be periodically refreshed
for it to operate properly. The refresh requirement
of 64K chips is that each of the 256 possible ROW
addresses must be accessed every two milliseconds,

or 500 times a second.* This can be acconrplished in

RAS'/CAS' cycles or in RAS'-only cycles. It is

accomplished in RAS'/CAS' cycles during PHASE
1 in the Apple lie. The refresh requirement in the
Apple is met in the process of scanning RAM for

video output.

RAM CONNECTIONS IN THE APPLE Me
The general flow of RAM data was discussed in

Chapter 2. Figure 2.7, the bus structure diagram,
should be reviewed to reinforce in your mind how
RAM is tied into the overall scheme of things in the
Apple. The basic features ofRAM connections in the
Apple are:

1. Motherboard RAM and auxiliary card RAM
areeach made upofeight64K RAM chips. Each
RAM chip is associated with one line of the data
bus, and eight chips are capable of storing

65,536 bytes of data.

2. Motherboard RAM data input and output are
tied directly to the data bus for MPU writing,
MPU reading, and latching in the motherboard
video latch.

3. Auxiliary card RAM data input and output are
connected to the auxiliary card video latch and
through a bidirectional driver to the data bus.
The bidirectional driver isolates auxiliary card
RAM from the data bus any time the MPU is not
writing to or reading from auxiliary card RAM.

4. The latched video data is routed to the video
generator for processing.

5. The RAM address input is multiplexed among
the address bus ROW address (MMU), address
bus COLUMN address (MMU), video scanner
ROW address (lOU), and video scanner COL-
UMN address (lOU).

Figure 5.2 is a schematic diagram showing the
connections of motherboard RAM, auxiliary card
RAM, and the associated video data latches. The
RAM chips are connected together in a way that
reminds you of the wiring of the peripheral slots.
Ihe majority of the RAM lines are just strung from
chip tochip. This includes the address input (RAO-
RAT). +5V, ground, RAS'. CAS' and RAM R/W'
(motherboard), and Q3 and R/W'80 (auxiliary card).

'Some manufacturer's 64K RAM chips havea 12S-cycle require-
ment tfiat iseasier to meet. The Apple He meets both the 128- and
me di66^^ycIe refresh requirements.

The RAM connections support the demands of
MPU read/write access to motherboard or auxiliary
card RAM, alternating with simultaneous video
scanner read access to both motherboard and auxil-
iary card RAM. During PHASE 1, the video scanner
drives display data from motherboard RAM to the
data bus and from auxiliary card RAM to the auxil-
iary card RAM data bus. This video data is saved in

the motherboard and auxiliary card video data
latches when PHASE rises. During PHASE 0, the
MPU reads or writes to motherboard RAM or auxil-
iary card RAM or another Apple device. Data
transfer to or from the MPU occurs shortly after

PHASE falling when the 6502 PHASE 2 clock
falls.

The RAM access scheme is complex, but the
hardware implementation is compact. The critical

control elements are the CASEN' and EN80' sig-

nals from the MMU, the read/write control and
CAS'inputstothe RAM chips, and theenable/isolate

input to the auxiliary card data bus driver.

The motherboard RAM R/W' signal is not the
same as system R/W from the 6502—it is system
R/W' gated by PHASE 1 low (PHASE high). The
6502 R/W line drops low some time during PHASE
1 of write cycles. This would interfere with video
scanner reading if 6502 R/W' were connected di-

rectly to RAM. Another way of looking at this is that

the video scanner controls the motherboard RAM
address and RAM R/W during PHASE 1. The
video scanner always reads, never writes.

CAS' from the timing HAL is connected to the

motherboard RAM CAS' input (RAM pin 15), and
RAM chip operation is such that when CAS' falls

after RAS', data is passed in or out depending on
RAM R/W'. As a result, motherboard RAM com-
municates with the MPU when the MMU brings

CASEN' low, and consequently allows CAS' to fall

during PHASE 0. The MMU brings CASEN' low
when the MPU accesses an address that is config-

ured in the MMU for motherboard RAM response.

CAS' always falls during PHASE 1. so video data is

always passed from motherboard RAM to the data

bus during PHASE 1.

Auxiliary card RAM communication with the

MPU is controlled differently than motherboard
RAM communication. Q3 is tied to the auxiliary

card RAM chip CAS' input, and Q3 always falls

during PHASE and PHASE 1. Therefore, auxil-

iary card RAM chips pass data in or out twice every

MPU cycle. The RAM chip data, however, is iso-

lated from the motherboard data bus by the 74LS245
bidirectional driver unless EN80' from theMMU is

low. Operation of the LS245 is such that when its



' '^
i Bo--

54 Understanding the Apple lie

(3.9)

DATA
BUS

RP2
ho IK >

(4 2) \y^ ^
LS125

EXTENDED 80-COLUMN CARD (64K AUXILIARY RAM CARD)

Figure S2 Schematic: Apple I le RAM Connections.
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enable input (EN80') is high, the driver presents a

high impedance to both the motherboard data bus

and the auxiliary card RAM data bus. EN80' is

never low during PHASE 1, and it goes low during

PHASE only when the MPU is accessing an

address that is configured in theMMU for auxiliary

card RAM response.

The direction control input of the LS245 driver is

R/W', so direction of the driver is correct when the

MPU communicates with auxiliary card RAM. The
read/write control of the RAM chips is R/W'80,

which is the same as R/W except that it can only go

low when EN80' is low. Therefore, the MPU writes

to auxiliary card RAM when EN80' islowand R/W
is low. Since EN80' is PHASE gated, the video

scanner access to auxiliary card RAM is always a

read access, just as it is with motherboard RAM.
There are some subtle but important points about

the handling of RAM output in the Apple. The data

bus is available at the end of PHASE 1 because the

MPU never controls the data bus at this time, not

even during write cycles. The MPU controls the

data bus for the second half of PHASE Oand slightly

beyond during write cycles. But nothing in a write

cycle prevents the video scanner from reading

RAM, and nothing prevents the RAM output from
being latched for processing in the video generator.

Therefore, write cycles do not cause random flicker

in the Apple's video display.

Another interesting point is that data from the

videoscanner access to motherboard RAM is always
available on the data bus when PHASED rises. This
video data is also passed through the peripheral slot

bidirectional driver to the peripheral slots when
R/W is high or for a very short period after the
beginning of PHASE when R/W is low. This
means that motherboard video data can be read by
peripheral cards, and many conceivable peripheral
designs could make use of this data. A program-
mable video scanner simulator is one such design.

In SINGLE-RES or DOUBLE-RES display
mode, latched auxiliary card RAM data is available
on the video data bus during PHASE 0, and latched
motherboard RAM data is available on the video
databusduring PHASE 1, It is in the timing gener-
ator, not RAM, that SINGLE-RES and DOUBLE-
RES processing are different from each other. In
SINGLE-RES processing, no LDPS' pulse is gener-
ated during PHASE to load the auxiliary video
data into the video generator, so only the mother-
board display map is processed. In DOUBLE-RES
processing. LDPS' is generated during both PHASE
» and PHASE 1, and both the motherboard and

auxiliary card display maps are processed. Also,
VID7M variations are such that video dot patterns
are shifted out twice as fast in DOUBLE-RES and
LORES40 processing as they are in TEXT40 and
HIRES40 processing,

A point about Figure 5.2 which the reader may
find confusing is the labeling of the multiplexed
RAM address bus and the address inputs to the
RAM chips. RAO of the bus goes to A7 of the RAM
chip; RAl of the bus goes to A6of theRAM chip; etc.

Shouldn't RAOgo to AOof the RAM chip? Weil, that
would have been logical , but it's not very important.
Generally, the address-line labels on a RAM chip
are arbitrary and have no operational significance.*

The RAM works as longas each address bit is routed
to one of the address inputs. In this case, the RAM
chip labeling provided a natural reference for label-

ing the RAM address bus and the RAM address
output pins of the lOU and MMU. For reasons
unknown, Apple did not use this natural reference.

RAM ADDRESS MULTIPLEXING

Portions of both the lOU and MMU are devoted to

RAM address multiplexing. Together, these muii-

plexing circuits make up a 4 to 1 RAM address

multiplexor. The MMU develops the MPU ROW
and COLUMN address from the address bus, and
the lOU develops the video ROW and COLUMN
address from the video scanner state and the Apple
display mode.

RAM address multiplexing functions are sum-
marized in Figure 5.3. In both the MMU and the

lOU, RAS' high selects the ROW address input, and

RAS' low selects the COLUMN address input. The
MMU multiplexed address is gated to the RAM
address bus during the last 14M period of PHASE 1

and the first four 14M periods of PHASE 0. The
lOU multiplexed address is gated to the RAM
address bus during the last 14M period of PHASE
and the first four 14M periods of PHASE 1. This

gating ensures that, after propagation delay, the

MPU address is valid at the RAM chips when RAS',

CAS', and Q3 fall during PHASE 0, and the video

scanner address is valid at the RAM chips when
RAS', CAS', and Q3 fall during PHASE I.

MMU multiplexing functions are a straightfor-

ward translation of the 16-bit MPU address into

8-bit ROW and COLUMN addresses. The only com-

plication is that the A12 input to RA4-C0L is forced

*An exception is systems in which oniy AO—A6 of tiie 64K chip

are refreshed. AO—A7 of the RAM chips in the Apple He are

refreshed, so this has no significance in the Apple lie.

m,'K:m&
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low if an address in the $DXXX range is on the

address bus and the BANKl soft switch is set. Forc-

ingA12 low changes $DXXX to $CXXX, and al lows

the MPU to access the bank 1 area of high RAM.
lOU multiplexing functions are more complex

than those of the MMU. This is because .the video

RAM address is not simply a multiplexed form of

the video scanner outputs. Instead, it is a combina-

tion ofthe Apple display mode and the video scanner

output with special offset logic to facilitate the scan-

ning of the Apple's unnatural 40-byte display line

width. The display mode, which is set up via lOU
soft switches, is an extension of the video scanner
when it comes to addressing RAM. Generally, the

display mode controls the high order address bits,

thus determining what areas of RAM the video

scanner accesses.

The HIRES TIME signal which is used in RAM
addressing is a product of the video scanner state

and the lOU display mode control soft switches.

HIRES TIME is high when the Apple is in

HIRES-GRAPHICS-NO MIX mode, or in HIRES-
GRAPHICS-MIX mode when V4 • V2 is false. The
V4 • V2 gating switches the scanned memory over to

TEXT memory for four lines of text at the bottom of

the screen. Naturally, the MIXED mode requires

switching between GRAPHICS and TEXT in sync
with the video scanner.

The PAGE2 and 80STORE inputs to Figure 5.3
are lOU soft switches. When set, PAGE2 selects

secondary display memory pages for scanning.
80STORE, when set, overrides the effect of PAGE2
on memory scanning, thus inhibiting display of
screen page 2. The 80STORE, PAGE2, and HIRES
soft switches are also implemented in the MMU
where they are used for switch ing between access to

motherboard and auxiliary card RAM.
It should be noted that the Apple II Reference

Manual/orHe Only sa.ysthsLtmYm,mt80STORE,
is the soft switch which affects RAM addressing.
This is an area in which the reference manual
IS inconsistent, using the terms 80STORE, 80VID,
and 80COL to refer to what are, in fact, only
two soft switches (W$COO0/W$CO01 and W$COOC/
W$CO0D). Tb avoid confusion, I suggest you change
oOyiD to80COL throughout Apple's reference man-

omr^"
pages 3 and 4 of Apple's schematic, change

80VID' at pin 6 of the lOU and pin 25 of the auxil-
iary slot to 80COL'.

"The soft switch that overrides PAGE2 in the

™.J^ SfSTORE (W$COOO/W$C001), not 80COL
(W$CO0C/W$CO0D). The operational difference is

fh***"
J^ 80COL was the RAM addressing input,

tien there would be only one displayable page of

DOUBLE-RES graphics. This, though, is not the
case. By resetting 80STORE and setting PAGE2, a
programmer can select the $800—$BFF area for

TEXT/LORES display or the $4000—$5FFF area
for HIRES display, even in the DOUBLE-RES
modes. Furthermore, if80ST0RE is set, the second-
ary pages cannot be displayed.
The RAM address inputs are selected from the

address bus, the video scanner state, and the dis-

play mode. The MULTIPLEXED RAM ADDRESS
table in Figure 5.3 shows the way address bus
lines and video scanner output lines are assigned
to RA0-RA7 ROW and RA0-RA7 COLUMN.
There are some significant aspects to these address
assignments:

1

.

The scanner low order bits are assigned to RAM
ROW address inputs so the RAM will be re-

freshed by the video scanner.

2. Theaddressbusbit whichcontrolsagiven RAM
address will be equivalent to the scanner bit

which controls the same RAM address. For
example, AO controls RAO during an MPU
ROW access, and HO controls RAO during a

scanner ROW access. This means that AO and
HO perform the equivalent RAM addressing
function.

3. The address bus low order bits are assigned to

RAM ROW address inputs for correct equiva-

lency to scanner addressing bits. It happens that

this assignment results in AO—A5 and A7 being

available to the lOU as part of the MMU ROW
address. The only other address input the lOU
needs is A6, and A6is inputdirectly to thelOU
from the address bus.

4. The addressing of RAM is the same in DOUB-
LE-RES as it is in SINGLE-RES display modes.

Table 5.1 shows the equivalent address bus/video

scanner address bits. You can use this table to take

any screen mode and video scanner state and con-

vert them to an equivalent MPU address. If you

store a byte of data at the equivalent MPU address,

it will be driven out ofRAM during PHASE 1 when
the video scanner reaches the chosen state.

The Arithmetic of Video Scanner
Memory Addressing

If the Apple isn't famous for the encrypted nature

of its screen memory addressing, it should be. The

programmer has a very heavy burden in computing

or looking up seemingly illogical addresses. This

goes all the way back to the original design of the

Apple 11, since Apple lie display memory addresses

are the same as those of the older computer.

'^'fefe
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Tabte 5.1 MPU/Scanner Equivolent Address Bits.

MPU VIDEO SCANNER
AO HO
Al HI

A2 H2
A3 SUM-A3
A4 SUM-A4
A 5 SUM-A5
Af> SUM-A6
A7 vo
A8 VI

A9 V2

AH) HIRES . VA TEXT/LORES • (PAGE2 • 80STORE')'

All HIRES • VB TEXT/LORES • PAGE2 • 80STORE'

A12 HIRES. VC —
Ai;^ HIRES •{I'AGE2.80STORE')' ~
AM HIRES . rA(;E2 . 80STORE' -
A15 —

-

Thero is log'if to the Apple screen memory ad-

dressing. It is the logic of binary manipulation. The
waj' to understand it is to look at the Apple from the

desijrner's \iewpoint. In 1975, how would you have

jfotten the Apple to display HIRES color graphics,

IjORF^S color graphics, and 40 columns of text?

F'orty colunnns? Two strikes against you to start

with. Didn't Wozniak ever hear of powers of two'.'

Digital computers are based in binary numbers.
Use '.V2, (54, or 1 28 columns. This is as bad as the guys
who desig:ned 80-eohimn typewritten page widths

and 10-digit humans.
The problem is that you want to address memory

seciuentially with the output lines of the video

scanner. If the Apple line width had been 32
columns, you couid .just tie HO—H5 and VO—V4
directly to a 4 to 1 address multiplexor. Memory
would be very neatly divided up into 32 x 24 bytes.

Upgrading the display from 32 to 40 columns
makes the scanner address assignments less

straightforward. You can achieve a 40-co!umn dis-

play by tying HO—H5 directly to the 4 to 1 address
multiplexor, and this would create an easy hard-
ware connection. But there would be unused gaps in

memory 24 bytes long for every 40 bytes used. This
would waste 576 bytes ofmemory in TEXT/LORES
modes and 4608 bytes in HIRES mode. What good
are 4608 bytes of memory divided up into 192 non-
contiguous groups of 24 bytes?

In the Apple, it was accepted that there would be
some waste of memory caused by the 40-character
lines, but the waste was minimized at the expense of

a little hardware complexity. Instead of using 40

bytes out of each 64-byte memory segment, 120

bytes out of each 128-byte memory segment are

used, Thiscreateseightbytesofwastedmemory for

every three horizontal scans in HIRES or every

three I ines of characters in TEXT. As a result, there

is a total wastage of 512 bytes in HIRES and 64

bytes in TEXT/LORES.
How do you implement this in hardware? Screen

memory is divided into 128-byte segments (see

Figure 5.4). Each segment isdivided into the FIRST
40, the SECOND 40, the THIRD 40, and eight

bytes of no man's memory (UNUSED 8). It so

happens that the displayed television scan is neatly

divided into three sections by V3 and V4 from the

video scanner as follows:

V4' V3' —Top third of television screen

V4' V3 —Middle third of television screen

V4 V3' —Bottom third of television screen

V4 V3 -Undisplayed(VBL)

Because the three displayed portions of the screen

can be so easily detected, they are mapped into the

three 40-byte sections of each 128-byte memory
segment as follows:

LOCATION
ON TV
SCREEN

LEAST SIGNIFICANT
BITS OF ADDRESS

Top

Middle

Bottom

0000000 OlOOllKFIRST 40)

0101000-1001111 (SECOND 40)

1010000-1110111 (THIRD 40)

..*>*
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128 BVTE MEMORY SEGMENTS

/\

FIRST 40

0-39
SECOND 40

40-79

THIRD 40

80 - 1 19

Figure 54 128-Byte Video Memory Segments Consist of Three 40-Byte Sections,

Each Mapped Into a Different Part of the Video Screen.

It can be seen in the biTiary representations of the

40-byte address sections, that the lower three bits

cross over from 111 to 000 at ali section boundaries.

This means that these three bits can be identically

addressed in the FIRST 40, SECOND 40, or THIRD
40. For example, the lowest three bitsof the address
of the left most character in any section is 000. For
this reason, HO, Hi, and H2 are direct address
inputs to the lOU address multiplexor and are

address equivalents of AG, Al, and A2.
The next four address bits are different depend-

ing on the 40-byte section that is being addressed.
They are 0000 through 0100 in the FIRST 40, 0101
through 1001 in the SECOND 40, and 1010 through
1110 in the THIRD 40. These four bits are addressed
by H5-H4-H3 plus an offset. The offset value is

selected by V4 and V3 to place the scanned memory
address in the FIRST 40, SECOND 40, or THIRD
40 of the current 128-byte segment. The offset is

added to H5-H4-H3 in a 4-bit adder in the lOU, and
the four bits of the resulting SUM become the scan-
ning address bits equivalent to A3, A4, A5, and A6.
This book refers to theSUM bits as SUM-A3, SUM-
A4, SUM-A5, and SUM-A6.
There are eight states of H5-H4-H3 but only five

of the states are displayed. 000 through 010 are
undisplayed and occur during the right margin,
horizontal retrace, and left margin of the television
scan, on is the first displayed count, and when H5-
H4-H3 reaches Oil, it is time to address the first
byte of a 40-byte section. Suppose you built the fol-
lowing summing circuit:

V4
H5
V3

H4
V4

H3
V3

SUM-A6 SUM-A5 SUM-A4 SUM-A3

This would create the three offsets 0, 101, and 1010,

which are 40-byte offsets. This circuit would work,

but it would make screen memory address assign-

ments even more complex than they are for the

Apple programmer. Since the display starts at H5-

H4-H;-! = Oil, we need to subtract Oil from the

offsets 000, 101, and 1010 to make the FIRST 40

start at a natural 128-byte segment boundary. The
required offsets are 1101,010, and 111 (-3, 2. and 7

indecimal). You need to address A6-A5-A4-A3 with

the values H5-H4-H3 minus Oil in the FIRST 40.

H5-H4-H3 plus 010 in the SECOND 40, and H5-H4-
H3 plus 1 1 1 in the THIRD 40. These sums are clev-

erly created in the Apple by the following addition:

H5'
V4

H5'
V3

H4
V4

1

H3
V3

SUM-A6 SUM-A5 SUM-A4 SUM-A3

H5'-H5'-H4-H3 is equal to H5-H4-H3 minus 100 in

4-bit signed binary arithmetic. 001 minus 100 is

—Oil, so the needed offset is developed. It is easy to

add 1 as a carry input to the 4-bit adder. The equiva-

lent adding circuit is:

V4

1

H5
V3

H4
V4

1

H3
V3

SUM-A6 SUM-AS SUM-A4 SUM-A3
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TEXT/LOWS Scanning

B«yond Aft, ftcanninK afldrcws a»»ijfnmente deter-

mine the memory blfjckn m&nne<\ in the variffus

icreen mixlm. VO, V 1 , and V2 are equivalent to A7,

AH, and AH in all (wreen mfxJe», A TEXT/LORES

»t<;reen memf»ry pajc« i« mafk up of eij?ht afJjacent

12H-hyUt MfjfmfrntH. Tbfjw; ffJKht a^Jjacent Hejrments

art; fififinef] by VO, V 1 , and V2 in thf; scanner and by

A 7, AH.and AtJon thf^addrtiKH bun. VA, VB.and VC

play noimrtin addrf.'HHinjf TKXT/LORES memory.

Rather, the Hame 40-hyte section of memory is

M(!ann*;d for citfht adjarrnnt horixontal television

lint'M. It ihko-H ciffht horizontal K'loviwion lines to

paint oni; lincof U;xtor two rowHof I/)RES hlocks.

In videoKoncrationcircijilHinU'rnai and external to

the ion, VA, VM.and VC define which vertical part

of Hl4'xtrhnracl<T it iH lime to draw, and VC defines

which of two LOIIKS hUir.kn it in time to draw.

In TKXT/I.OKKH, AIT), A14, A13, and A12

i'f|iiiv(il<-ntn an' falHc (low, jfround, zip). The AlO

criiiivHlcnt iH (KOSTOIil';' • rAf;E2)', and the All

(qiiivulcntiHWlSTORK'»I'Af;F>2.ThisreHultsinthe

memory Hcarincdsirctw for TKXT/IiJ RES shown at

the l«)tl^)m rif thiH piiffc.

FiKurc Tj.f) \h the TKXT/LOKES displayed mem-
ory mafi. This map shows the same information as

the nni]M of the A/jjilr II lii'firt'ncc Miinual for lie

<htl]l, Init there is a dirfcrcnce in layout. The refer-

ence manual maps accent the 2A lines of text or 48

linen of LORP^S blocks, but FiRure hJy accents the

division of screen memory into 128-byte memory
seKmenls. This should (five the reader a second

perspective from which to view the screen mapping.

In addition to th<' displayed memory locations,

there is reason lo know what areas of memory are

hein^ scann(>d while nothing is being displayed.

Thisblankingtimeisdefined by horizontal and ver-

tical bliinking gates generated in the lOU from
video scanner outputs. HBL (Horizontal BLanking
gate) is high during the right margin, horizontal

retrace, and left margin of the Apple video display.

VBL (Vertical BLanking gate) is high during the

bottom margin, vertical retrace, and top margin of

the Apple video display.

Knowledge of memory scanned during HBL and
VBL has applicationa v/hen software or hardware
iync8 to the video scan by detecting the scanned

memory output on the data bu.s or peripheral data
bus. This is possible in software by reading an
address from which there is no data response. For
example, if you zero out al

1 scanned memory except

for the bytes in the blanking period preceding a
^iven horizontal display line, you can detect the

beginning of that horizontal scan with the following

Iwjp.

PAGEl EQU $C054
WAIT LDA PAGEl

BPL WAIT

Some techniques of exploiting this capability are

discussed in an application note at the end of this

chapter. The point is that it is sometimes useful to

know what areas of memory are being scanned

during blanking periods.

Figure h}\ is a TEXT/LORES map showing the

areas of memory scanned during displayed and

undisplayed periods. The layout is similar to the

maps i n the A jiplf II Reference Manual for He Only.

The area of memory scanned previous to every

horizontal display period isshown directly to the left

of the memory scanned during that display period.

The vertical blanking period is shown at the bottom.

The considerations which determine the memory

scanned during the blanking periods are as follows:

1

.

HBL scanned memory begins $18 bytes before

display scanned memory. The HBL base address

can be computed from the displayed base ad-

dress using this Applesoft program sequence:

10 HBL = BASE-24
20 IF INTCHBL/128)<>INT(BASE/128)

THEN HBL = HBL+128

Step 20 of the above program is necessary

because horizontal memory addressing wraps

around at the 128-byte segment boundaries.

2. The first address of HBL is always addressed

twice consecutively, because HO—H5 is in the

all zero state for two consecutive scans.

;?. During VBL(vertical blanking), V3 and V4 are

both true. The horizontal offset sum becomes

H5-H4-H3 minus 0100. This is almost the same

as the top of the displayed screen (H5-H4-H3

minus OOll). The VBLbase addresses are equal

to the FIRST 40 base addresses minus eight

SCRXEH MODE BINARY HEXADECIMAL

p;vaE 1

PAGE 2, eeSTORE
PAGE 2, 80STORE'

0000 01XX XXXX XXXX
0000 01XX XXXX XXXX
0000 10XX XXXX XXXX

§0400-$07FF
§0400-$07FF
?0a00-$0BFF
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1

TOP SCREEN/ MIDDLE SCREEN/ BOTTOM SCREEN/
BASE
ADDRESS

FIRST 40 SECOND 40 THIRD 40 UNUSED 8
LIN# RANGE LIN# RANGE LIN# RANGE RANGE

$400 00 $400-$427 08 $428-$44F 16 $450-$477 $478-$47F
1024 1024-1063 1064-1103 1104-1143 1144-1151
$480 01 $480-$4A7 09 $4A8-$4CF 17 $4D0-$4F7 $4F8-$4FF
1152 1152-1191 1192-1231 1232-1271 1272-1279
$500 02 $500-$527 10 $528-$54F 18 $550-$577 $578-$57F
1280 1280-1319 1320-1359 1360-1399 1400-1407
$580 03 $580-$5A7 11 $5A8-$5CF 19 $5D0-S5F7 $5P8-$5FF

PAGE 1 1408 1408-1447 1448-1487 1488-1527 1528-1535
$600 04 $600-$627 12 $628-$64F 20 $650-$677 S678-$67F
1536 1536-1575 1576-1615 1616-1655 1656-1663
$680 05 $680-$6A7 13 $6A8-S5CF 21 $6D0-$6F7 $6F8-$6FF
1664 1664-1703 1704-1743 1744-1783 1784-1791
$700 06 $700-$727 14 $728-$74F 22 $750-3777 $778-$77F
1792 1792-1831 1832-1871 1872-1911 1912-1919
$780 07 $780-$7A7 15 $7Aa-S7CF 23 $7D0-$7F7 $7F8-$7FF
1920 1920-1959 1960-1999 2000-2039 2040-2047

$800 00 $800-$827 08 $828-$84F 16 S850-$877 $878-$87F
2048 2048-2087 2088-2127 2128-2167 2168-2175
$880 01 S880-$8A7 09 $8A8-$8CF 17 $8D0-$8F7 $8F8-S8FF
2176 2176-2215 2216-2255 2256-2295 2296-2303
$900 02 $900-S927 10 $928-$94F 18 $950-$977 $978-S97F
2304 2304-2343 2344-2383 2384-2423 2424-2431
$980 03 $980-$9A7 11 $9A8-$9CF 19 S9D0-$9F7 $9F8-$9FF

PAGE 2 2432 2432-2471 2472-2511 2512-2551 2552-2559
$A00 04 $A00-$A27 12 $A28-$A4F 20 $A50-$A77 $A78-SA7F
2560 2560-2599 2600-2639 2640-2679 2680-2687
$A80 05 SA80-$AA7 13 $AA8-$ACF 21 $AD0-$AF7 SAF8-SAFF
2688 2688-2727 2728-2767 2768-2807 2308-2815
$B00 06 $B00-$B27 14 SB28-$B4F 22 $B50-$B77 $B78-$B7F
2816 2816-2855 2856-2895 2896-2935 2936-2943
$B80 07 $B80-$BA7 15 SBA8-$BCF 23 SBD0-$BF7 $BF8-$BFF
2944 2944-2983 2984-3023 3024-3063 3064-3071

Figure 55 TEXT/LORES Displayed Memory Map.

bytes using 128-byte wraparound subtraction.
Example: $400 minus $8 gives $478, not $3F8.

4. Horizontal scanning wraps around at the 128-

byte segment boundaries. Example: tlie address
scanned before address $400 is $47F.

HIRES Scanning
Uble 5.1 shows that HIRES video scanner ad-

dressing is identical to TEXT/LORES addressing
on bits A0-A9 and A15. The differences in bits
AlO—A14 reflect the facts that HIRES memory is

eighttimes as big as TEXT/LORES memory, and in
a different location than TEXT/LORES memory.

/DA
'"^ HIRES scanning, A13 is equivalent to

{i'A.GEZ . 80STORE')', and A14 is equivalent to

PAGE2 • 80STORE'. This results in a page 1 base

add ress of $2000 and a page 2 base address of $4000.

The effect of 80STORE, as in TEXT/LORES scan-

ning, is to override the PAGE2 soft switch.

VA, VB, and VC are equivalent to AlO, All, and
A12 in HIRES, This is the most important point,

because it represents the great difference between

HIRES and TEXT/LORES. In TEXT/LORES, 40

bytes contain the display intelligence for eight

horizontal scans. In HIRES, 40 bytes contain the

display intelligence for one horizontal scan. The
HIRES scan must address a different 40-byte sec-

tion every scan. This is accomplished by letting VA,
VB, and VC affect the memory address in HIRES
scanning.
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Notice in Tkble 5.1 the oddity that VA, VB, and

VC address higher order bits ofmemory than do VO,

VI, and V2. This causes the base addresses of adja-

cent HIRES lines to be separated by 1024 bytes,

rather than the logical 128 bytes. This extra com pli-

cation of HIRES address computation could have

been eliminated in the original Apple II design by

the addition of onechip.lt wasn't, so the user suffers

an extra operational distraction in the Apple II and

the He. One way to look at the HIRES memory

layout is as eight adjacent areas with each area the

memory equivalent of a single TEXT/LORES page

(see Figure 5.7). VA, VB, and VC determine which

of the eight areas is being addressed. As eight adja-

cent horizontal lines are scanned, one 64-byte (40

bytes displayed) section from each of the eight

memory areas is scanned. As in TEXT/LORES, the

top, middle, and bottom thirds of the screen are

accompaniedby memory scanning of the FIRST 40,

SECOND 40, and THIRD 40 sections respectively.

One viray to gain insight into the overall layout of

HIRES memory is to run the following BASIC
program:

10 HGR : POKE -16302,0 ;

POKE -16372,0 : REM HIRES40,
NOMIX

20 FOR A = 8192 TO 16383
30 POKE A, 255
40 FOR B = TO 100 : NEXT B s

REM DO IT SLOWLY
50 NEXT A : GO TO 10

This program fills the consecutive memory loca-

tions of HIRES, PAGE 1 with $FFslowly so that you

can watch the screen fill.

Figure 5.8 is a HIRES displayed memory map
accenting the division of screen memory into 128-

byte memory segments. This figure was printed out

using an Applesoft program listed in Appendix D.

Like the TEXT/LORES map of Figure 5.5. this
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128 BYTES
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\/
V

A$2400
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S340O
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Figure 5 .7 HIRES Memory Areas (Page 1 ).

ml ^'^^^ ^ different perspective for viewing
IIRES memory usage. Figure 5.9 is the full HIRES
lemory map showing addresses scanned during
BL and VBL, as well as the displayed map. It was
isomadebyan Applesoft program listed in Appen-
IX U, For reference, "#"

is used in Figure 5.9 toWW when horizontal or vertical television sync is
"put from the lOU. The #s in the middle of every
oL period represent the horizontal sync which
wses the horizontal retrace. The long strings of #s
'
""es 224—227 represent the vertical sync which
tuses the vertical retrace (60 Hz lOU). Please note

fJ™y"c in the Apple lie is identical to that of
e KM Revision Apple II, so the sync generation
rPicted in Figures 5.6 and 5.9 is valid for both
iiputers.

The scanning during blanking periods in HIRES
ve)7 similar to that in TEXT/LORES. The mem-
Mocations scanned during HBL prior to a dis-
lyed hneare the 24 bytes just below the displayed
a, using 128-byte wraparound addressing. The
* scanned during VBL is the same as the top

third of the screen minus eight bytes. Memory
scanned by lines 256 through 261 is identical to
memory scanned by lines 250 through 255, so those
six 64-byte sections are scanned twice, as shown in

Figure 5.9. The memory scanning areas are sum-
marized in T^ble 5.2. This same information is dis-

played graphically in Figure 5.17.

Mixed Mode Scanning
HIRES graphics mixed with TEXT is a special

case when it comes to video scanner addressing.
Part of HIRES memory and part of TEXT/LORES
memory must be scanned in this mode. The problem
does not arise with LORES graphics mixed with
TEXT, because TEXT memory scanning is identi-

cal to LORES memory scanning.

The HIRESTIME term that isusedtodevelop the
video scan address is not a direct input from the
$C056/$C057 LORES/HIRES soft switch. Rather,
it is a term developed in the lOU which is active
when it is actually time to scan HIRES display

memory. In HIRES MIXED mode, the HIRES

">-i!Lir.''



14 Understanding the Apple lie

~~

TOP SCREEN/ MIDDLE SCREEN/ BOTTOM SCREEM/
"~^

PAGE 1 PAGE 2 LIN#

FIRST 40 SKCOND 40 THIRD 40 UNUSED e

PAGE 1 RANGE LIN# PAGE 1 RANGE LIN#
'—lira

PAGE 1 RANGE -^§^4^^:
52000 8192 $4000 16384 000 52000-32027 064 S2028-$204F 128 52050-52077 #2ii5B-53S7F-

$2400 9216 S4400 17408 001 $2400-52427 065 S242a-S244F 129 52450-52477 $2i-!B~$247T

$2800 10240 S4B00 18432 002 S2300-S2827 066 S2828-S284F 130 52850-52877 52878-S2B7F

S2cae 11264 S4C00 19456 003 S2C00-$2C27 067 S2C28-S2C4F 131 S2C50-52C77 S2C78-.S2CTF

$3000 12288 S5000 20480 004 S3000-S3027 068 S3028-$304F 132 53050-53077 S307e-S307F

$3400 13312 $5400 21504 005 33400-53427 069 S3428-$344F 133 53450-53477 $347e-S347F

$3800 14336 55800 22528 006 33800-53827 070 S3828-S384F 134 53850-53877 53e73-S387F

53C00 15360 S5C00 23552 007 $3C00.S3C27 071 53C28-53C4F 135 53C50-S3C77 53C7e-S3C7F

$2080 8320 54080 16512 008 32030-$2eA7 072 520A8-$20CF 136 S20D0-520F7 $2aFfi-S20FF

52480 9344 34480 17536 009 $2480-$24A7 073 S24A8-$24CF 137 524D0-S24F7 524P8-524FF

52380 10363 S4B80 18560 010 S2880-$28A7 074 528fl8-$28CF 138 S28D0-S28F7 528Ffl-52SFF

$2C80 11392 S4C80 19584 011 $2Ce0-S2CA7 075 $2CA8-S2CCF 139 S2CD0-S2CF7 52Cty-S2CFF

S3080 12416 55080 20608 012 S3080-$30A7 076 S30A8-$30CF 140 530D0-530F7 53aF8-538FF

S3480 13440 S5480 21632 013 53480-$34A7 077 $34A8-S34CF 141 534D0-S34F7 534P8-$34ET

S3880 14464 S5880 22656 014 S38S0-S38A7 078 $38A8-S38CF 142 538O0-S3ap7 53aF8-538FF

S3C80 15488 S5C80 23680 015 S3C80-53CA7 079 $3CA8-S3CCF 143 53CD0-53CF7 53CFa-$3CPF

S2100 8448 $4100 16640 016 S2190-$2127 080 $2128-S214F 144 52150-62177 52178-S217F

S2500 9472 54500 17664 017 52500-52527 081 $2528-S254F 145 52550-S2S77 5257B-52b7F

S2900 10496 S4900 18688 018 S2900-S2927 082 $2928-S294F 146 52950-52977 52978-S297F

S2D00 11520 54D00 19712 019 $2D00-S2D27 083 $2D28-S2D4F 147 52D50-S2D77 S2D78-S2D7F

S3100 12544 55100 20736 020 53100-53127 084 $3128-S314F 148 53150-53177 S3178-S317F

S3500 13568 S5500 21760 021 53500-53527 085 53528-S354F 149 53550-53577 S3578-S357F
3 3900 14592 S5900 22784 022 53900-53927 086 $3928-S394F 150 53950-53977 S3978-S397F
S3D00 15616 SSD00 23808 023 S3D00-S3D27 0B7 53D28-S3D4F 151 S3D50-S3D77 S3078-S3D7F

S2180 8576 S4180 16768 024 52180-S21A7 088 $21A8-521CF 152 S21D0-$21F7 S21F8-S21FF

S2580 9600 54580 17792 025 S2580-S25A7 089 525A8-S25CF 153 S25D0-S25F7 S25F8-525FF

S2980 10624 $4980 18816 026 52980-$29A7 090 S29A8-S29CF 154 S29D0-$29F7 S29F8-529FF

S2D80 11648 S4O80 19840 027 S2D80-S2DA7 091 S2DAe-S2DCF 155 S2DD0-S2DF7 $2DF8-52DPF

S3180 12672 $5180 20864 028 S3180-S31A7 092 531A8-531CF 156 531D0-531F7 531F8-$31FF
S3580 13696 55590 2188S 029 S3580-S35A7 093 $35A8-S35CF 157 S35D0-S35F7 $35F8-535FF

$3980 14720 $5980 22912 030 S39B0-S39A7 094 539Ae-539CF 158 S39D0-539F7 $39F8-S39FF

$3D80 15744 55D80 23936 031 S3D80-S3nfi7 095 S3DA8-S3DCF 159 S3DD0-S3DF7 $3DFB-53DFF

S2200 B704 S4200 16896 032 S2200-S2227 096 S2228-S224F 160 S2250-S2277 S2278-5227F
$2600 9728 54600 17920 033 S2600-S2627 097 S2628-$264F 161 52650-52677 52673-5267F
S2A00 10752 $4A00 13944 034 S2A00-S2A27 098 S2A28-S2A4F 162 S2A50-S2A77 52A78-52fi7F
$2E00 U776 $4F.00 19968 335 S2E00-S2E27 099 52E28-52E4F 163 S2E50-52E77 52E78-52E7F
S3200 12800 $5200 20992 036 S3200-S3227 100 53228-S324F 164 53250-53277 53 278-5 327F
$3600 13824 S5600 22016 037 S3600-S3627 101 S362B-5364F 165 53650-53677 53678-S367F
$3A00 14848 S5A00 23040 038 S3A00-S3A27 102 S3A2B-53A4F 166 S3A50-S3A77 53A7e-S3A7F
S3E00 15872 S5E00 24064 039 S3E00-S3F27 103 S3E2e-53E4F 167 S3E50-53E77 $3E78-$3E7F
S2280 3832 $4280 17024 040 S2280-S22A7 104 $22A8-522CF 168 522D0-522F7 522F8-S22EF
S2680 9856 54680 18048 041 S2680-S26A7 105 S26A8-526CF 169 S26D0-526F7 S26FB-S26FF
S2A80 10880 $4A80 19072 042 S2AB0-S2AA7 106 S2AA8-$2ACF 170 52AD0-52AF7 52AFe-S2WF
S2E80 11904 $4E80 20096 043 S2E80-S2EA7 107 S2EA8-$2ECF 171 52ED0-52EF7 S2EF8-S2HFF
S3280 12928 $5280 21120 044 S3280-S32A7 108 S32A8-$32CF 172 532D0-532F7 S32F8-S32FF
S3680 13952 55680 22144 045 S3680-S36fi7 109 S36A6-536CF 173 536D0-S36F7 S36F8-$36FF
$3A80 14975 55A80 23168 046 S3A80-S3AA7 110 S3AAB-S3ACF L74 S3AD0-S3AF7 S3AF8-53AFF
$3E80 16000 55E80 24192 047 S3E80-S3EA7 111 S3EAB-S3ECF 175 $3EDO-S3EF7 S3EFB-$3EIT'
S2300 B960 $4300 17152 048 52300-52327 112 52328-S234F 176 52350-52377 S2378-$237r
$2700 9984 54700 18176 049 52700-52727 113 S2728-S274F 177 S2750-52777 52778-$277F
$2B00 11008 S4B00 19200 050 $2B00-S2B27 114 S2B28-S2B4F 178 $2B50-S2B77 S2B78-$2B7F
$2F00 12032 $4F00 20224 051 S2F00-S2F27 115 S2F28-52F4F 179 S2F50-S2F77 52F78-52F7F
S3300 13056 S5300 21248 052 53300-53327 116 S332B-S334F 180 53350-53377 $3378-5337F
63700 14080 $5700 22272 053 S3700-S3727 117 S3728-5374F 181 53750-53777 5377a-5377F
S3B00 15104 S5B00 23296 054 S3B00-S3B27 118 S3B28-S3B4F 182 53850-53877 S3B78-S3B7F
$3Fa0 16128 S5F00 24320 055 S3F00-S3F27 U9 S3F28-53F4P 183 $3F50-S3F77 53F78-53F7F
$2380 9088 S4380 17280 056 $2380-S23A7 120 S23A8-523CF 184 S23D0-S23F7 S23F8-523F^
S2780 10112 54780 18304 057 S2780-S27A7 121 S27A8-S27CF 185 $27D0-$27F7 527P8-527Fr
S2B80 11136 54880 19328 058 52BB0-S2BA7 122 S2BA8-S2BCF 186 $2M)0-52BF7 52HP8-S2BPP
$2F80 12160 54F80 20352 059 52Fe0-S2FA7 123 S2FA8-52FCF 187 52FD0-S2FF7 52FF8-$2FFF
S33S0 13184 $5380 21376 060 53380-$33A7 124 S33A8-533CF 188 $33D0-S33F7 S33Ffl-S33FF
53780 14208 55780 22400 061 S3780-S37A7 125 S37A8-537CF 189 $37D0-S37F7 $37E«-$37n'
$3880 15232 S5B80 23424 062 53B80-S3BA7 126 S3BA8-S3BCF 190 538D0-S3BF7 53HF8-S3Bff
$3F80 16256 $5F8a 2444B 063 53F8B-53FA7 127 S3FA8-53PCF 191 $3ro0-S3FF7 S3FF8-S3Fn'

Figure 5& HIRES Displayed Memoiy Map.
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UHE
KM

SCREEK TOP

HSRIZCNTAL HLfiKKIHG (HBL)

PflB: 1

$24ea
$2866
$2C6e

$3068
$3468
$3868
$3068

8296
9320
10344
11368
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13416
1444£)

15464

PAGE 2
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Figure 5.9 HIRES Scanning Map Including Undisployed Areas (1 of 4).



5-16 Understanding the Apple He

LINE
HUM
64
65

66
67
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70
71
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B2
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119
120
121
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J27

SCFOEIH MIDDLE

HOBIZCWTAL aLMOOMS (HBL)

52010

S2410
S2ai0
S2C10

S3010
S3410
53810
53C10

8208
9232
10256
112M
12304
13328
14352
15376

520961

52490
52890

S2C90
53090
53490
53890

S3C90

8336
9360
10384
11408
12432

13456
14480
15504

52110
S2510
52910
52D10
53110
53510
53910
53Dia

8464
9488
10512
11536
12560
13584
14608
15632

52190
52590
52990
521)90

S319B
53590
53990
$3D9C

8592
9616
10640
11664
12688
13712
14736
15760

RSGE 2

54010 16400
54410 17424

54310 18448
54C10 19472
56010 20496
55410 21520
55810 22544
JSCIB 23S6B
54090
54490
54890

S4C90
55090
55490
55390
55C90
54110
S4S10
54910

S4D10
55110
55510
55910
55D10

16528
17552
18576
19600
20624
21648
22672
23696
15656
17680
18704
19728
20752
21776
22800
23824

$4190
54590
54990
54D90
55190
55590
55990
5SD90

16784
17808
1B832
19856
20880
21904
22928
23952

11111111

001 23456 7B9ABGDEF01 234567

-+####++-H-

+»###+++++
-4-####-H-H-

-+####-M-H-

+###«-H-H-

+####++++
+####++++
+####
+###»++++
++####

+###++++
+M##'H-+-t-

+####++++

-f#tt#++-H-

<-»##«+-H-t-

HOFIZOKTAL DISPLAY HSRHLE

PfiGE 1
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Figure 5.9 HIRES Scanning Map Including Undlsplay^ Areas (4 of 4).



miW'^"

RAM and Memory Management 5-19

Table 53 Screen Memory Scannlr>g Summary.

LOCATION HBL HBL'

SCREEN TOP Last 16 of THIRD 40
arid UNUSED

8

FIRST 40

SCREEN MIDDLE Last 24 of FIRST 40 SECOND 40
SCREEN BOTTOM Last 24 of SECOND 40 THIRD 40
VBL Last 24 of THIRD 40 UNUSED 8 and first

32 of FIRST 40

TIME term switches low one video scanner cloclc

(HAS' rising during PHASE 1) after V4 • V2
becomes true (see Figures 8.5 and 8.17). HIRES
TIME switches high one video scanner clock after

V4 • V2 becomes false. V4 • V2 identifies the last

four lines of the TEXT display, and the one scanner
clock delay makes the video data from RAM switch
between HIRES and TEXT at the same time as

other addressing inputs to the video ROM (see

MIXED MODE SWITCHING in Chapter 8).

V4 • V2 actually identifies scan lines 160 through
191 and 224 through 261. The scanned memory
switches to HIRES during the first part of VBL,
back toTEXT for the second part of VBL, then back
to HIRES for the top of the screen. The switching
during VBL is, of course, not visible on the screen,

This information is only important to those special

applications where it is important to know what is

scanned during the blanking periods.

The following is a reference list for scanned
memory in the HIRES MIXED mode:

Line 0, HPE' + 1 thru
Line 160, HPE'
Line 160, HPE' + 1 thru
Line 192, HPE'
Line 192, HPE' + Lthru
Line 224, HPE'
Line 224, HPE' + 1 thru
Line 0, HPE'

— HIRES, Figure 5.9

— TEXT, Figure 6.6

— HIRES, Figure 5.9

— TEXT, Figure 5.6

HPE' occurs during the first video scanner state of

WTCP^"
the screen, the address switching point for

iHlRES MIXED mode comes just at the end of the
.lisplay on the right side.

IWHiESHlNG RAM IN THE APPLE lie

;..
"^^i^^fresh requirement of 64K dynamic RAM is

,W«t every ROW address be accessed at least once
,eyery two milliseconds. To achieve refresh in the

/

'' '

[^

process of scanning RAM for video output, the

address inputs to RAM had to be assigned very care-

fully. Only the ROW address assignments are per-

tinent to this discussion, and these are shown in

Table 5.3.

Generally, the low order outputs of the video

scanner are assigned to the RAM ROW address

inputs. This is natural since the low order bits

change at a high frequency. HO, HI, H2, SUM-A3,
SUM-A4, and SUM-A5 are the six scanning address

inputs which change at the highest frequency, and
these are all RAM ROW address inputs. Every
horizontal scan, these six terms will go through all

of their possible states.

SUM-A6 is the next highest frequency RAM
addressing input, but it is inappropriate as a ROW
address input. This is because SUM-A6 and the

lower order addressing terms form a 128-state word

of which only 64 states are scanned during a hori-

zontal period. The 64 scanned states remain constant

during each of the four quarters of the complete

vertical scan, so in each quarter, there are 64

unscanned states. For example, in the top third of

the screen, the state of SUM-A6 low and all lower

order bits high is never reached.

The final two RAM ROW address assignments

are VO and VI. These are not gated by the display

mode, and they change at a high enough frequency

to satisfy the refresh requirement. The gated VA,

VB, and VC inputs are static during TEXT/LORES
scanning, and thus inappropriate as RAM ROW
address inputs.

The most significant refresh bit is VI, and VI

toggles back and forth every 32 horizontal scans.

But VA, VB, and VC are not refresh bits, so for every

state of VI and VO, all the lower refresh bits go

through their counts eight straight times (once for

each state of VA-VB-VC). This means that the

maximum time between refresh states is normally

no more than 25 horizontal scans (32 - 7) or 1.59
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Table 53 Video Scanner Row Address

Assignments.

RAM Address Scanner Input

RAO HO

RAl HI

RA2 H2
RA3 SUM-A3
RA4 SUM-A4
RA5 SUM-A5
RA6 vo
RA7 VI

milliseconds. At the end ofVBL, however, there are

six extra horizonta! scans with VI and VO high. This

means that there are sometinnes 31 horizontal scans

(25 + 6) or 1.97 milliseconds between refresh states.

In all cases, the 2-millisecond maximum period

hetween refresh states is satisfied.

As mentioned previously, some 64K dynamic

RAM chips require only that A0--A6 of the RAM
chips (RAT—RAl of the Apple lie RAM address

hus) be refreshed. Since RAO—RA7 of the Apple He

are completely refreshed every two milliseconds,

RAM in the Apple can be either the 128- or the

2r)(i-cycle refresh tyi)e.

MEMORY MANAGEMENT
What device responds when the MPU accesses

address $D000? The answer is all of the above.

Depending- on MMU soft switches and the periph-

eral slot INHIBIT' line, it migrht be the Cl-DF
ROM, motherboard high RAM bank 1, mother-

board high RAM bank 2, auxiliary card high RAM
bank 1, auxiliary card high RAM bank 2, or adevice

in any of the seven peripheral slots. Wow! Talk about

your versatility . . . talk about your complexity.

When more than one device is capable of respond-

ing to a single address range, the range and device

are said to be bank switched. Bank switching is

necessary when the address ranges of all the devices

that need to be addressed exceed the addressing

range of the MPU, and when you hear of a 128K
RAM, 16K ROM computer with a 64K MPU, you

can guess that there is going to be some bank switch-

ing involved. Yet the nature and extent of the bank
switching in the Apple makes no sense unless

viewed in historical terms.

The original Apple II was designed at a time when
16K RAM chips and 2K ROM chips were state-of-

the-art and 48K seemed like a lot of RAM. The 64K
addressing range of the 6502 was neatly divided up

into 48K of RAM, 4K of I/O, and 12K of ROM. In

terms of memory, this computer evolved into the

64K RAM Apple II with 16K of RAM in Slot and

an 80-column display card in Slot 3, then into the

operationally similar Apple He with its added
capabilitiesof bank switching 64Kof auxiliary card

RAM. Apple He owners have thus inherited a com-

plex system of memory management, and it can be a

little puzzling, particularly for those new owners

who weren't around for the evolution.

MMU Soft Switches

The bank switching and overall control ofmemory

in the Apple He is a function of the MMU. TheMMU
contains 13 programmable soft switches that are

set up by the controlling 6502 program. The state of

these soft switches determines the overall eonfigua-

tion of Apple memory—which devices respond to

which address ranges, Sixof theMMU soft switches

are concerned with bank switching between mother-

board RAM and auxiliary card RAM. Four switches

are concerned with determ ining whether high RAM
or motherboard ROM responds to $D00O-$FFFF
addressing, and which bank of high RAM will

respond to $D000—$DFFF. The remaining three

switches determine whether motherboard ROM
or peripheral cards respond to $C100-$CFFF
addressing.

The soft switches are turned on and off by address

commands decoded from the address bus. Some of

the switches simply have an off address and an on

address, but control of INTC8R0M and the high

RAM configuration switches is more complex. In

addition to address bus control, all MMU soft

switchesare reset (turned off) when asystem reset is

detected. 'Ikble5.4 summarizes the address bus con-

trol of the MMU soft switches and gives the control

situations resulting from system resets,

Some readers will be suprised by the "Rible 5.4

entries that show you can read the BANKl and

HRAMRD soft switches at $C011 and $C012. Apple

doesn't document this capability, but I discovered it

while investigating the operation of my Revision B

Apple lie (MMU marking 8310, 344-OOlO-B). An-

other thing Apple does notdocument is the existence

of the INTC8R0M soft switch. The peripheral slot

I/O STROBE' protocol is implemented for fC3XX

and $C800—$CFFF motherboard ROM via this soft

switch.

Configuring High Memory <$DOOO-$FFFF)

Addresses $D000—$FFFF in the Apple He ar«

assigned primarily to ROM, but this 12K range can

also be assigned to 16K of RAM. The capability of

„:^5?i
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PERI-

PHERAL
SLOTS

I

l/OSTRQRF'

PEBIPH
DECODE

ifulVV

(/O SELECTS'

DEVICE SELECTS

COXX'TOIOU

SERIAL
IN

MUX

MP IN/OUT'

CXXX

MD IN/OUT'

MMU

KVBRO
CIR-

CUITS

KBD' KBD'
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CASEN'
\

TIMING
GEN
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ENBO'

MBD
RAM

RIW—Zl>
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R/W'80

lOU

COXX'

R/W

AUX
RAM

R/W

ROMENV -—^ ROM
C1-DF

I

R0MEN2'- ROM
EO-FF

I
Figure 5.10 Distribution of MMU Dato Bus Management Signals.
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Table 54 Address Bus Contrt)! of MMUSott Switches.

SOFT OFF ON READ CONDITION AFTER
SWITCH ADDRESS ADDRESS ADDRESS RESET' (OFF)

80STORE w$cooo W$C001 R$C018* FAGhia does not bank
switch RAM
Read from motherboard
RAM

RAMRD W$C002 W$C003 R$C013

RAMWRT W$C004 W$C005 R$C014 Write to motherboard
RAM

INTCXROM W$C006 W$C007 R$C015 Slot response to

$C100-$CFFF
ALTZP W$C008 W$C009 R$C016 Motherboard RAM

read/write

SL0TC3R0M W$COOA W$COOB R$C017 Motherboard ROM
response to $C3XX

PAGE2 $C054 $C055 R$C01C* Motherboard RAM
read/write

HIRES $C056 $C057 R$C01D* PAGE2 does not switch

$2000-$3FFF
BANKl** A3' A3 R$C011*** High RAM bank 2

response to $DXXX
HRAMRD** (A1+A2)«(A1.A2)' A1»A2+A1'»A2' R$C012 $DO{)0-$FFFF read

from ROM
PRE WRITE** AO'+(R/W')' AO • R/W' None Reset

HRAMWRT' ** PRE-WRITE. R/W'.AO AO' None $DOO0—$FFFF write to

high RAM
INTC8R0M $C3XX • SL0TC3R0M' $CFFF None Slot response to

$C800-$CFFF

NOTES:
R Preceeding address indicates read access only.

W Preceeding- address indicates write access only.
* 80STORE, PAGE2. and HIRES are mechanized identical!y in the MMU tind lOU. The MMU

passes the state of 80STORE to MD7 when $C018 is read, <ind the lOU passes the state of PAGE2 or|

HIRES to MD7 when gCOlC or $C01D is read.
** High RAM control addresses are in the $C08X range.

*** R$C011 reads the inversion of the BANKl soft switch.

bank switching the high memory range between
RAM and ROM gives the Apple He a bit of a split

personality. On one hand, it is like the older cassette

based computers with BASIC and the monitor
instantly available in ROM. On the other hand, it is

like the disk based computers which load and run
any available operating system.

The RAM that is switched into the $D000—
$FFPF range is referred to in this book as high
RAM. It is designed to be operationally compatible
with a 16K RAM card operating in Slot of an
Apple II. The concept and programming rules for
highRAM came directly from theRAM card, so it is

perhaps best to visualize high RAM as a peripheral

which steals $D0OO—$FFFF from ROM. If high

RAM is enabled, it responds to $D000—$PFFF; if

high RAM is disabled, motherboard ROM responds

to ?D000—SFFFF.
Switching 16K of RAM into a 12K range creates

an excess of 4K of RAM. For this reason, the 4K

$DXXX range is bank switched between two 4K
areas of RAM (see Figure 5.11). $E000—$FFPF
a.ddressing always causes access to the same 8K

RAM locations when high RAM is enabled, but

addressing ?DXXX will cause access to high RAM
bank 1 or bank 2 depending on the BANKl soft

'jUi'
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$FFFF

ROM
MOTHERBOARD

HIGH RAM
AUXILIARY CARD

HIGH RAM

$E00O

BANK1 BANK2 BANK1 BANK2

SDOOO

A /

R/W.HRAMRD' R/W'.HRAN
R7W.HRAM

A C '

'

^

1RD.ALTZP' R/W'.HRAMRO. ALTZP
WRT.ALTZP' R7W.HRAMWRT.ALTZP

Figure 5.1 1 Selecting High Memory Configurafions.

switch in the MMU. Bank 2 is the primary banlt. It

isselected by system resets, and programs generally

utilize bank 2 rather than bank 1.

High RAM enabling and bank switching are con-

trolled by four soft switches in the MMU. Program
control of these soft switches is identical to that of

four configuration flip-flops on the 16K RAM card.*
All control accesses are in the $C08X range which is

the Slot DEVICE SELECT' range of an Apple II.

Address bus manipulation of the high RAM soft

switches is as follows:

1- A3 controls the. 4K bank selection. $C080-
?C087 resets the BANKl soft switch, enabling

,
bank 2. $C088-$C08F sets the BANKl soft

Switch, enabling bank 1.

2- AO and Al control the HRAMRD soft switch.
Access to $C080, $C083, $C084, $0087, $C088,
$C08B, $C08C, or $C08F sets HRAMRD, en-

' abling reading from high RAM. Access to

:

$C081, $C082, $0085, $0086, $C089, $008A,
IC08D, or $C08E resets HRAMRD, disabling
reading from high RAM.

3- Writing to high RAM is enabled when the
HRAMWRT' soft switch is reset. The controll-
ing MPU program must set the PRE-WRITE
«>ft switch before it can reset HRAMWRT'.
PRE-WRITE is set by odd read access in the
*C08X range. It is reset by even read access

or any write access in the $C08X range.

HRAMWRT' is reset by odd read access in the

$C08X range when PRE-WRITE is set. It is set

by even acce.ss in the $C08X range. Any other

type of access causes HRAMWRT' to hold its

current state.

4. When a system reset occur.s. ail MMU soft

switches are reset (turned off). High RAM is

disabled for reading and enabled for writing.

PRE-WRITE is reset, and bank 2 is selected.

Since a reset occurs when the Apple is turned

on, the Apple He always powers up with high

RAM disabled for reading.

5. When high RAM is enabled. $DOOO-$FFFF
addressing causes access to either motherboard

high RAM or auxiliary card high RAM as con-

trolled by the ALTZP soft switch. Switching

between motherboard RAM and auxiliary card

RAM is discussed in the next section.

PRE-WRITE and WRITE can be thought of as a

write counter which counts odd read accesses in the

$C08X range. The counter is set to zero by even or

write access in the $C08X range. If the write counter

reaches the countof 2, writing to high RAM becomes

enabled. From that point, writing will stay enabled

•For a discussion of the 16K RAM card, refer to Chapter 5 of

Uvdemlaiidhig fhe Apple U by Jim Sather, Quality Software,

1983.
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until an even access is made in the $C08X range.

This means there is a feature of RAM card control

not documented by Apple: write access to an odd

address in the $C08X range controls HRAMRD
without affecting the state of HRAMWRT'.
The high RAM control characteristics are sum-

marized in Table 5.5. There are two address

commands possible for every function. The pro-

gramming convention is to use addresses $C080—

$C083 and $C088-$C08B.
The only address range at which RAM is never

accessed in the Apple He is the 4K range, $CXXX.

When bank 1 of high RAM is being accessed, the

MMU converts the $DXXX address on the address

bus to a $CXXX address on the multiplexed RAM
address bus. $DXXX is changed to $CXXX by

changing A12 from high to low, so the A12 input to

RA4/C0LUMN is forced low in the MMU when

BANKl is set and an address in the $DXXX range is

on the address bus. The equation for the COLUMN
input to RA4 is therefore

A12« (BANKl. DXXX)'.

Though program control of high RAM in the

Apple lie is identical to that of the Slot 16K RAM
card in the Apple II, there are some operational

differences. First, the 16K RAM card does not

respond to system resets. It is set to read disable,

write enable bank 2 at power up, and from that point

can only be reconfigured by program control. High

RAM in the Apple lie is set to read disable, write

enable bank 2 by any system reset, not just the one

that occurs at power up.

A second difference is that the 16K RAM card is

not automatically disabled when another peripheral

card pulls the INHIBIT' line low, A particularly

nettlesome associated fact is that the 16KRAM card
will not release the $F800—$FFFF address range
under any circumstances, even when its RAM is

disabled for reading and writing.* When RAM is

disabled, a ROM on the RAM card hogs this critical

range. When INHIBIT' is low in the Apple He,

all motherboard RAM, auxiliary card RAM, and
motherboardROM is disabled, including high RAM.
The data bus management signals with which

the MMU configures high memory are CASEN',
EN80', ROMENl', and R0MEN2'. All of these

signals are gated by INHIBIT', so no matter what
the configuration of high memory, any peripheral

card can steal $D000—$FFFF by pulling INHIBIT'
low.

Switching iaelween Motherboard
end Auxiliary Card 12AM

Switching between memory banks presents a

problem if the program doing the switching resides

in one of the memory banks being switched. The

problem is that when the switching command is

executed, the MPU starts fetching the program

from the newly active memory bank, but the pro-

gram that is supposed to be executed resides in the

*Th is is only true of the 16K RAM card manufactured by Apple

Computer, Inc., and of RAM cards which are very close imita-

tions of Apple's card. Some alternate source 16K RAM cardswill

release the $F800—$FFFF range when RAM on the card is

disabled.

Table 5^ High RAM Address Bus Commands.

BANK 2 BANKl ACTION

$C080
$C084

$C088
$C08C

WRTCOUNT = 0*, WRITE DISABLE READ ENABLE

R$C081
R$C085

R$C089
R$C08D

WRTCOUNT = WRTCOUNT + 1* READ DISABLE

W$C081
WIC085

W$C089
W$C08D

WRTCOUNT = 0* READ DISABLE

$C082
$C086

$C08A
$C08E

WRTCOUNT = 0*, WRITE DISABLE READ DISABLE

R$C083
R$C087

R$C08B
R$C08F

WRTCOUNT = WRTCOUNT + 1* READ ENABLE

W$C083
W$C087

W$C08B
W$C08F

WRTCOUNT = 0* READ ENABLE

•Writi ig to hijfh RAM is enabled when WRTCOUNT reaches 2.

,. «lpt
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previously active memory bank. One way to get

around this is to prearrange the contents of the

newly active bank so that there is a program at the

switch point which is designed to accept flow from

the previously active bank. This is not an insur-

mountable task for the computer programmer, but

it is a nuisance. Abetter solution, when possible, is to

design the application so that the switching pro-

gram resides outside of the memory beingswitched.

Apple went to some lengths to ease the pro-

grammer's task in bank switching between moth-

erboard RAM and auxiliary card RAM in the Apple
He. For one thing, they provided a transfer routine

in ROM which transfers program control between
motherboard resident and auxiliary card resident

routines. Therefore, any time high RAM is disabled

for reading, routines residing outside of the memory
being switched are available for switching between
motherboardRAM and auxiliary card RAM. Use of

the firmware transfer routine is described on pages
29-31 of the Apple II Extended 80-Column Text

Card Supplementfor lie Only and on pages 76—79
of the Apple II Reference Manual for He Only.

Another thing that Apple did to ease the pro-

grammer's bank switching problems was to divide

RAM into several separately switched groups so

that programs residing in one area of RAM could
switch other areas of RAM. Instead of one soft

switch which switches all of RAM access between
the motherboard and the auxiliary card, there are
sixMMU soft switches which switch various opera-
tional areas of RAM. The sense of the switches is

generally such that when a switch is set (on), auxil-
iary card RAM is enabled, and when the switch is

reset (off), motherboard RAM is enabled. The func-
tions of these six switches are graphically depicted
in Figure 5.12 and briefly described here. Refer to

T^bie 5.4 for the control addresses of the soft
switches.

RAMRD and RAMWRT switch the $200-
$BFFF range between motherboard RAM and aux-
iliary card RAM.RAMRD set enables auxiliary card
memory for reading, and RAMWRT set enables
auxiliary card memory for writing. If 80STORE is

f_*' RAMRD and RAMWRT do not affect $400-

1 *»' ^""^ *^ 80STORE and HIRES are both set,
KAMRD and RAMWRT do not affect $400-$7FF
or $2000-$3FFF.
80STORE, PAGE2, and HIRES bank switch the

l^^^y
display pages, $400-$7FF and $2000-

I^'
^^^w^n motherboard RAM and auxiliary

T 5^^" " 80STORE is set and HIRES is reset,

/^ PAGE2 switches between motherboard RAM

and auxiliary card RAM for reading and writing in

the $400-$7FF range. If 80STORE is set and
HIRES is set, then PAGE2 switches beween moth-
erboard RAM and auxiliary card RAM for reading
and writing in the $400—$7FF and $2000—$3FFF
ranges. PAGE2 set selects auxiliary card RAM,
and PAGE2 reset selects motherboard RAM. If

80STORE is reset, then RAMRD and RAMWRT
will bank switch the $400—$7FF and $2000—
$3FFF ranges along with the rest of the $200—
$BFFF range.

80STORE, PAGE2. and HIRES are mechanized
identically in theMMU and the lOU, They are used
in the MMU for bank switching display memory as

described here. They are used in the lOU to control

the display mode of the Apple He. As noted pre-

viously, when 80STORE is set, the display mode
control functions of PAGE2 are disabled.

ALTZP switches the $0—$1FF range and, if

high RAM is enabled, the $D000—$FFFF range
between motherboard RAM and auxiliary card
RAM. ALTZP set selects auxiliary card RAM, and
ALTZP reset selects motherboard RAM.
The overall scheme represented by these soft

switch capabilities is logical. High RAM is switched

separately from the main body of RAM because
these two RAM groups are addressed at separate

non-overlapping address ranges. Memory pages
and 1 of RAM receive special treatment because of

their special 6502 functions. Display scanned mem-
ory receives special treatment to ease the task of

programming DOUBLE-RES displays. Some pro-

gramming scenarios should illustrate the pros and
cons of the way RAM switching is divided.

scenario #1: A machine language program resides

in high RAM, motherboard ROM, or peripheral

card high memory, and uses both motherboard and
auxiliary card low RAM for data storage.

The program can easily switch between mother-

board and auxiliary card RAM via RAMRD and

RAMWRT. The program's critical zero page point-

ers and subroutine return link information on

the stack are not switched because RAMRD and

RAMWRT do not switch $0-$lFF. Pages and I of

RAM usually hold information critical to the pro-

gram being executed, even if the program resides in

ROM. All programs that bank switch RAM need to

take special cognizance of these two memory pages,

and the Apple He design allows the programmer to

do so because $0—$1FF switching is separate from

the main body of RAM in the Apple.

•^ai,.-.
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80STORE'
(WSCOOO)

80STORE. HIRES'
(W$C001,$C056)

80ST0RE. HIRES
(W$C001,$C057)

$0000

SFFFF $FFFF $FFFF

SEOOO SEOOO SEOOO

$0000 SDOOO

SBFFF

$0-S1FF-

LEGEND

SBFFF

$400-S7FF
$0-$1FF

SBFFF

$3FFF

$2000

$400-$7FF

$0-$1FF

RAMRD' & RAMWRT'= Motherboard RAM (W$C002,W$C004)
RAMRD & RAMWRT = Auxiliary RAM (W$C003,WSC005)

[x:>::::;:::i>:;>:v::;::i ALTZP'= Motherboard RAM (WSC008)^'v-'l ALrZP = Auxiliary RAM (W$b009)

^HBH PAGE2'= Motherboard RAM ($C054)^^H PAGE2 = Auxiliary RAM ($C055}

Figure 5.1 2 Motherboard/Auxiliary Card RAM Bonk Swilched Address Ranges.
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Example:

ORG $D000 HIGH RAM RESIDENT PKX3RAM
STft $C003 SET RAMRD
STA $0004 RESET RAMWRT
im $8000 FETCH DATA FROM AUX $8000
STA $8000 STORE DATA AT MRBRD-$8000

scenario #2: A machine language program resides

in tower motherboard RAM, and uses motherboard
and auxiliary card high RAM for data storage. The
program is initialized and normally runs with
motherboard memory pages and 1 enabled.

This situation is not particularly well supported

by the Apple He design. The program can enable
auxiliary card high RAM via ALTZP, HRAMRD,
and HRAMWRT', but when auxiliary card high
RAM is enabled, the program loses actfess to its

Page pointers and subroutine return link informa-
tion. The program must therefore make its access to

auxiliary card high RAM, then reset ALTZP before
accessing pages and 1. Alternately, it can transfer
critical page and 1 information from motherboard
RAM to auxiliary card RAM before setting ALTZP,
and it can transfer critical page and 1 information
from auxiliary card RAM to motherboard RAM
before resetting ALTZP.
Example:

ORG $1000 1£M RAM RESIDENT PROGRAM
STA $C009 SET ALTZP
LDX $BA WHOOPS! I NEEDED A MOTHER-

BOARD POINTER
STA ($44), Y OUCHl MY INDIRECTION IS

GUMMED UP
RTS I WANT MY MOTHER

scenario #3: A machine language program resides
in low RAM and maintains an 80-column text
display.

The text map is stored alternately in auxiliary
card RAM and motherboard RAM at addresses
$400—$7F7, so the program needs to make regular
access to both the auxiliary card and the mother-
board without disrupting program flow. This is
done simply by setting 80STORE , resetting H IRES,
and using PAGE2 to switch MPU access back and
torth between auxiliary card RAM and mother-
board RAM. Program flow outside of the $400-

m fk
j^"^^ '^ "*^* affected in any way. The identical

method IS used for maintaining an 80-bIock LORES
Q'splay. A 560-point HIRES display can be sim-
ilarly maintained by setting 80STORE and HIRES
ana using PAGE2 to switch $2000-$3FFF access

^m^ ^"'^iliary card RAM and motherboard

The situation becomes more difficult if the pro-
gram needs to maintain a primary and a secondary
DOUBLE-RES display, and switch between them
via PAGE2 with 80STORE reset. The problem here
is that MPU access to the secondary display areas
($800-$BFF and $4000-$3FFF) is switchable
only via RAMRD and RAMWRT. The task can be
accomplished by storing the controlling program
redundantly in motherboard and auxiliary card
RAM, but things will be a lot easier if this sort of
program resides in high RAM.
Example:

ORG $1000 LCW RAM RESIDENT PROGRAM
STA $C001 SET 80STORE
STA $C055 PAGE2 = AUX = EVEN

TEXT POSITIOsT
OTA (BASL),Y STORE ASCII TO TEXT MAP

scenario #4: A programmer wants to utilize auxil-
iary card memory for data storage in his Applesoft
or Integer BASIC application.

The programmer is, as they say in the Navy, S-O-L
(Surely Out of Luck). BASIC variable structuredoes
not support the fixed address access to memory re-

quired by bank switching. Additionally, the inter-

preter in high memory, the program in low RAM,
the variables in low RAM, and the page and 1

values tend to get lost when you enablethe auxil iary

card RAM. BASIC programs can manipulate 80-

STORE, HIRES, and PAGE2 to access $400-$7FF
and $2000-$3FFF of auxiliary card RAM via

PEEK, POKE, HPLOT, PLOT, HLIN, VLINE,
and PRINT commands. Outside of the 80STORE
areas, it is most likely that any BASIC access to

auxiliary memory would be through CALLs to

machine language routines.

Example:

10 POKE -16383,0 : REM SET 80STORE
20 PCKE -16299,0 : REM PAGE2 = AUK =

EVEN
30 POKE 1024,193

TOP LEFT

The data bus management signals with which the

MMU switches between motherboard and auxiliary

card RAM are CASEN' and EN80'. CASEN' is low

when the MPU is accessing motherboard RAM, and

EN80' is low when the MPU is accessing auxiliary

card RAM. Both CASEN' and EN80' are gated by

INHIBIT' so any peripheral card can steal RAM
addressing from motherboard or auxiliary card

RAM by pulling INHIBIT' low.

'**<-.
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Configuring the I/O Range C$COOO-$CFFF)

The 4K $C000—$CFPF range in the Apple lie is

assigned to I/O. Motherboard ROM, however, can

steal $C100—$CFFF from I/O and it does so on

a regular basis. Program control of response to

$C100—$CFFF is via three MMU soft switches,

INTCXROM*, SLOTC3ROM, and INTCSROM.
The $C100—$CFFF range of I/O includes the

peripheral slot I/O SELECT' and I/O STROBE'
signals. These signals are generally used to en-

able peripheral slot ROM, and INTCXROM,
SL0TC3R0M, and INTC8R0M are thought of as

switching between slot ROM and internal (mother-

board) ROM. These soft switches have no effect on

the $COXX range. There is no hardware or soft-

ware means of stealing $COXX from I/O in the

Apple lie. A corollary to this fact is that the

DEVICE SELECTS of the peripheral slots cannot

be inhibited in the Apple lie. In particular, periph-

eral cards that respond to DEVICE SELECT', but

not I/O SELECT' or I/O STROBE', can be operated

in Slot 3, even when a RAM/80-column card is

installed in the auxiliary slot.

INTCXROM switches the $C100—$CFFF range
between internal and slot ROM, and SL0TC3ROM
switches the $C3XX range. Both INTCXROM
and SL0TC3R0M affect $C3XX (the Slot 3 I/O
SELECT' range), and ifeithersoftswitch is set to in-

ternal, the motherboard CI—DF ROM will respond
to $C3XX access. The following truth table shows
the control status resulting from the four possible

combined states ofINTCXROM and SL0TC3R0M.

$C100-$C2FF
INTCXROM SL0TC3R0M $C400-SCFFF $C300-SC3FF

reset reset slot internal

reset set slot slot

set reset internal internal

set set internal internal

You will find no reference to the INTC8R0M soft
switch in Apple literature. You will find, how-
ever, that it is possible for motherboard ROM to
steal response to $C800-$CFFF without setting
INTCXROM. The ?C800-$CFFF range is assigned
to motherboard ROM (INTernal) anytime SLOT-
C3R0M is reset and an access is made to $C3XX.

•Apple refers to INTCXROM as SLOTCXROM, but slot ROM is
disabled when the "CX" switch is set. The "CX" switch can be
correctly referred to as the SLOTCXROM' switch, but I feel that
INTCXROM is more descriptive. There appears to have been
some miscommunication at Apple about the operation of this
switch. Operational descriptions on pages 133 and 214 of the
Apple II Reference Manml for tie Only are demonstrably
Inaccurate.

From that point, $C800—$CFFF will stay assignee
to motherboard ROM until an access is made U
$CFFF or until the MMU detects a system reset
The circuit mechanization which fits this functionij
reality is that of an unreadable soft switch setbj
access to $C3XX with SL0TC3R0M reset, andresel
by access to $CFFF or an MMU reset.

As it is with the $C3XX range, joint control of the
$C800—$CFFF range is an ORfunction if INIfernal
is considered true and SLOT is considered false. By
this it is meant that if INTCXROM OR SLOT-
C3R0M is configured for internal response, then
access to $C3XX results in ROMENl' low (active)

and Slot 3 I/O SELECT' high (inactive). In the same
vein, if INTCXROM OR INTC8R0M is configured
for internal response, then access to $C800—$CFFF
results in ROMENl' low (active) and I/O STROBE'
high (inactive).

The INTC8R0M mechanization follows protocol

for a Slot 3 peripheral card that responds to I/O

SELECT' and I/O STROBE'. This is consistent

with the Apple He philosophy of emulating an
Apple II with 80-column card installed in Slot 3.

More information about the I/O STROBE' protocol

is given in Chapter 7.

INTCXROM, SL0TC3R0M, and INTC8R0M al-

low MPU access to the lower half of the Cl—DF
ROM. INTCXROM is used to gain access to a

number of routines including the extended monitor

routines and built-in diagnostic routines. SLOT-
C3R0M and INTC8R0M are used to gain access to

the 80-column firmware.

Like all MMU soft switches, INTCXROM, SLOT-
C3R0M, and INTC8R0M are reset when a system

reset is detected. This enables all I/O decoding

except for Slot 3 I/O SELECT' ($C3XX). After the

hardware reset, the motherboard firmware reset

handler sets SL0TC3R0M if no RAM card is

installed in the auxiliary slot, and resets SLOT-
C3R0M if a RAM card is installed in the auxiliary

slot.

The data bus management signal s with which the

MMU switches between internal or slot response

to $C100—$CFFF are CXXX and ROMENl'.
ROMENl' is gated by INHIBIT', so peripheral

cards can steal $C100—$CFFF by disabling slot

response and bringing INHIBIT' low.

KBD' and MD IN/OUT'

There are two MMU data bus management sig-

nals which have nothing to do with RAM. These are

KBD', the keyboard enable signal, and MD IN/

OUT' the peripheral slot bus driver direction«»'
trol signal. ii

'.:l.W



RAM and Memory Management 5-29

The MMU pulls KBD' low during PHASE of a

read access to the $C000—$C01F range. This unin-

hibitable action causes the contents of the keyboard
ROM to be placed on the data bus for reading by the

MPU. Normal programming convention is to read

the keyboard input at $C000, and the fact that you
can read it at $C01X is definitely not documented by
Apple. Nevertheless, with theMMU currently being
manufactured, the KBD' signal responds to read

access at $CO0O—$C01F.
MD IN/OUT' is normally low, and this causes the

peripheral slot bidirectional driver to normally
present a high impedance to the data bus, MD
IN/OUT' goes high during PHASE of

1. Any read to $C020—$COFF {enables MPU or

DMA device to read $C06X serial inputs, DE-
VICE SELECT' gated peripheral card inputs,

or outlandish peripheral cards which respond
with data to $C020—$C08F addressing).

2. Any read to $C100—$CFFF with slot response

enabled by INTCXROM, SL0TC3R0M, and
INTC8R0M (enables MPU or DMA device to

read I/O SELECT' and I/O STROBE' gated

peripheral card inputs).

3. Any read with INHIBIT' low (enables MPU or

DMA device to read from peripheral card
memory when motherboard and auxiliary card
memory are inhibited).

4. Any write with DMA' low (enables DMA device

to write data to devices on the data bus).

TheMD IN/OUT' control may seem complex, but
when you examine the requirements of the Apple
He memory map, MD IN/OUT' is seen to correctly
control the direction of data flow to and from the
peripheral slots and serial input multiplexor. The
one unusual point about MD IN/OUT' mechaniza-
tion is that read access to $C000—$C01F with
INHIBIT' low causesMD IN/OUT' to go high, even
though the keyboard input is not deactivated by
INHIBIT'. As a result, read access to $C000—
?C01F with INHIBIT' low will cause the peripheral
data bus driver to compete with (and overwhelm)
the keyboard ROM and lOU for control of the data
bus. This is not a great problem for peripheral card
designers, but it does mean that inhibiting periph-
eral cards must bring INHIBIT' high during read
access to $C000-$C01F if the MPU is to read the
keyboard.

'he MMU Functional Diagram
Figures5.13a and 5.13b are a functional diagram

or the MMU. Figure 5.13a shows address decoding,
reset detection. MPU address multiplexing, and the

MMU soft switches, Figure 5.13b shows the logical
generation of data bus management signals from
address decoded signals, the states of theMMU soft

switches, and the R/W, DMA', and INHIBIT'
inputs to the MMU. These drawings are meant only
to show MMU functions, not correct implementa-
tion details, I drew these figures to clearly illustrate

MMU operation and have no way of knowing such
details as the exact arrangement of logic gates.
The MMU drawings summarize points about

MMU operation that are made in Understanding the

Apple He, and they serve as an MMU quick refer-

ence for people who tike diagrams like this (I do).

Some explanations and discussion points follow.

1. RESET' is not an input to the MMU because
there is a shortage of available pins created by
full connection to the address bus and the mul-
tiplexed RAM address bus. The MMU detects

system resets from three Page 1 accesses fol-

lowed by $FPFC on the address bus. The MMU
will wrongly detect a system reset if a Page 1

resident program causes the MPU to access

$FFFC, perform a"JMP($FFFC)", or vector to

SFFFC via an RTS or RTI instruction.

2. There appears to be a window during which the

address bus is monitored for commands which
determine soft switch states. If a soft switch

command is held valid on the address bus for

about 40 nanoseconds or more during the win-
dow, the affected soft switch will respond to the

command. As well as I can determine, this win-

dow is PHASEO • (Q3 + HAS") which is all but

the last 14M period of PHASE 0. The 6502

address valid period completely overlaps this

window.

3. When the MPU reads the state of an MMU soft

switch, the MD7 enable gate appears to be

PHASEO + PHASED' • Q3 • RAS' which is

PHASE and the first 14M period of the follow-

ing PHASE 1.

4. The four high-RAM configuration soft switches

are programmed identically to the four config-

uration flip-flops on a 16K RAM card.

5. After an MMU reset, the MPU will read all soft

switches except BANKl as zero. Figure 5.13a

shows a BANKl soft switch whose inverted

state is readable by the MPU. A functional

equivalent would be a BANK2 soft switch

which is set when an MMU reset occurs and

whose non-inverted state is read by the MPU.
The depiction chosen for Figure 5.13a is closer

to the 16K RAM card hardware, and it follows

the general MMU rule of resetting soft switches

when a system reset occurs.



5^ Understanding the Apple lie

(39)

5V-

.I'O-

3-
RAS'-

_--.ir

(4 21 <

8.

-5V

"a.

E4 MMU
.|.0

TWO BIT COUNTER

03

TIRAS'

01XX—1

—

CK

COUNT
ENABLE

CLOCKED
CLEAR

OVERFLOW

MMU reset i( three Paget
accesses are followea by
SFFFC on the address bus.

FFFC

^ XXXX SIGNALS"^
TO MMU GATES

t/tm RESET

TO SHEET 2

PRE-WRITE

Figure 5.13a The MMU (1 o< 2).

RAS' selects between ROW and COLUMN ad-

dressing at the MPU address multiplexor. The
tri-state enable window for the MMU multi-

plexed RAM address output appears to be
PHASEO' • Q3' . RAS' + PHASEO* Q3 which is

the last 14M period of PHASE 1 and the first

four 14M periods of PHASE 0.

RA4 COLUMN addressing has special logic for

switching between bank 1 and bank 2 of high
RAM.
ROMENl', R0MEN2', EN80', KBD', and MD
IN/OUT' are all gated by PHASE 0. CASEN' is

not gated by PHASE in the MMU, but it is

gated by PHASE in the timing HAL.

All memory enabling signals—ROMENl',

R0MEN2', CASEN', and EN80'-are gated by

INHIBIT' from the peripheral slots.

CASEN' and EN80' are mutually exclusive.

When RAM is being accessed, either CASEN'

or EN80', but not both, will be activated.

KBD' is gated by RCOOO—RCOIF rather than

just the expected RCOOX.
^

12. MD IN/OUT' goes high during any INHIBIT

low read rather than the expected ROOOO—

RBFFF and RC020—RFFFF.
13. Write access to $C100—$CFFF with the ad-

dressed location configured for motherboard

ROM response causes ROMENl' to fall. As a

10

11

.-ji^i''"
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(7.6) DMA^
16

(7,6) INHIBI-
r,

15

DMA'

INHIBIT' E4
MMU

C020-C0FF-

R/W-

DMA'-

C100-CFFF

INTCXROM

C3XX

SL0TC3R0M

INHIBIT'

fi/W'

C100-CFFF

:0 C100-CFFF (SLOT)

COXX

=I>
INTC8f!0M

*0—
CFFF-

S

E

'^CLR t

RDXXX-

HRAMPD-C.

C100-CFFF[imT)

C800-CFFF
INHIBIT'

MMU RESET
FROM SHEET 1

HRAMWRT
DOOO-FFFF

R/W

HRAMRD-

ALTZP
SWITCHING

ro
:X>

ALTZP-

PAGE2

PAGE 2 SWITCHING

aoSTORE -

O-IOO-O/FF

EOOO-FFFF
R/W

1.0

INHIBIT'

HRAMRD —

C

RC000-RC01

I'

a>

RAMRO/WfiT
SWITCHING

0200- BFFF-

RAMWRT

R/W

RAMRD

^>'J>

I'D

INHIBIT-

INHIBIT' 1 y

22
-MD IN/OUT'
(7,6)

24_
-CXXX
(7,1)

20
-ROMENT
(61)

19
-R0MEN2'
(6,1)

18
-KBD'

17
-EN80'

(5,2)

23 -CASEN'
(391

NOTE:

Lu Address range signals decoded from address bus.

Figure 5.13b The MMU (2 of 2).



5^2 Understanding the Apple He

'"lilsi

*"-f«fy

result, this programming action will cause the

CI—DF ROM to compete with the MPU for

control of the data bus. This is the only time

ROMENl' or R0MEN2' is activated by write

access.

The data bus management signals are logically

mechanized to perform the memory management

functions described in this chapter. Figure 5.13b

shows this logic for those readers comfortable with

logic symbols. Tables 5.6 and 5.7 contain the same

information for those readers more comfortable

with cause and effect tables. Table 5.6 shows when

the signals that gate data to the data bus become

active, and Table 5.7 shows when MD IN/OUT'

becomes active.

MMU Signal Propagation Deiay

The MMU and lOU are MOS ICs like the 6502,

RAM, and ROM chips. These MOS ICs perform

very complex and extensive logic functions, but

compared to the bipolar ICs like TTL chips and the

timingHAL, MOS ICsare slow. Whereas you might

expect 5^25 nanosecond signal propagation delay

in an LSTTL chip, you would likely expect 30—
125 nanosecond propagation delays in MOS ICs.

These approximations are admittedly vague, but

you should get the idea that the speed of the Apple is

limited by the MOS chips, not the TTL chips.

The MMU signal delay specifications have not

been released by Apple Computer Inc. If we could

see them, they would probably show minimum and
maximum timing durations referenced to rising

and falling edges of PHASE 0, Q3, RAS', and the

address bus. I have observed theMMU signal delays

in my Apple lie with an oscilloscope, and I found
them generally to be 40—100 nanoseconds. Asa rule

ofthumb, theMMU signal delays are comparable in

width to one I4M period.

OneMMU specification I think Apple should pub-
lish is the maximum delay of address information
from the address bus input to the multiplexed
address bus output. This specification determines
the time by which DMA devices must set up their

address if RAS' falling is to properly strobe the
ROW address to RAM and the lOU. This delay is

about 82 nanoseconds in my Apple He.* My feeling
is that DMA devices are probably safe if they set up
the address bus at or before RAS' rises during

•I measured this by grounding the READY and DMA' lines and
injecting a variable width pulse to AO of the address bus from a
pulse generator triggered by WNDW.

PHASE 1. It has, however, been indicated to me
that Apple only tests theMMU to perform correctly

with worst ease performance of the 6502A. There-
fore, the only way a DMA device can be guaranteed
to operate in the Apple He is if its address is set up on
the address bus no later than 210 nanoseconds after

PHASE falls (5 nsec LS02 delay + 65 nsec 6502
PHASE 2 delay + 140 nsec 6502 address setup). This
is unreal i stical ly conservative sinee anMMU would
have to have a 349-nanoseeond address bus to RAM
address bus delay to perform this poorly,

RAM TIMING IN THE APPLE lie

Most aspects of RAM timing have already been

covered in various other related discussions, The
intention here is to reinforce the timing details of

basic RAM access.

Figure 5.14 shows some basic details of video

scanner read and 6502 read/write access to mother-

board RAM. The RAM access is controlled by the

RAS' and CAS' timing signals, and these fix the

RAM access rate at 2 MHz. Even though 200-

nanosecond RAM can be accessed faster than this,

no DMA device could access Apple lie motherboard

RAM any faster unless higher frequency substitutes

for RAS' and CAS' were injected from an auxiliary

card. RAS' strobes the ROW address to the RAM
chips, and CAS' strobes the COLUMN address to

the RAM chips and initiates the data transfer.

Most of the RAM timing is straightforward.

Write data from the 6502 is set up well before CAS'

falls during PHASE 0. Read data becomes valid

well before PHASE rises to latch video data, and

well before PHASE 2 falls to clock the transfer of

read data to the 6502. One thing that is not straight-

forward is the RAM data hold time after CAS' ris^

during MPU read access to RAM. It is highly possi-

ble that theRAM chip will not hold the data past the

falling edge of PHASE 2, but the data transfer is

accomplished anyway because of the slow bleed off

of data from the floating data bus. The data bus and

all of its extensions hold datafor a long time when

they float. Insuring the correct transfer of RAM
read data to the 6502 is just one example of the long

bleed off time determining Apple lie operational

characteristics.

In the write cycle, the video scanner makes its

read access to RAM during PHASE 1 just as in the

read cycle. Nothing interrupts the scanner access to

RAM in an unmodified Apple, However, the video

data on the data bus is not routed to the peripheral

cards during PHASE 1 of write cycles.

;fjfSi3^-^
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Toble 5^ MMU Data Bus Communication Enable Signals.

ADDRESS
RANGE

MPOTS

H 8 1 S I P IRHR0 NLNHNRARASHPATTTAHAMAMTIALCCCSIRMWMWORGTX38EB/RRRRREEZRRR IW'DTDT'ES 2 PMMM0T'

DATA nm
GRTINQ SIGNALS

R R
C
A E M M C
S N E E X K
E 8 N N X B
N' 0- 1' 2' X D'

$0000-$01EF
*

.

. 1

. . . . H

. . . H H
L H H H L H
H L H H L H

$0200-$03EF,

$0800-$lFFF,
S4000-$Bt'i'l;'

R 1

R
W
W

3 .

1 .

.

. 1

. . . . H

. . . H H

. . . . H

. . . H H

L H H H L H
H L H H L H
L H H H L H
H L H H L H

$0400-$07EF
1

1

. (3

L

. . . . H

. . . H H

SEE TART.K A
L H H H L H
H L H H L H

?2000-$3FEF
• 1

1 J

1 J

3 .

L

L i

. . . H

. . H H

SEE TART.K A
SEE TABLE A

L H H H L H
H L H H L H

$aW0-$C0iF R
W

*

.... H H H H H L
H H H H H H

$C020-$C0FF . H H H H H H
?C100-$C2FF,

$C400-$C7FF

. . . .

1 . , H H
H H H H H H
H H L H L H

$C,'W)0-$C3EF 1...
1 . . H H
, . H H

H H H H H H
H H L H L H
H H L H L H

?Cfl00-$CEW

J

3.0..
. . . H H

. 1 H H

H H H H H H
H H L H L H
H H L H L H

.5D000-$DFEF R . . . H H H H L H L H
^E000-SFPFF R . . . H H H H H L L H
¥iAM0-?EFFF R

R
W
W

1 .

1 .

. k

1 ,

.

1 .

.

1 .

. . . H

. . H H
. . . H
. . H H

L H H H L H
H L H H L H
L H H H L H
H L H H L H

**
• * . . • . . . . H H H H L H

I^SGQID: R - REftD NOTES
W - WRITE * KBD' is PHASE gated. QCXX is not.

1 - SOFT SWITCH SET ** All ocntoinations not shewn result
- SOFT SWITCH RESET in inactive oondition (H H H H L H)J

H - SIGNAL HIGH Boldfaced signals are active.

_ L - SIGNAL LOW
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Table 5.7 Activation of MD IN/OUT'.

INT SLOT INT PHS
ADDRESS RANGE R/W DMA' INH' CXRM C3RM C8RM MD IN/OUT'

$0000—$FFFF W L - - - - H H
$0000—$FFFF R - L - - - H H
$C020-$C0FF R - - - - - H H
$C100—$C2FF, R - - - - H H
¥C400-$C7FF
$C300-$C3FF R - -

1
- H H

$C800-$CFFF ^ - - - H H

LEGEND: R READ NOTE: All combinations not shown result in MD
W WRITE IN/OUT' low. Direction is into the data bus |

1 SOFT SWITCH SET when MD IN/OUT' is hig-h.

SOFT SWITCH RESET
H SIGNAL HIGH
L SIGNAL LOW
- NO EFFECT

The order of important events in Figure 5.14 is:

L HAS' rises near the end ofPHASE 0. After lOU
propagation delay, this enables the video ROW
address to the multiplexed RAM address bus.

The delay depends on the lOU, but the RAM
ROW address must always be valid before RAS'
falls.

2. PHASE 2 falls, clocking- the data transfer of the

previous 6502 machine cycle.

3. RAS' falls and clocks the video ROW address to

RAM. RAS' low enables the video COLUMN
address to the RAM address bus after lOU
propagation delay. This delay must be short

enough that the COLUMN address is valid

before CAS' falls.

4. Early during PHASE 1, the 6502 address and
R/W' become valid. The address will have no

effect on RAM until the MMU takes control of

the RAM address bus after RAS' rises. The
R/W' line will have no effect on RAM until

PHASE rises because RAM R/W' is forced

high during PHASE L
5. CAS' falls, clockingthe video COLUMN address

to RAM and initiating the transfer of video data
from RAM to the data bus.

6. Video data becomes valid at the output of RAM.
The time at which this occurs will depend upon
the speed of the RAM chips installed in the
Apple He. Assuming 200-nanosecond RAM is

installed, the video data will become valid on the
data bus no more than 135 nanoseconds after
CAS' falls. This is well before PHASE rises.

7. RAS' rises and enables the MPU ROW address

to the RAM address bus after MMU propaga-

tion delay. This does not interfere with the pre-

vious RAM cycle because this new address is not

clocked to RAM until RAS' falls.

8. PHASE and CAS' rise simultaneously.

PHASE rising latches the video data in the

video latch, and PHASE high allows RAM
R/W' to fall if this is an MPU write cycle. CAS'
rising causes the RAM chips to bring their data

output lines to high impedance after a delay.

This delay will not exceed 50 nanoseconds if

200-nanoseeond RAM chips are installed.

9. During PHASE 0. the MPU addresses RAM in

the same way the video scanner did during

PHASE 1, with RAS' selecting ROW or COL-
UMN, and RAS' and CAS' clocking the address

to RAM. The only difference is that the MPU
RAM address is developed in the MMU instead

of the lOU. Just as in the scanner access, RAM
data from the MPU access becomes valid on the

data bus well before the data is transferred,

10. During write cycles, the 6502 write data must

be valid before CAS' falls during PHASE 0.

The write data stays valid until after PHASE 2

falls. The Apple write cycle is what is referred

to in RAM literature as an early write cycle (as

opposed to a read/write cycle). R/W' falls before

CAS', and write data must be valid at the RAM
input before CAS' falls.

11. PHASE falls simultaneously with CAS' ris-

ing. If this is a write cycle, RAM R/W' begins to

rise but takes a long time because the voltage is

being pulled up by a IK resistor. If this is a read
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cycle, CAS' rising causes the RAM chips to

bring their data outputs to high impedance
after a delay of no more than 50 nanoseconds.
The data bus may float before PHASE 2 falls,

but the data from RAM will stay valid on the
floating data bus.

12. RAM read data is clocked to the MPU by
PHASE 2 falling.

Figure 5.15 shows some basic details of video

scanner read and 6502 read/write access to a 64K
auxiliary RAM card. The responseof auxiliary card

RAM to its RAS' and CAS' inputs is identical to that

of motherboard RAM, but timing details are differ-

ent because Q3 is the CAS' input to the RAM chips

on the auxiliary card, and because of the presence of

the bidirectional data bus driver.

^*%4
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The development of the multiplexed RAM address

is the same whether motherboard RAM or auxiliary

card RAM is accessed. Motherboard RAM and aux-

iliary card RAM always have the identical address

applied to their address inputs. The only difference

in addressing detail is that CAS' falling clocks the

COLUMN address to motherboard RAM while Q3
falling clocks the COLUMN address to auxiliary

card RAM.
When an auxiliary card is installed, the video

scanner simultaneously accesses the current scan

address in motherboard and auxilary card RAM,
Data from this access is saved in the motherboard

and auxiliary card videodata latches when PHASE
rises. Video scanner access to motherboard and

auxiliary card RAM occurs every PHASE 1, re-

gardless of which device the MPU accesses during

PHASE 0.

The order of important events in Figure 5. 15 is as

follows:

1. PHASE 2 falls, clocking the data transfer of the

previous 6502 cycle.

2. During PHASE 1, the video scanner ROW and
COLUMN addresses are developed in theMMU
as was described in the motherboard RAM tim-

ing section. RAS' falling clocks the video ROW
address to auxiliary card RAM, and Q3 falling

clocks the video COLUMN address to auxiliary

card RAM.
3. The 6502 address and R/W' are set up early

during PHASE 1. R/W' does not affect video

scanner read access to auxiliary card RAM
because R/W'80 is forced high during PHASE 1

(R/W'80 is gated by EN80' which is gated by
PHASE inside the MMU). Also, R/W' affects

thedirection of the auxiliary card bidirectional

data bus driver, but this direction will not mat-
ter until EN80' falls and enables the bidirec-

tional driver outputs. CASEN' from the MMU
rises after the address is set up, but CAS' still

falls since, in the timing HAL, CASEN' high
only disables CAS' during PHASE 0. There-
fore, MPU access to devices other than mother-
board RAM does not interfere with video
scanner access to motherboard RAM during
PHASE 1.

4. Video data becomes valid on the auxiliary data
bus no more than 135 nanoseconds after Q3 falls
assuming 200-nanosecond RAM chips are in-
stalled. This is 70 nanoseconds later than moth-
erboard RAM read data becomes valid, but data

is still valid well before PHASE rises. The
auxiliary card video data is not passed to the
data bus at this time because EN80' is high, dis-
abling the auxiliary card bidirectional driver.

5. PHASE and Q3 rise simultaneously. PHASE
rising clocks the video data to the auxiliary

card and motherboard latches. The auxiliary
card RAM data chips bring their data outputs
to high impedance no more than 50 nanosec-
onds after Q3 rises if 200-nanosecond RAM is

installed.

6. PHASE high causes theMMU to bring EN80'
low after propagation delay. EN80' in turn
causes R/W'80, the auxiliary card RAM chip
read/write control, to go low if this is an MPU
write cycle. EN80' also enables the auxiliary
card bidirectional driver to pass data between
the auxiliary card and thedata bus in the direc-

tion determined by R/W'. The immediate effect

of th is is to pass auxiliary data from the floating

auxiliary data bus to the data bus in a read

cycle, and to pass motherboard video data from
the floating data bus to the auxiliary data bus

during a write cycle.

7. During PHASE 0. no matter what Apple He
device is being accessed, the address bus is mul-

ti plexed onto theRAM address bus by theMMU
as described in the section on motherboard

RAM timing. An access is made to auxiliary

card RAM at this address during PHASE 0,

even if the MPU is not accessing auxiliary card

RAM. If the MPU is not accessing auxiliary

card RAM, EN80' will remain high, forcing

R/W'80 high and disabling the auxiliary card

bidirectional driver. Since R/W'80 is high, the

superfluous access to auxiliary card RAM is a

read access, and the auxiliary card RAM is not

modified, even in an MPU write cycle. Since the

bidirectional driver is disabled, the data on the

auxiliary data bus does not interfere with data

bus communication between the MPU and other

devices.

8. In a write cycle, 6502 write data becomes valid

on the data bus early during PHASE 0. After

the write data becomes valid at the data bus, it is

propagated through the auxiliary card bidirec-

tional driver to the RAM chips. This data must

be valid at the auxiliary data bus before Q3
falls. Auxiliary card RAM timing is less critical

than motherboard RAM timing in this regard

because Q3 falls 70 nanoseconds after CAS'
falls.

.&^
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9. In a read cycle, the read data becomes valid on

the auxiliary databus no more than 135 nanosec-

onds after Q3 fallsif 200-nanosecond RAM is

installed. This data is propagated through the

auxiliary card bidirectional driver to the data

bus well before PHASE 2 falls.

10. PHASE falls simultaneously with Q3 rising.

The auxiliary card RAM chips bring their data

output lines to high impedance no more than 50

nanoseconds after Q3 rises if 200-nanosecond

RAM chips are installed. The floating auxiliary

data bus will store the previous data for a long

period of time so the RAM read data is passed

through the bidirectional driver to the data bus,

even though the auxiliary data bus is floating.

11. Auxiliary card RAM read data is clocked to the

MPU by PHASE 2 falling. In a write cycle, the

6502 controls the data bus until shortly after

PHASE 2 falls.

12. PHASE low causes EN80' to rise after MMU
propagation delay. This disables the auxiliary

card bidirectional driver and, in a write cycle,

causes R/W'80 to start rising. R/W'80 rises

slowly because it is being pulled up by a IK

resistor.

THE 1 K AUXILIARY RAM CARD
A good part of the circuitry of the MMU in the

Apple lie is devoted to management of64K of moth-

erboard RAM and 64K of auxiliary card RAM.
Additionally, the 80-column capability is fully im-

plemented in timing and firmware. So fully is the

64KauxilaryRAM/80-column capability supported

that one only has to install a simple card containing

a latch, a bidirectional driver, and eight dynamic
RAM chips in the auxiliary slot to achieve the

capability.

Apple also developed another card for the auxil-

iary slot, one that supports the built-in 80-eolumn

capability but not the 64K auxiliary RAM capabil-

ity. This 80-column only card contains a IK static

RAM and support circuitry. The IK RAM is ad-

dressed by the MPU at $400—$7FF, and provides

the display map for the alternate columns of an 80 x
24 text display. Figure 5.16 is a schematic which I

drew from the board since I was unable to locate a
schematic in any Apple literature.

The IK RAM card is very similar to the 64K RAM
card in data connection to an LS374 latch and to the
data bus through an LS245 bidirectional driver.

Control of the data transfer functions— identical to

those of the 64K card—are as follows:

CONTROL
SIGNAL
RAS' falling

Q31ow

R/W'80
PHASE rising

PHASE 1 low

R/W
EN80'

FUNCTION
Latch ROW address

Save COLUMN address and
enable RAM chip data transfer

RAM chip read/write control

Latch video data

Enable aux data to video bus

LS245 direction control

LS245 enable

These control fu nctions are d ictated by the opera-

tion of motherboard circuitry. They enable the video

scanner to drive the display map to the auxiliary

latch during PHASE 1, and the MPU to transfer

data to and from RAM during PHASE 0.

AveryinterestingfeatureofthelK card is that it

responds to EN80' without detecting the $400—

$7F F range. For example, you could setRAMWRT'
and store data at $8213, and the IK RAM card

would accept the data at the memory location nor-

mally addressed at $613. This should cause no harm

since programs always check for the presence of a

64K card before attempting to store data in auxil-

iary card RAM outside of the $400—$7FF range. It

does make it harder to test for a 64K card since

either a IK card or a 64K card will allow you to store

and read back a value at any RAM address. The

difference is that, when the installed card is a IK

card, you will read back the same value at any

address that is separated from the modified address

by a multiple of $400. The following programming

example tests for a 64K card.

TEST64K STA $C001 SET 80STORE

IDh $C057 SET HIRES

IDA $C055 SET PAGE2

LDA #$00
STA $400 CLEAR $400

LDA #$88 CTRL-H TEST VAUJE

STA $2000
CMP $400 WAS $400 MODIFIED?

BBQ N064K YES: NO 64K CARD

CMP $2000 WAS $2000 MCXJIFIED?

BNE ND6^ NO: NO 64K CARD

CMP $2000 OfflCK AGAIN

TO BE SURE*

BBQ AUXe-MQ YES: 64K CARD POUND

BNE N064K NO: NO 64K CARD

*If an attempt to read auxiliary card RAM is made and no card is

installed, the MPU will read the last value driven outof mother-

board memory by the video scanner. $88 (left arrow) is not likely

to be driven out of motherboard RAM if a normal text display is

being scanned. Performing a double test for $88 precludes acci-

dentally reading an $88 driven from the UNUSED 8 during HBL

or VBL. All auxiliary card search programs should be cognizant

of the possible contents of display memory.
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READING VIDEO DATA FROM A PROGRAM

[n the October, 1982 issue of SofitalkmagAzme*

.

Bob Bishop showed that, by flagging- display mem-

ory and reading the video scan data, a program

could sync itselfto the video scanner in the Apple 1 1.

I was excited by this capability and further docu-

mented it in [JiifhrHionding thcApiilf II. It is also a

capabilityofthe Apple He, but is much lessexciting

because an Apple He program can easily sync itself

to the video scanner by polling VBL' at $C019.

Most applications that can be accomplished with

video polling can also be accomplished with a com-

birsationof VBL' polling and limed execution loops.

The primary advantage of video polling is that a

program can perform a substantial number of com-

putations, then begin polling for a switching point

As a result, overall performance of a screen splitting

program could sometimes be improved by using

video polling rather than timed execution loops.

Kven though there are conceivable advantages to

video polling, the method is not commonly used in

the Apple lie. Yet the capabilty does exist so it is

documented here. The purpose of this application

note is to provide some reference material and dis-

cussion of programming techniques for those read-

ers who wish to experiment with video polling.

The A pple 1 1 and lie computers were not designed

to al low a program to read the data driven out by the

video scanner. It happens that it is possible because

the data bus in the Apple II and lie, and the periph-

eral data bus in the Apple He, store the previously

valid data when they are floated- Figure 7.7 shows

the timing of an Apple lie read toanonresponding

address such as $C050 (GRAPHICS select). This

figure shows that when such a read is made, the data

bus and peripheral data bus take turns storing the

video data while floating and transmitting the video

data through the bidirectional driver to the other

bus. It is surprising that the video data remains

valid through the switching of the bidirectional

driver, and in fact, data bus loading in the periph-

eral slots can make the video data impossible to

read.**

*"Have an Apple Split", October 1982 Sojtaik, p 54.

**An exception to this 13 the case where auxiliary RAM is

selected and read with no card installed in the auxiliary slot. This
is a very reliable way to read video data, but relatively few
Apples are operated with the auxiliary slot empty.

One reason for syncing a program to the video

scan is to create displays that are a mixture of the

normal Apple screen modes. For example, if you
switch to HIRES before line 5 of every vertical scan

and switch to LORES before line lOofevery vertical

scan, you will have a stable combination of HIRES
and LORES graphics displayed on the screen.

The method of reading video sync from a program
is to set up flags in scanned memory at the point of

the television scan where the program needs to take

an action, such as switching from LORES to HIRES.
Then the program polls a nonresponding address

such as the cassette output port until it detects the

flag. The choice of flags and their locations in

memory will be dictated by the application.

Here are some addresses from which video data

can be read;

$C02X Cassette output

$C03X Speaker output

$C04X C040 STROBE'
$C05X Screen switches and

annunciator outputs

$C06X Serial inputs (DO—D6 only)

$C07X Timer trigger

$C08X High RAM control

$C090—$C7FF I/O control (use if slot is

empty)

$CFFF Expansion ROM disable

Of all of these choices, the screen switches stand out

as having no chance of interfering with the opera-

tion of some device. The screen switches will nor-

mally be used, because the task of polling and

switching can then be combined. Also, the polling

loop is self documenting to investigators of the pro-

gram. In the rare instance that one of the screen

switches will not do for video polling, the annuncia-

tors, the C040 STROBE', and the cassette output

addresses are likely choices.

Programming a combination display requires the

normal programmer's imagination to conceive of

the display. Additionally, a thorough graspofmem-
ory scanning details is a necessity. Figure 5.17 is a

diagram designed to aid the programmer in select-

ing locations for syncing flags. It should be used in

conjunction with the memory maps from earlier

sections of this chapter. From this diagram.one can

quickly see the prospects for successful syncing at a

given point in a given mode.
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LINES

192-261

Figure 5.1 7 Display Memory Scanning.

A problem in all display modes is that most

memory gets scanned more than once every vertical

scan. Only the first 16 bytes of the SECOND 40 and
the first 16 bytes of the THIRD 40 are scanned just

once per vertical frame. This makes it more difficult

to uniquely flag a scan position. An additional prob-

lem in TEXT/LORES Is that the UNUSED 8 is

used by DOS to store disk access information, so you
often won't wish to set up polling flags there.

It is not necessary to uniquely flag a scan position.

It is only necessary that there is no interference in

detecting a scan flag between the present scan posi-

tion and the flagged scan position. For example,
assume weswitched from HIRES to LORES during
VBL and we wish to detect the middle of the screen.
A byte of data stored at $5A8—$5CF is a detectable

flagthatresults in horizontal lines across the screen
at LORES positions 22 and 23. Even though parts of

this memory are also scanned during HBL before
positions 38 and 39, the next time they are scanned is

during displayed position 22. There is no interfer-
ence between the present location and the detection
point.

The following is a typical video polling loop:

POLLIT CMP $C050 FLAG VALUE IN ACCUM.
ENE POLLIT

The loop takes seven clock pulses to execute and thus
establishes one criteria for a screen flag. It must
occupy a minimum of seven adjacent scanned bytes
of memory or six bytes if one of the bytes is the first
byte of a HBL scan. The first byte of a HBL scan is

scanned twice, so six bytes here is the same as seven
elsewhere.

Many display flagging techniques are possible.
Here are some related ideas and facts:

L Switching modes during HBL or VBL elimi-
nates the unsightly display of switch points.

(
Since VBL can easily be detected by polling

$C()19.mostsereen splitting schemes will utilize

VBL as a reference.

2. The UNUSED 8 is the only undisplayed area
available for flagging. It is scanned during
HBL before the top third of the display and just

after HBL during VBL. Use of the UNUSED 8

in flagging PAGE 1 of TEXT/LORES is re-

stricted because of interference with the DOS.
3. Bit 7 of HIRES may be used as a flag and

checked with the BIT instruction. This is one
way of flagging the displayed HIRES area if bit

7 isn't critical for color or positioning.

4. When considering LORES flags in displayed

areas, bits O—'i control the upper block, and bits

4—7 control the lower block,

5. Video polling and VBL' polling work very well

in conjunction with timed execution loops. There
are 65 cycles in a horizontal scan—25 cycles of

HBL and 40 cycles of HBL'. There are 262

horizontal scans in a vertical scan—64 in each

third of the display screen and 70 during VBL.
When a group of flagged bytes is located, it is

then possible to find a precise byte in the group

by slewing backwards in 17029-cycle loops until

the first flagged byte is found. 17031-cycle loops

can be used to slew forwards.

6. The first byte scanned during HBL is scanned

twice in a row.

7. In TEXT/LORES, every memory line is scanned

eight times in a row, except the last line of VBL
which is scanned 14 times. In HIRES, every

memory line is scanned once, but lines 250—255

are rescanned after line 255 (250 is the same as

256, 251 is same as 257, etc.).

8. Switching rapidly between GRAPHICS and

TEXT mode will cause many televisions to lose

color sync. This is a factor of alignment and

response of the 3.58 MHz oscillator inside the

television. Because of this unpredictability from
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TV to TV, it is not possible to say what pereesit-

ageof the time a program can leave theApplein

TEXT mode and still hope to maintain color

sync. Commercial programmers could be well

advised to keepat least a 50%GRAPHICS mode
to TEXT mode ratio in their products if color

stability is important.

9. Programs written for the Apple 11 may well not

perform correctly on the Apple lie because of

differences in scanning during HBL. In the

Apple II. HBL scanned memory was separate

from other display memory in TEXT/LORES
scanning. In the Apple lie. HBL scanned mem-
ory overlaps other scanned memory in TEXT/
LORES scanning in similar fashion to HIRES
scanning. An example of one program that will

not work in the Apple He is the UNDERLINE
program from Cfiderfstandimj the Apple II

(nuts!!).

10. Only motherboard (not auxiliary card) RAM
video data is passed to the data bus, so only

motherboard RAM need be flagged for video

polling in DOUBLE-RES display modes.

Figure o.l8 is a programming example which

demonstrates the video polling capability in the

Apple lie. It creates a split screen display with

TEXT at the top and LORES graphics at the bot-

tom, k frame of asterisks around the TEXT area

enhances the display and provides a detectable flag

which tells the program it is time to switch from

TEXT tu GRAPHICS. To demonstrate that process-

ing can proceed while maintaining a split screen

display, a message isscroiled accrossa portion of the

TEXT area, and horizontal lines are drawn in

changing colors in the LORES area.

The scheme of the program is to switch to TEXT
during VBL, and switch to GRAPHICS after de-

tecting the bottom row of asteriska. The (

ICS display is updatedduringVBLamf, ifm
during the TEXT display period. The TESF^
play is updated during the GRAPHICS (fi^tay
period. Since no area is modified while it is I

scanned for display, the visual displ^
without accompanying flicker.

The display updates performedbythedeiiHniBtra-
tion program are admittedly simple, but tftrae b
time for more complex tasks. Since thereaw 17S89
MPU cycles in a vertical scan, a lot can beacco^l^

pi ished during a scan portion. Aashown by tfeifeB.

iinstration program, operations such asdrffimng-s

LORES line or reading a paddle timer are eaarljr

performed within this time frame.

PROGRAM NOTES

Lines 00—o8: .After updating the LOHESdiBplay,,

wait iintii the top row of asterisks i& pwae^
before starting tx) poll for asterisk*. Otfterwise,.

the program will detect the top row aamiswtitiA

to GRAPHICS at the top of the screen.,

LinesUl— 72; The last displayed 24 bytes-ofTEXT

line ;^ are :-icanned during HBL be&reTESTT
line 0. Including the asterisks at the irigMfflf

TEXT line 7 and the leftof TEXTline8i,3stfflrisfc

ASCII is driven out for 27 consecutiwe ctycfcs

before TEXT line 8. Therefore, the polling; Ii»f

looks for a string of asterisks that axKee^feffi

':ycies.

Lines 7^3—74: Program flow arrives- at line TS a*

5*7— ii2 cycles after the beginningofHBHi.befiwe

TEXT line U. The desired switch point ifefftw

ing HBL before TEXT line 12, so the pMgatasm

must wait 4«4 (65 X & - .56) to 4SS(6&xS- 62^

•lb) cycles before switching to GEAPfflKiS.
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SOURCE FILE: VID POLL

2 *

3
* VIDEO POLLING DEMO

0000! 4
* BY JIM SATHER

5 *
4/17/84

6 *

7 **********************************^t**#*t********jntjt*********
0006: 8 HLINV EQU $06 HLINE VERTICAL POSITION
0007: 9 PRNTCNT EQU 507 SCANS PER DISPAY SCROLL COUNTER
0008: 10 MSGX EQU $08 DISPLAY MESSAGE INDEX
0024: 11 CH EQU $24 COUT CURSOR HORIZCWTAL POSITION
002C: 12 H2 EQU $2C RIGHT SIDE OF HLINE
C019: 13 VBLOFF EQU $C019 VBL' POLLING ADDRESS
C050: 14 GRAFIX EQU $C050 GRAPHICS ADDRESS
C051: 15 TEXT EQU $C051 TEXT ADDRESS
C052: 16 HCWIX EQO $C052 MIXED DISPLAY OFF ADDRESS
C056: 17 LORES EQU $C056 LORES ADDRESS
F819: 18 HLIN EQO^ $F819 DRAW HLINE SUBROUTINE
F85F: 19 NEXTCOL, EQU SF85F NEXT LORES COLOR SUBROUTINE
FBIE: 20 PREAD EQU SFBIE READ PADDLE SUBROUTINE
PC58: 21 HOME EQU $EX:58 HOME CURSOR SUBROUTINE
PCA8: 22 WAIT EQU SHCA8 WAIT BY ACCUMULATOR SUBROUTINE
FDED: 23 COUT HQ() $FDED CHARACTER OUTPUT SUBROtfTINE

24 ********************1,1,1r1,1,***1,*1ft,-nn,l,i,-kti,i,i,i,i,i,i,tti,tt,in,i,i,inn,ti,

NEXT OBJECT FILE NAME IS VID POLL,.OBJ0
1000: 25 ORG $1000
1000:AD 56 C0 26 LDA LORES INITIALIZE DISPLAY
1003 :AD 52 C0 27 IDA NOMIX
1006 :A9 27 28 LDA #39
1008:85 2C 29 STA H2 HLINES END AT 39
100A:85 06 30 STA HLINV FIRST HLINE AT VERT = 39
1000:20 58 FC 31 JSR HOME
100F:20 9C 10 32 JSR PI»IT40 DRAW AN ASTERISK FRAME
1012 :A2 09 33 LDX #9
1014:20 ED FD 34 LP9 JSR COUT FRAME IS 40X11
1017 :A0 27 35 U)Y #39
1019:84 24 36 STY CH
101B:20 ED ED 37 JSR COUT
101E:CA 38 DEX
101F:D0 F3 39 BNE LP9
1021:20 9C 10 40 JSR PRm'40

41 ******************************************* tttiit************
1024 :AD 19 C0 42 VBLLPl LDA VBLOFF POLL FOR VBL
1027:30 FB 43 BMI VBLLPl
1029 :AD 51 C0 44 LDA TEXT SWITCH TO TEXT
102C:20 5F F8 45 JSR NEXTCOL INCREMENT LORES COLOR
102F:A5 06 46 LDA HLINV
1031:18 47 CLC
1032:69 01 48 ADC #1 INCREMENT HLINE VEkl' COORDINATE
1034 :C9 30 49 CMP #48
1036:90 02 50 per. VERTOK
1038 :A9 16 51 LDA #22 HLINBS DRAWN AT 22-47
103A:85 06 52 VEWTOK STA HLINV
103C:A0 00 53 LDY #0 START HLINE AT LEtT SIDE
103E;20 19 F8 54 JSR HLIN DRAW A LINE
1041 :AD 19 C0 55 VBLLP2 LDA VBLOET MAKE OIRTAIN VBL IS GONE
1044:10 FB 56 BPL VBLLP2
1046 :A9 0C 57 LDA #$C WAIT 535 MPU CYCLES
1048:20 A8 PC 58 JSR WAIT BYPASS FIRST HOW OF ASTERISKS

59 ********************************************************i,*i,*

Figure 5.16 Assembler Listing: Video Poliing Demonstration (l of 2).
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104B:A9 AA 60 LDA #•*' NOW FIND ASTERISK STRING

104D:CD 51 'C0 61 .ASTSKLP CMP TEXT

1050 :D0 FB 62 BNE ASTSKLP 2

1052 :CD 51 C0 63 CMP TEXT 6

1055:00 F6 64 BNE ASTSiQLP 8

1057 jCD 51 C0 65 CMP TEXT 12

105A:D0 Fl 66 BNE ASTSKLP 14

lfl5C:CD 51 C0 67 CMP TEXT 18

1B5F:M EC 68 BNE ASTSKLP 20

1061:CD 51 C0 69 CMP TEXT 24

1064:00 E7 70 BNE ASTSKLP 26

1066 :CD 51 C0 71 CMP TEXT 30 THAT'S EMOUGH (GREATER THAN 27)

1069 :D0 E2 72 BNE ASTSKLP 32

106B:A9 0B 73 U3A »$B WAIT 464 MPO CVCI£S

106D:20 AS EC 74 JSR WAIT GOT "'"s; NOW WAIT TIL TOEy PASS
^V^^'-' * mruf

75
************************************************************

1070:AD 50 C0 76 LDA GRAFIX SWITCH TO GRAPHICS MOJE

1073 :C6 07 77 DEC PRNTCNT

1075:10 22 78 BPL GOBACK

1077 :A2 00 79 LDX «0 READ FDL TO GET DISPLAY SPEED

1079:20 IE FB 80 JSR PREAD

107C:98 81 TYA

107Di29 IF 82 AND #$1F NOT TOO SLOW

107F:85 07 83 STA PRNTCNT

1081 :E6 08 84 INC MSGX TIME TO SCROLL MESSAGE

1083:A9 IF 85 LDA #$1F

1085:25 08 86 AND MSGX WRAP MESSAGE INDEX AT SIF

1087:85 08 87 STA MSGX

1089 :A0 10 88 WY #16 DISMAY WINDCW IS 16 LETTERS WIDE

108B:AA 89 DSPLYLE> TAX

108C:BD A7 10 90 LDA MESSAGE,X

108F:99 8C 06 91 STA $68C,Y PRINT MESSAGE

1092 :CA 92 DEX
1093 :8A 93 TXA
1094:29 IF 94 AND #$1F WRAP AT SIF
1096:88 95 DEY
1097:10 F2 96 BPL DSPLYLP
1099 :4C 24 10 97 QOBACK JMP VBLLPL GO WAIT P0« NEXT SCAN

98 ************************************************************

109C:A2 28 99 PENT40 WX #40 PRINT 40 ASTERISKS
109E:A9 AA 100 IDA #*
10A0:20 ED FD 101 LP40 JSR GOUT
10A3:CA 102 DEX
10A4:D0 FA 103 BNE LP40
10A6:60 104 RTS

105 ************************************************************

10A7:D6 E9 E4 106 MESSAGE ASC 'Video Polling Demonstration '

10AA:E5 EF A0
10AD:O0 EF EC

10B0:BC E9 EE
10B3:E7 A0 C4
10B6:E5 ED EF

10B9:EE F3 F4
10BC:F2 El F4

10BF:E9 EF EE
I0C2:A0 AD AD
10C5:AD A0

Igy ************************************************************

*** SOCCESSEUL ASSQCLY: NO ERRORS

%

4>M

FIgureS.ia Assembler LitHng: Video Polling Demonttiollon (2 oTS).
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chapter 6

ROM in the Apple lie

Non-erasable, random access, read only memo-
ries have taken many forms in the history of digital

computers. From vacuum tubes to diodes to small

scale integration to large scale integration, there

has always been a need for the general purpose
computer to have a resident program ready to tell it

what to do at turn on. With the coming of large read
only memories on single chips, the scope of pro-

grams contained in ROM in general purpose com-
puters has expanded greatly.

The Apple He design supports 16.128 bytes of

motherboard ROM, addressed from $C100 through
$FFFF. Additionally, several provisions exist for

controlling the Apple via programs in ROM on
peripheral cards. These include addressing periph-
eral ROM using a slot's assigned address area (its

JCOnX DEVICE SELECT' range and its $CnXX
i/O SELECT' range), addressing peripheral ROM
using the I/O STROBE' ROM addresses ($0800-
*CFFP), and inhibiting motherboard memory and
stealing addresses $0000—$BFFF and $0100—
$PPFF. All told, the Apple He computer has a very
versatile capability for operating under control of
^programs stored in ROM.

The sophistication of the ROM chips makes their

connections in the Apple simple and easy to under-

stand. Nevertheless, the topic of ROM is involved

enough to merit its own chapter. For the most part,

discussion of ROM in this chapter is limited to the

motherboard CI—DF and EO—FF ROMs, and

peripheral slot ROMs containing 6502 machine code

and related data. The keyboard ROM and video

ROM are covered in Chapters 7 and 8 respectively.

ROM HARDWARE
The Apple lie firmware is programmed into two

2365A type ROMs. The 2365A is a 28-pin, 8192-

byte, NMOS ROM with two programmable chip

select inputs, an OE' input, an CE' input, and 200-,

300-, or 450-nanosecond access time. NMOS stands

for Negative channel, Metal Oxide Semiconductor

construction. These technical terms will help you if

you look for the equivalent chip in a manufacturer's

data book. Look under NMOS, 8192 x 8 ROMs.
A number of manufacturers make 28-pin, 8192-

byte ROMs which would work in the Apple lie.

2365A is the Synertek part number, and it is used
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here because it is used in Apple schematics. It is

reasonable to assume that 450-nanosecond ROMs
are used since this is more than fast enough for

Apple He timing.

Masked ROMs used in the Apple He are pro-

grammed by the manufacturer to the specifications

ofApple Computer, Inc. Once thechip is built, only a

casualty will cause alteration of the stored data. In

addition to specifying thedata to be contained in the

ROM, Apple specifies which of the two chip select

inputs are active high and which are active low. This

is why the chip selects are said to be programmable.

The chip selects of all ROMs on the Apple He
motherboard—the Cl—DF, EO—FF, video, and

keyboard ROMs—are programmed so the INTEL
type2764, 2732, or2716EPROMscan be installed in

their place.

Ci—DF and EO—FF ROM connections in the

Apple He are shown in Figure 6.1. The ROM chips

are wired in the way most microcomputer hardware

is wired, with repetitious, identical wiring going to

both chips. It takes thirteen lines to address 8192

bytes, and the thirteen address inputs to the ROM
chips are connected directly to AO—A12 of the

address bus. The eight tri-state data outputs are

connected directly to the data bus. These address

and data connections are pleasantly simple when
contrasted to RAM connections.

The only remaining connections are power sup-

ply connections (+5V and GROUND) and the chip

enabling inputs (OE', CE', and the two chip selects).

The chip enabling inputs have one thing in common
in that, if any of them is inactive, the tri-state out-

puts of the ROM chip will be held at high impedance.

More specifically, for the Cl-DF or EO-FF ROM
of the Apple He to control the data bus, its OE' and
CE' inputs must be low, and its two OS inputs must
be high. The CS inputs are both tied to +5 volts in the

Apple He so there's not a lot to say about them. OE'
and CE' are another story.

CE' is different than the other chip enabling
inputs because, when it is high (inactive), the ROM
chip goes in to a low current standby mode. Power
supply loading can thus be reduced by inactivating

CE' whenever ROM is not being accessed. Unfortu-
nately, enabling the chip via CE' is slow (450 nsec
max) compared to enabling a chip via OE' (150 nsec
max), so OE' is used as the primary ROM chip
enabling input in the Apple He. The CE' inputs to

the ROM chips are used to mechanize the ROM
disabling INHIBIT' and ENFIRM lines on Revi-
sion A motherboards. On Revision B motherboards,
CE' is simply tied to ground.

In Revision A, an auxiliary card can deactivate

CE' to disable motherboard ROM by pulling EN-
FIRM low. I'm not sure what Apple had in mind for

this capability, but they sacrificed it for DOUBLE-
RES GRAPHICS in Revision B. The ENFIRM line

was changed to FRCTXT', and the associated

NAND gate is used to force text mode processing at

the timing HAL by bringing gated GR+2' high

when FRCTXT' is low (see Figure 3.9). This enables

DaUBLE-RES GRAPHICS processing if SOCOLis
set and TEXT is reset. Additionally, the ROM dis-

abling mechanization of INHIBIT' was transferred

to the MM U. In Revision B, all enabling and dis-

abling of the Cl-DF and EO-FF ROMs Is

mechanized via the ROMENl' and R0MEN2'
outputs from the MMU to the ROM OE' inputs.

ROMENr AND ROMEN2'
ROMENl' and R0MEN2' are the MMU databus

management signals which activate the Cl—DF
and EO-FF ROMs respectively. Their mechaniza-

tion in the MMU and descriptions of how ROM fits

into the Apple He memory map are contained in the

memory management sections of Chapter 5, butfea-

tures of memory management related to ROM are

reiterated here.

Motherboard ROM is addressed at $C100-
$FFFF, although $D000—$FFFF addressing is

shared with high RAM, and $C100-|CFFF ad-

dressing is shared with the peripheral slots,

$D0OO—$FFFF is thought of as the primary ROM
range of the Apple He, and it is configured forROM
reading and high RAM writing any time RESET'
falls. After a reset, a program can select ROM or

high RAM for $D0OO—SFFFF read response by

manipulating the HRAMRD soft switch as de-

scribed in Chapter 5. When HRAMRD is reset and

INHIBIT' is high, read access to $DO0O-$FFFF
causes the MMU to bring ROMENl' (IDOOO-

$DFFF) or R0MEN2' ($E0{)0—$FFFF) low dur-

ing PHASE (plus MMU propagation delay).

The $C100—$CFFF range of the Apple He is

assigned primarily to the peripheral slots, but pro-

grams can disable slot response and enable ROM
response by manipulating the INTCXROM, SLOT-

C3R0M , and INTC8R0M soft switches as described

in Chapter 5. This occurs regularly since the 80-

column firmware, Apple He diagnostics, and a

number of monitor subroutines reside in the

$C100-$CFFF range. When INHIBIT' is high and

access is made to a $C100—$CFFF address that is

configured for motherboard ROM response, the
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Q] In Revision A, ENFIRIVI and INHIBIT' were required to be high
before ROM-20 (CP) would drop low. In Revision B, ENFIRM is

o^iiS-'^y FRCTXT', and INHIBIT' is a logic input to ROMENr and
H0MEN2 intheMMU.

Figure 6.1 SchemaHc: ROM in the Apple (le.
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MMU brings ROMENl' low during PHASE to

enable transfer of data from the Cl-DF ROM to the

data bus.

Both ROMENl' and R0MEN2' are gated by

INHIBIT' from the peripheral slots.* This reveals

some of the power of INHIBIT'. The function of

ROM is to place data on the data bus when it is

accessed. When INHIBIT' is low, ROMENl' and

R0MEN2' cannot fall and ROM is disabled. It is as

if the ROM were not installed. The peripheral card

is then free to respond to $D000—$FFFF (and

$C100—DFFF if it is configured for motherboard

ROM response) in any desired manner.

While ROMENl' and R0MEN2' responses to

$DOOO"$FFFF are R/W' gated, ROMENl' re-

sponse to $C100—$CFFF is not. As a result, write

access to an address in the $C100—$CFFF range

that is configured for motherboard response causes

the MPU to compete with the CI—DF ROM for

control of the data bus. I'm not sure why Apple

decided not to gate $C100-$CFFF ROMENl' re-

sponse with R/W', but I speculate that it was to

achieve a misguided form of compatibility with the

I/O SELECT' and I/O STROBE' signals, I/O SE-

LECT' and I/O STROBE' respond to read and write

access to$ClOO-$CFFF. Why notmake ROMENl'
the same? I mean, you never know when one of those

programmers is going to want to write to mother-

board ROM.

PERIPHERAL SLOT ROM
In addition to the 01—DF and EO—FF ROMs, a

typical Apple lie will have several peripheral card

ROMs that contain programs which can be executed

by the 6502. Generally, these will be I/O SELECT'
ROMs addressed at $CnXX, I/O STROBE' ROMs
addressed at $C800-$CFFF, or INHIBIT' ROMs
addressed anywhere in the $0000—$BFFF and
$C100-$FFFF ranges. I/O SELECT' and I/O

STROBE' ROMs respond to the I/O SELECT' or

I/O STROBE' peripheral slot inputs, and normally
contain programs which implement the I/O func-

tions of a peripheral card. Peripheral card INHIB-
IT' ROMs utilize the INHIBIT' output of the

peripheral slots to substitute peripheral card resi-

dent programs and data for motherboard resident

programs and data.

An I/O SELECT' ROM contains a 256-byte pro-

gram which initializes I/O at a slot when BASIC/

•As described in Chapter 5, CASEN' and EN80' are also gated

by INHIBIT' so MPU communication with RAM, as well as

ROM, is disabled when INHIBIT' is low.

DOS PR#n or IN#n or monitor n CONTROL-? or n
CONTROL-K commands are executed. An example

is the bootstrap ROM of the Apple Disk II controller.

The program in this ROM, accessed at $C6XX when
the controller is installed in Slot 6, begins the boot

procedure that causes the DOS image on a diskette

to be transferred to motherboard RAM. The 256-

byte program is not nearly bigenough to accomplish

this task, but it is big enough to start the task and

transfer some code from the diskette to RAM so the

task can be continued.

There are actually very few I/O tasks that can be

accomplished with a 256-byte driver. For this rea-

son, an I/O SELECT' ROM will often be supple-

mented by a 2K driver on an I/O STROBE' ROM,
The I/O STROBE' signal goes low at the peripheral

slots any time access is made to$C800—CFFF when

INTCXROM and INTC8R0M are reset. Under a

protocol described in Chapter 7, any peripheral

card—but only one at a time—can activate response

to the I/O STROBE'. The I/O STROBE' could be

util ized to enable any sort of peripheral card device,

but it is almost always used to enable a 2K ROM
containing some sort of I/O driver.

The third type of peripheral slot ROM is utilized

in conjunction with the INHIBIT' line which is a

peripheral slot output, as opposed to the I/O SE-

LECT' and I/O STROBE' inputs. Whereas the I/O

SELECT' and I/O STROBE' outputs are ROM en-

abling signals that allow the MPU to access periph-

eral card ROM, the INHIBIT' output is a memory

disabling signal that allows peripheral cards to

selectively disable motherboard and auxiliary card

memory in favor of peripheral card response to

MPU addressing.

An INHIBIT' based peripheral does not have

to substitute ROM for motherboard memory, but

it certainly can. An example of a peripheral that

does so is Apple's 12K firmware card which steals

$DOO0—$FFFF from motherboard memory and

substitutes peripheral card ROM or EPROM.
Through the 12K firmware card, an Apple He user

can have the convenience of both Applesoft and

Integer BASIC in ROM.

ROM TIMING

ROM read timing is very simple and is the same

for read access to the Cl-DF, EO—FF, or keyboard

ROMs. Among the points to consider are the timing

characteristics of the ROM chips, disabling of

motherboard and auxiliary card RAM via CASEN
and EN80', and enabling of the addressed ROM via

^iMW
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ROMENl', R0MEN2', or KBD'. Assuming Apple
uses 450-nanosecond ROM, important timing char-

acteristics are as follows:

1. The output data will become valid a maximum
of 450 nanoseconds after the address input

becomes valid.

2. The output data will become valid a maximum
of 150 nanoseconds after the OE' input falls.*

3. The data output will go to high impedance a
maximum of 150 nanoseconds after the OE'
input rises.*

ROM read timing in the Apple He is illustrated in

Figure 6.2. The main order of events is:

1. During PHASE 1, the video scanner performs
its normal access to RAM.

2. At approximately 100 nanoseconds after 6502
PHASE 2 falls, the MPU address becomes
valid. ROM data will be valid no more than 450

•Values given are for Synertek SY2365 ROM. Some ROM manu-
facturers have shorter OE' access specifications for 450 nanosec-
ond ROM.

"T

1

6502

PHASE2

PHASED

CASEN'

R0MEN2'

DATA MPU
BUS DATA

r

52nsec [O

/iviotherboard\ y

\ VIDEO DATA / \

450
nsec -

max

ROM DATA VALID

6502 address typically becoimes
valid 100 nanoseconcis after

PHASE2 falls.

NOTES:

ROM data becomes valid no more than

150 nsec after ROMENT or ROMENZ'
falls, and no more than 450 nsec after the

address becomes valid. Q]

In the Apple He. the 450 nanosecond maximum
delay from address valid to data valid is usually

met before ROMENl' or R0MEf^2' has been low
for 150 nanoseconds.

Q] Experimental value measured in author's Apple lie.

(E Maximum OE' access time (TAOE) varies with ROM
manufacturers. Maximum TAOE of a General Instruments
R09864AB is 75 nsec, but maximum TAOE of a Synertek SY2365A
is 150 nsec.

Figure 62 Timing Diagram: Read Access to the EO— FF ROM.
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nanosecond, after this point iUhe ROM OE'

inn.it has been low sufficiently long.
input nasoeeii.u

nnother-
3 If accesis in the previous cycie wm

board RAM, CASEN' rises when the ROM

address becomes valid plus MMU propaga ion

ef:; TSiswiU disable MPU co-mu-ation

with motherboard ^AM during PHASE 0.

A PHASE Crises, causingROMENl ROMt-NZ ,

'
r^KBD' to fall and EN80' to rise Of p-v-s

cvcle access was to auxiliary card RAM) alter

MMU propagation delay. CAS' and Q3 also rise

when PHASE rises, terminating the video

Scanner access to RAM. The data bus hen

?loats, storing motherboard video data until the

ROM data becomes valid.

5 150 nanoseconds maximum after the KOM en

ablingsignalfalKtheROMdata becomes
valid.

assuming the address bus became vahd early

enough. With a typical 6502A and ROM chip,

the address becomes valid early e"™gh that the

OE' to data valid delay of the ROM chip will

determine when data becomes valid. In any

case, ROM data becomes valid well before hbi)Z

6 PHASE falls',' followed by 6502 PHASE 2 fall-

ing followed by R0MENl',R0MEN2',orKBD'

rising (if next cycle access is not to the sanie

ROM chip), and EN80' falling (if next cycle

access is to auxiliary card RAM). MMU propa-

gation delay is longer than 6502 PHASE to

PHASE 2 propagation delay m my Apple lie

and perhaps in all Apple He's. ROM will control

the databus for a maximum of 150nanoseconds

after its OE' input rises.
, t, . n/,

7 If next cycle access is to motherboard KAM,
'

CASEN' will fall when the next address be-

comes valid plus MMU propagation delay.

FIRMWARE IN THE APPLE

The hard features of the Apple ultimately deter-

mine its capabilities and limitations. However, the

computer is only as powerful as the program con-

trolling it at any given moment. Possibly the most

important programs ever written for the Apple are

the ones stored in the motherboard ROM. These give

life to the machine and are used so often that we

forget that they are just programs and that opera-

tional features created by any program can be

changed.

The contents of Apple II and Apple He firmware

have been the subject of many writings which this

book cannot hope to match in a limited space. The

goal here is just to give an overview of the Apple

firmware and to provide some insight into the

importance of the programs contained there. The

approach is historical, beginning with the Apple II

and progressing to the recently released firmware

upgrades to the Apple lie.

First, there was Integer BASIC, the monitor

ROM and some 6502 utilities. These programswere

written primarily by Steve Wozniak, the designer of

the original Apple II computer. This was in the bad

old days before the proliferation of inexpensive disk

drives, and before Microsoft Inc. started supplying

all the'computer companies with
more sophisticated

BASIC interpreters. Integer BASIC takes up about

5K of memory and has some very important limita-

tions- no floating point arithmetic, no HIRES

ffraphies commands, and no subscripted string vari-

ables to name three. This is not said to belittle th^

considerable design accomplishments of Mr. Woz-

niak. It's just that within a few years, Integer

BASIC became less than state-of-the-art.

The 6502 utilities included with Integer BAi»iC

were some floating point arithmetic routines, the

"SWEET 16" double word length command inter-

preter, and most importantly, the Mini-Assembler.

SWEET 16 is a small but sophisticated computer

language which lets the programmer manipulate

data in 16-bit word lengths. It utilizes RAM ad-

dresses $0 through $1F as 16 registers of 16 bits

each, and has normal machine language commands

:uchasADD,SUBTRACT,COMPARE,BRANCH

etc. Writing some programs in SWEE'T lb wUi

make them take less space than the equivalent 6502

program, but the 6502 program wil run faster.

The Mini-Assembler is the utility on which

uncounted numbers of Apple owners have ir^

learned to program 6502 assembly ^^rim^e^-j^l^^

is fully described in the Apple II Refermce Manv^

forlleOnly.
. ^. „„„„„*

SWEET 16 and the floating pomt routinesare not

described in any published Apple Uteraturejn the

old red Apple II reference manual there are sou ce/

object listings of SWEET 16, the floating pomt rou

tines, and the Mini-Assembler. SWEET 16 is ^^y

described in the November. l^J^
edition dB^,

magazine ("SWEET 16: the 6502 Dream Machine

by Steve Wozniak).

The System Monitor

In microcomputer terminology, a system monitor

is a program containing the most basic utilities oi

the system. Before the innovation ofBASIC in Kuni,

a monitor in ROM was the primary user interlace»

the microcomputer. Some basic routines of asyswm

monitor are keyboard input routines, video output

.^
,,:$,?:&
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routines, memory display and modification rou-

tines, and storage media input/output routines.

The Apple was one of the microcomputers which
led the transition from a monitor in ROM to BASIC
in ROM as the primary human to machine interface

for home computers. However, the Apple does have
an extensive monitor in ROM, and the older Apples
came up in the system monitor, not in BASIC.
The original Apple II system monitor contained

such important Apple utilities as entry to BASIC,
keyboard input, video text and LORES graphics

output, cassette I/O, assignment of different periph-

eral slots as primary input or output, memory dis-

play and modification, a 6502 disassembler, mach ine

language single step, trace, or normal subroutine
execution, handlers for RESET', NMI', IRQ', and
BREAK, and some 16-bit multiply and divide rou-

tines. Control of the monitor is via a highly usable
command interpreter, the use of which is well de-

scribed in the reference manual.
This, then, was the Apple: a cassette based system

with a poor man's BASIC and a rich man's monitor
in ROM and two empty 2K ROM sockets for user
firmware. Oh yes, one more important thing—Apple
published a source/object 1 isting of the system moni-
tor. This was a rislty move which paid off immea-
surably. By publishing their listing, Apple opened
the way for investigators to learn thoroughly the
nuts and bolts operation of the Apple. They thus
aided competitors in developing numerous software
and hardware applications for the Apple II. With
this combination of extensive available applications
and freedom of information, Apple pulled off the
delicate trick of appealing not only to the masses
who don't care how it works but also to more serious
users who develop even more applications.
The system monitor dictates many of the opera-

tional characteristics of the Apple: what happens
»hen the computer is turned on or RESET is

pressed, the format of the screen text, the nature of
iursor moves, and the assignment of primary input
ind output devices. The monitor zero page assign-
nents must be taken into account by software
lesigners. Page 2 ofRAM is thought of as the Apple
:eyboard input buffer because that is the way the
nonitor uses Page 2. Cards capable of being pri-
mary input or output dev ices must have programs at
tieir I/O SELECT' addresses, because the firm-
ware assigns a slot as^ primary input or output by
^wiping to the slot's first I/O SELECT' address
ftlOO for Slot I, $C200 for Slot 2, etc.). These fea-
wea are not inviolate in the Apple. They can be
*"^ ^y loading a new operating system intoAM or by replacing a single ROM chip, which is

exactly whatApple did when they decided to change
a few operational features of their computer.

The Apple II Plus

The Apple II evolved rapidly in the late 1970s into

a more sophisticated machine than was originally

introduced. The dynamic nature of the hardware
and software support provided to the Apple II by
Apple in 1978 and 1979 is remarkable. In approxi-
mate order,

1. Applesoft BASIC became available on cassette,

2. The Disk II was introduced with its powerful
DOS,

3. Applesoft became available on diskette,

4. Applesoft became available on a firmware card,

5. The Apple II Plus was released with Applesoft
and Autostart monitor in ROM,

6. The Language System was released with 16K
RAM card, Pascal language, and 16-sector disk

capability, and
7. DOS 3.3 was released with its 1 6-sector capabil -

ity (August 1980).

A popular Apple configuration became both Integer

BASIC and Applesoft in ROM with automatic selec-

tion between the two by the DOS when a program
was RUN. One BASIC resided in motherboard
ROM, and the other resided in ROM on a Slot firm-

ware card. As this configuration demonstrates,

bank switching of firmware operating systems is a

very powerful concept.

The availability of Applesoft BASIC greatly

improved the versatility of the Apple by making the

manipulation of the HIRES screen, large disk text

files, and floating point numbers practical. Unfortu-

nate Applesoft weaknesses were incompatibility in

command and memory usage with Integer BASIC,
no AUTO numbering, no DSP(DiSPlay) command,
and the absence of the 6502 Mini-Assembler. Also,

the SWEET 16 interpreter and old floating point

routines which are associated with Integer BASIC
are not available with Applesoft.

The new Autostart monitor reflected the chang-

ing nature of the personal computer owner. It

caused the Apple to come up in BASIC instead of the

system monitor, gave the Apple the capability to

boot a disk at power up, and greatly improved the

ESCape mode cursor moves. In the process, the

SINGLE STEP and TRACE investigative utilities

for machine language programs and the 16-bit mul-

tiply and divide routines were removed. Program-

mers' utilities were thus sacrificed for improved

operational features. The small businessmen gained

a system that automatically loads and starts at

"»i,.i.i



6-8 Understanding the Apple He

power up, and the computer hacks lost the conve-

nience of STEP and TRACE in ROM.

The Impact of the RAM Card

An eventual development in the evolution of the

Apple ir was the popularity of the 16K RAM card.

With a disk based system, as the Apple had become,

it was no longer as necessary to have extensive oper-

ating systems in ROM as it was with a cassette based

system. The entire Integer BASIC program and

associated utilities could be loaded into the $E000—
$F7FF area of the 16K card in a tolerably short

period of time, giving the user the equivalent of the

firmware card but more versatility. The system

monitor became alterable by the user, and the

number of operating systems that might possibly

reside in high memory became unlimited. The dis-

advantages of the 16K RAM card were the possibil-

ity of overwriting high memory, occasional extra

waiting for loading the program into the 16K RAM
card from disk, the impossibility of protecting 6502

vectors from program encrypting artists, and the

lost capability of other peripheral cards to respond

to $F800—$FFFF addressing. For most users, the

advantages of the 16K RAM card outweighed the

disadvantages.

Ttie Apple lie

In early 1983, Apple released the Apple He com-

puter, an improved Apple II with increased firm-

ware requirements. The Apple lie is a 128K, upper/

lower ease, 80-column computer designed to emu-
late a 48K Apple II with 16KRAM card in Slot and
80-eolumn display card in Slot 3. The 16K RAM
card emulation is strictly a hardware mechaniza-

tion with 64K of motherboard RAM, MMU soft

switches controlled by $C08X access, and data

bus management via the ROMENl', R0MEN2',
CASEN', and EN80' MMU outputs. Two very im-

portant operational improvements over the 16K
RAM card are that high RAM is disabled when
INHIBIT' is low, and that high RAM is disabled for

reading and enabled for writing any time RESET'
falls.

The 80-column card emulation is also a hardware
mechanization and is implemented in the timing
generator, auxiliary RAM card, video generator,

and MMU. Additionally, extensive new firmware is

utilized to accomplish 80-column text output.

The 80-column firmware of the Apple lie core-

sides, in ROM, with the old 40-eolumn firmware of

the Apple II. The 40-column firmware is enabled at

power up or system reset, and the 80-column firm-
ware must be selected via IN#3 or PR#3. The

80-column firmware accomplishes the task ofmain-
taining the alternating column auxiliary card and
motherboard RAM text display map. It also per-

forms some Pascal housekeeping and interprets

special control and escape characters that are used
to manipulate the text display. Additionally, the

XFER (transfer control between motherboard and
auxiliary card RAM) and AUXMOVE (transfer

data between motherboard and auxiliary card

RAM) utilities reside in the $C3XX range and are

considered to be part of the 80-column firmware.

To make room for the firmware necessities of the

Apple lie, Apple switched from 12Kof ROM in the

Apple II to 16K of ROM in the Apple lie. They could

have accomplished the same thing by bank switch-

ing the $D000—DFFF range with ROM as is done

with high RAM, but they chose, instead, to switch

the $C100—$CFFF between I/O and ROM. This ig

consistent with the concept of an emulated Slot 3

80-column card. Slot 3 firmware is accessed at

$C3XX and $C800—$CFFF. and so is the Apple He
80-column firmware.

Other than the presence of 80-column firmware,

the monitor in the Apple He is nearly identical to the

Apple II Autostart monitor. There are some modifi-

cations, such as a new KEYIN routine, interpre-

tation of ESCAPE arrow cursor moves, and

interpretation of open and close Apple keys at reset

time. The modifications increase the size of the mon-

itor and necessitate the location of some monitor

routines in the $0100—$C2FF addressing range.

These routines are called by executing GOTOCX at

$FBB4 with the index of the desired routine in the

Y-register.

Another firmware addition made in the Apple He

is the built-in diagnostics at $C400—$C7FF. This is

the only portion of the $C100—$CFFF firmware for

which Apple did not publish a listing. The diagnos-

tics include checks of the ability to control and read

lOU and MMU soft switches, checksum computa-

tions for the CI—DF and EO—FF ROMs, and a

complete check of motherboard (but not auxiliary

card) RAM,
The bottom 256 bytes of the Cl—DF ROM cannot

be read by the MPU since ROM is not addressed at

$COXX. I put the ROM in my PROM burner to see

what Apple puts in the this unaccessed portion. The

answer? All zeroes.

me Apple lie Firmware Upgrade
When Apple developed the Apple He, they had to

struggle with the sometimes conflicting goals of

building the best computer possible and retaining

maximum compatibility with the Apple II. Some of
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the resulting compromises were less than perfect.

My primary dislikes are the treatment of the 80-

column capability as a Slot 3 peripheral, the fail-

ure to upgrade Applesoft commands to support

DOUBLE-RES GRAPHICS, and the failure to up-

grade BASIC and monitor command interpretation

subroutines so that lower case keyboard input can be

interpreted as commands.
Whiledevelopingthe Apple lie, Appleeliminated

this last imperfection and made some other changes

to the firmware. These changes support Apple lie

features including built-in mouse capability, gen-

eral I/O structure, and 65C02 MPU, The firmware
improvements in the Apple He program have

spawned a firmware upgrade to the Apple He. This

upgrade is expected to be released atapprox imately

the same time as this book. Based on a preliminary

version that Apple supplied, some features of the

firmware upgrade are briefly described here.*

The goals of the firmware upgrade are to maxi-

mize Apple Ile/IIc compatibility, to integrate dis-

played icons into the Apple lie display, and to make
genera] improvements to Apple lie firmware. In-

cluded in the package are new CI—DF and EO~FF
ROMs, a new video ROM. and a 65C02 MPU.
Icons are pictures that represent things, and

Apple today is a champion of the concept of repre-

senting computer actions with icons on the screen

and selecting the action by "pointing" at it with a

mouse. In line with this company policy, Apple has

developed a videoROM with icon patterns replacing

*Ai30see the NMI' and IRQ' and 65C02 MICROPROCESSOR
sections ot Chapter 4.

the INVERSE upper case patterns at addresses

$200-$2FF (see Figure 8.8). The video ROM with
"mouse text" is installed in all Apple lie's, and it is

included in the firmware upgrade to the Apple lie.

There is still an INVERSE upper case set at $000—
$OFF of the new video ROM. so this capability is not

lost. However, INVERSE video output routines

which output INVERSE upper case text characters
by storing $40—$5F in the display map and setting

ALTCHRSET will display mouse icons instead of

the desired text characters with the mousy video

ROM.
In addition to the "mouse text" in the video ROM,

there are improvements to the system monitor, the

80-column firmware, and Applesoft in the firmware
upgrade. These include a new IRQ'/BREAK hand-

ler, a 6502 miniassembler, an ASCII (in addition

to hexadecimal) monitor input mode, a monitor
SEARCH command, faster and smoother 80-column
firmware text scrolling, and monitor, Applesoft,

Pascal, and ProDOS interpretation of lowercase

commands. To make room for these improvements,

various routines in the $CXXX and $F775—$FFFF
ranges are streamlined, relocated, or eliminated.

Most notably, the firmware diagnostics are reduced

in length by nearly two memory pages.

The new firmware upgrade looks like a winner.

Substantial operational improvements are made to

the Apple lie, and the user gives up little in return.

My suspicion is that the new firmware and 65C02

MPU will quickly make their way into the majority

of Apple He's and that the characteristics of the

enhanced firmware will come to represent the oper-

ational characteristics of the Apple He.
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HARDWARE/SOFTWARE APPLICATION

MODIFYING THE SYSTEM MONITOR

The system mon i tor deterin ines many of the oper-

ational features of the Apple He, and modifying the

system monitor is one way of enhancing the Apple

lie The monitor resides in the $F800 to $FFFF

space of the EO-FF ROM, and the $C100-$C2FF

space of the Cl-DF ROM.* It is easily modified in

high RAM by the user and by commercial pro-

grams, so modifying the monitor in RAM will give

you access to your personal utilities but won't neees-

sariiy help you investigate programs written by

others. If you want an unalterable modification, you

must make it in EPROM and have your Apple con-

figured so that you can override software control to

enable your EPROM.
The system monitor is a fine program with

some good utilities that you probably don't want

to delete. However, addresses $FCC9-$FD0B,
$FECD—$FEF5, and $FEFD—$FF2C are cassette

read/write routines that are rarely used in a disk

based Apple He. Modify the cassette routines to run

at a RAM address and save them on diskette. This

generates 156 bytes for your personal firmware

which can be increased to 164 by moving the control-

Y JMP statement to $FEC2. This is accomplished

by storing $4C, $F8, and $03 at $FEC2—$FEC4
and by storing $C1 at $FFE4.
Other areas of interest to monitor modifiers are in

the 80-column firmware and the firmware diagnos-

tic routines. There are 13 consecutive unused bytes

at $C3F3—C3FF, four consecutive unused bytes at

$C9A6—$C9A9, and four consecutive unused bytes

at $C7FC—$C7FF. These locations are convenient

areas for making minor patches to the GOTOCX
subroutines.

If you need more room for a firmware application

than provided by the above suggestions, you can
make room for 1024 continuous bytes of code by
eliminating the firmware diagnostics. What's more,

you can execute any program that begins at

Address references in this application note are valid in the

original Apple He firmware, but some are not valid in Apple's

reeen tly released Apple I le firmware upgrade. Note particularly

that, in a preliminary version of the enhanced firmware, the

diagnostics reside at $C600—$C7FF, some monitor and Apple-
soft cassette read/write routines reside at $C500—$C5FF, no
ROM cheek is performed in the diagnostics, and the STEP and
TRACE spots in the monitor command tables are taken by
SEARCH and MINI-ASSEMBLER commands. Check you r list-

ing before you attempt to apply the techniques of this application
note to an enhanced firmware Apple lie.

$C401 by holding down close Apple and pressing

CONTROL-RESET. Programs beginning at other

locations in the $C400—$C7FF range can be exe-

cuted by setting INTCXROM and call ing them via a

JMP pr JSR instruction. Replacing the diagnostics

with your firmware applications doesn't mean that

the Apple He self-diagnostic capability is perma-

nently lost. It only means you would have to install

the standard Apple CI—DF ROM to run the firm-

ware diagnostics,

The idea in making a minor modification to the

system monitor is to create an EPROM with con-

tents identical to the monitor except for small areas

which contain your data. One idea for modification

is to increase the command repertoire of the moni-

tor. STEP and TRACE routines were deleted when

the Autostart monitor was developed. This opened

space for two commands in the command tables

(CHRTBL and SUETBL) of the monitor. If you

delete the cassette routines, that will also open up

two more command spaces since the READ and

WRITE commands will no longer function.

What sort ofcommands can be installed? Here are

some possibilities:

1. Breakpoint insert and breakpoint remove com-

mands which facilitate the use of the 6502

BREAK instruction as adebugging breakpoint.

2. Hex to decimal and decimal to hex commands.

3. A Hex/ASCII memory dump command.

4. "Click on" and "click off control of a keypress

click simulator.

5. Commands that enter Applesoft, Integer, Pas-

cal, or CP/M.
6. Commands that connect and disconnectDOS 3.3

or ProDOS.
7. A command to transfer the DOS 3.3 or ProDOS

from EPROM on a firmware card to RAM.

8. A dump screen to printer command that links to

your printer driver on a peripheral card I/O

STROBE' ROM.

The possibilities are endless.

You can modify the system monitor without

changing the command table. One idea is to change

the ESCAPE handler to recognize special func-

tions. For example, you can assign ESCAPE-G to

Graphics, ESCAPE-T to Text, and so on to give

yourself control of the screen modes from BASIC,

the monitor, and many other keyboard polling

programs.
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FA62: 2C 10 C0 BIT $C010 RESET KEYSTROBE; READ AKD
FA65: 10 03 BPL $FA6A
FA67: 4C 59 FF JMP $FF59 JUMP TO MONITOR IF AKD
FA6A: D8 CLD DO He RESET STUFF
FA6B: 20 84 FE JSR $FE84 SETNORM
FA6E: 20 2F FB JSR ,$FB2F INIT
FA71; 20 93 FE JSR $FE93 SETVID
FA74: 20 89 FE JSR $FE89 SETKBD
FA77: A0 05 LDY #5
FA79: 20 B4 FB JSR $FBB4 GOTOCX: INDEX 5
FA7C: AD FF CF LDA $CFFF I/O STROBE' ROM OFF
FA7F: C3 DFB ?G3 CHECKSUM COMPENSATION
FA80: EA NOP
FA81: EA NOP

Here is an example of a change to the system
monitor that does not delete any routines or capabil-
ities but would still benefit the Apple Ile'user. It

modifies the RESET routine to beg'in by checking
the AKD flag to see if a matrix key is being held
down, If a key is not being held down, then the
normal Autostart reset is performed. If a key is

being heLd down, then the old monitor reset is per-
formed. With this modification in firmware, the
user may cause a reset entry to the monitor anytime
he wishes by holding a convenient key while press-
ing then releasing CONTROL-RESET, but the
normal reset is still the Autostart reset.

To create an EPROM with this modification, use
-he monitor MOVE command to transfer the EO—
FF ROM contents to the area of RAM used as the
lutput buffer of your PROM burner. Then, begin-
ling at the address corresponding to $FA62, store
he code above. These addresses are identical in both
he original Apple He monitor and in the 1985
irmware upgrade.

This modified reset handler takes advantage of
»me redundancies in the Apple. He monitor reset
>andler to make room for an AKD check and a
hecksum compensation byte. The redundancies are
hat decimal mode is cleared twice (at $FA62 and
PA81) and that ANO and ANl are reset (LDA
C058; LDA $C05A) even though this is done auto-
latically in the lOU when RESET' falls. Addition-
lly, space is saved since read access to $C010 both
sads the AKD flag and resets the KEYSTROBE
>ft switch.

The checksum compensation value, $C3, is equal
'
the MOD $100 sum of the deleted data minus the
3w data. Therefore, the MOD $100 sum of the
itire EO-FP ROM is the same as it was before
Mifieation, This will makethefirmwarediagnos-
..Checksum procedure pass, and it will also enable
me software that performs a checksum on the
onitor to run with your modified monitor. It will

not produce the correct compensation for checksum
procedures based on exclusive-ORing or anything
other than simple MOD $100 addition.

If your only intention is to make the firmware
diagnostic checksum procedure pass, you can di-
rectly modify the procedure check byte location
rather than using a separate compensation byte.
The C 1—DF ROM check byte location is $C400. and
the EO—FF ROM check byte location is $F7FF.
Programs that require checksum or other verifi-

cation of motherboard ROM before they will work
correctly are one of the more nettlesome develop-
ments in Apple software publishing. I am sorry to
say that Apple Computer, Inc. has taken up this
annoying practice, and that ProDOS will not boot
with many ROM modifications. The best way around
the checksummers is to place your modified moni-
tor, coresidentwith an unmodified Apple He moni-
tor, in a 27128 EPROM instead of a 2764. Install

your double monitor EPROM through a socket/
adaptor which has pin 26 iAU) bent out and con-
nected to +5 volts or ground via a manual switch.
This will enable you to easily switch to the standard
monitor any time you need its features. With this

setup, you can make some borderline changes which
you wouldn't want to do if you were stuck with the
modified monitor all the time.

As a final word of advice, you should tag your
modified monitor so you can recognize when it is

active. It can be tagged audibly by changing loca-

tion $FBE5 from $0C to $16. This noticeably lowers
the pitch of the Apple's BELL so that you can verify

your EPROM is active by pressing CONTROL-G or

RESET. You can tag your EPROM visually at

power up by changing the contents of $FB09—
$FB10 to an ASCII message of your choice. For
example, instead of "Apple 11" you might have your
screen display "KAZOO 11" or some other such per-

tinent title. Remember to adjust your checksum
compensation byte for any data that you change.
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ADDRESS FUNCTION

$C080,X
$C081,X
$C082,X

$C083,X

HOSS ON, BANK
HOSS OFF, BANK
HOSS ON, BANK 1

HOSS OFF, BANK 1

HARDWARE APPLICATION

MODIFYING A 12K FIRMWARE CARD INTO A 24K DOS HOSS

Can persons who own a 12K firmware card make

use of it in the Apple He? Darn right. The firmware

card will operate in any Apple lie slot. If the card

contains Integer BASIC and you make a mmor

change to DOS 3.3, you will have the ultra conve-

nient access to Integer BASIC that was realized

with a Slot firmware card in the Apple 11. The

change to DOS consists of changing the $C08X lan-

guage finding commands at $A5B7 and $A5BF to

$COnX commands where n equals the firmware

card slot number plus $8.

Before you rush off to modify DOS 3.3 and install

your Integer firmware card in your Apple lie, eon-

template a firmware card that gives you instan-

taneous access to DOS 3.3 in addition to Integer

BASIC. Wouldn't it be nice to have a firmware card

that contained the DOS and would alleviate the

necessity ofwaiting for a disk boot anytime you turn

on the Apple He. Well, if you own a 12K firmware

card, a soldering iron, some 2732 EPROM, and a

little time, you own that DOS/Integer firmware

card. I call this super firmware card the DOS
HOSS, and the purpose of this application note is to

show you how to convert a 12K firmware card into a

24K DOS HOSS.
Figure 6.3 is a schematic diagram of the 12K

firmware card taken from Understanding theApple

II. Please refer to that book for a complete descrip-

tion of the firmware card. Briefly, it is an INHIBIT'

based, 12K firmware card with six 24-pin sockets

meant to accept 2K Apple II ROMs or 2716

EPROMs. It is enabled when RESET' falls with the

enable switch on, or when a program causes even

access to $COnX where n is slot number plus $8. It is

disabled when RESET' falls with the enable switch

off or when a program causes odd access to $COnX.

The DOS HOSS hardware conversion consists of

wiring up the unused half of the 74LS74 dual D
flip-flop as a programmable bank switching flip-

flop as shown in Figure 6,4,* The output of this

flip-flop is tied to the All (pin 21) input of the

EPROM sockets. This divides the card into two 12K
banks, one of which is enabled every time RESET'
drops (assuming the enable switch is on). When the

firmware card is modified as shown in Figure 6.4,

program control is via access to the following ad-

dresses with slotnumber times $10 in the X-register:

•Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

When the modified firmware card is installed

(with the enable switch in the up position), it inter

cepts and processes the Apple He system reset. You

may handle resets any way you like, but there must

be areset vector at$FFFC/$FFFD of bankOpoint-

ing to some sort of reset handler. The concept that is

presented here is that of a DOS/Integer "boss" that

transfers DOS 3.3 and Integer BASIC to their nor-

mal locations in RAM at power up and other times

selected by the operator.

Figure 6.5 is a map of the DOS HOSS. Bank is

filled with Integer BASIC, an Apple He monitor

with special reset vector, and the main body of the

reset handler. DOS 3.3 is in bank 1, as well as a

MOVEDOS routine that transfers the DOS to RAM.

The main reset handler processes all resets, and, if

transfer of the DOS to RAM is required, switches

control to the bank 1 MOVEDOS routine, and

receives control after the DOS transfer is complete.

The DOS HOSS reset handler and MOVEDOS
routines are shown in Figures 6,6 and 6.7. With this

reset handler, there are three types of resets. A spe-

cial reset occurs when the operator holds down a

matrix key while CONTROL-RESET is pressed (as

signaled by the AKD flag). A power-up reset

occurs when a matrix key is not being held and the

contents of power-up location ($3F 4) are not equal to

the exclusive-OR of $A5 and the contents of $3F3. If

the power-up byte is okay and no matrix key is being

held, the normal reset handler at $FA62 of the

motherboard is executed.

The power-up reset consists of transferring DOS

3.3 and Integer to their normal RAM locations and

initializing the DOS. A disk boot is not performed,

so your disk drive will not automatically start up at

power up when the DOS HOSS is installed. It

doesn't need to because the DOS is instantly avail-

able in RAM at power up, just as if it were built mto

the the Apple. . ,

The special resets are some actions which it is

occasionally convenient for an operator to force. The

reader is encouraged to expand or improve these

special resets since there is a lot of room for more
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+5V FROM
B2-14

A1 FROM —

^

ROM D8, PIN 7

DEVICE SELECT' 3

FR0MB2-11

RESET' (31>

n

BANK1 SELECT
TO ROM 00. PIN 21

2716

/

Disconnect one
lead of R2

R2

R1

Solder

R1 jumper

Figure 64 Converting a 12K Firmware Card into a 24K DOS HOSS.

code in the DOS HOSS. Tlie special resets supported

by tlie Figure 6.6 listing are as follows:

RESET ACTION
OPEN APPLE Forced disk boot

CLOSE APPLE Diagnostic execution

C Catalog disk

I Integer transfer only

M Enter monitor

B (Boot only) transfer DOS only

H Execute disk program named
HELLO

A (or other) Forced power-up reset

The reset handler is a simple keyboard command
interpreter and executer. It begins at $D80A, so the

contents of ?FFFC/$FFFD in the bank F8 ROM

should be $0A, $D8. There are a couple of uncompli-

cated bank switching protocols used. First, $D000—
$D809 in bank and bank 1 is reserved for

transferring control between bank and bank 1

when the bank 1 MOVEDOS routine is called.

Second , a $60 (RTS) located at $DB02 of Applesoft is

used to accept program flow on the motherboard

when the DOS HOSS is turned off. A motherboard

routine is selected for execution by placing its

address minus one on the stack before exiting to the

motherboard RTS.

Program control of the DOS HOSS in Figures 6.6

and 6.7 is via fixed slot commands. You must select

the slot in which the DOS HOSS resides at lines 38

and 39 of Figure 6.6 and line 19 of Figure 6.7 before

assembly.

BANKO
(INTEGER)

BANK1
(DOS)

DB EO EB FO F8

RESET
HANDLER

INT
EO

INT

E8

INT
FO

MONITOR
'

DOS
9D-9F.

MOVEDOS.
DOS
AG

DOS
A8

DOS
BO

DOS
B8

i

Figure 65 nleDOSHOSSM«HYioryMap 1. f-

m
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SOURCE FILE:

0000:

0000
0000
0000

0000
0000

0000
0000

0006

0007

0008

0009

9E25
9E41

C0D0
0000

0000
0000

0000

0000

0000

D800
D800

D803
D806
0809
D80B

D80D

D80F
D811
D813

D815
D817
D819
D81B
D81D
D81E
D820

D822
D824

D826
D828

D82B
D82E
D830
D833

MOVEDOS

* *

* MOVE DOS *
*

* BY JIM SATHER

*

*

* *

*

2

3

4

5
6

7

8

9

10
11 *

12 *

13 SFCE
14 SRCEHI
15 DSTN
16 DSTNHI
17 M0VEP3
18 RTSTEMP
19 BANK0

*

*
*

JULY 29,1983

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$6

$7

58

$9
$9E25
$9E41
$C0D0 ASSUMES SLOT 5

20

21
22
23
24 *

25 *

26 *

27 *

28 *

mXT OBJECT FILE
29

BANK 1 ROUTINES

THIS ROUTINE ACCEPTS FLOW FROM BANK AND MOVES
DOS FROM THE DOSS HOS TO RAM. AFTER THE
MOVE, PROGRAM CONTROL IS PASSED BACK TO BANK 0.

FF FF FF
20 09 D8

AD D0 C0
A9 00

06

08

9D

09

85

85

A9
85

A9 DD
85 07
A0 00

81 06

91 08
C8
D0 F9
E6 09
E6 07

D0 F3
A9 60
80 41

20 25
A9 A9
8D 41

60

9E

9E

9E

30

31

32
33

34

35

36

37

38

39
40
41
42
43
44

45
46
47
48

49

50
51
52

53

NAME IS

ORG
DFB
JSR
LDA

DOSAWAY LDA
STA
STA
IDA
STA
LDA
STA
IDY

M0VELP2 IDA
STA
INY
BNE
INC

INC
BNE
LDA
STA
JSR
Wh
STA
RTS

.OBJ0MOVEDOS,
$D800
$FF,$FF,$FF
DOSAWAY
BANK0
#0
SRCE
DSTN
#$9D
DSTNHI
#$DD
SRCEHI

#0
(SRCE) ,Y

(DSTN) ,Y

M0VELP2
DSTNHI
SRCEHI
M0VELP2
#$60
RTSTEMP
M0VEP3
#$A9
RTSTEMP

ACCEPT CONTROL FROM BANK
RETURN CONTROL TO BANK
MOVE DOS.
FIRST SET UP INDIRECT LOCATIONS.
SOURCE BASE INITIALLY $DD00.
DESTINATION BASE INITIALLY $9D00.

MOVE IT.

TEMPORARILY TERMINATE IDOS FIX PAGE 3 ROUTINE.

FIX PAGE 3.

RESTORE DOS ROUTINE,

*** SUCCESSFUL ASSETCLY: NO ERRORS

Ftgure 6.7 Assembler Listing: Move DOS.

M!J,&,,
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Creatingthe DOS H0SS4KEPROM files consists

of several steps. First, enter the source code of

Figures 6.6 and 6.7 ^nd assemble it into files

named D8ROUTS.OBJ0 and MOVEDOS.OBJO.
Then create an uninitialized DOS 3.3 file as follows:

1. Boot DOS 3.3 from a disk.

2. Store 4C 59 FF (JMP $FF59) at $B73B.

3. Insert a blank disk and initialize it with this

modified DOS (INIT HELLO).
4. Boot the newly initialized disk. The monitor will

be entered after the DOS is loaded.

5. Move the modified DOS to ?6D00—$8FFF
(6D00OD00.BFFFM).

6. Restore patched area (873B:A2 FF 9A)

7. Boot DOS 3,3 from a disk using^ PR#6, not open

Apple RESET.
8. Save uninitialized DOS 3.3 file IBSAVE

DOS,A$6D00,L$2300).

All that remains is to pack Integer, DOS 3.3,

D8ROUTS.OBJ0, and MOVEDOS.OBJO into five

4K files for burning to 2732 EPROM. I strongly

recommend that you do this with a disk EXEC file

created with your assembler editor or word proces-

sor. It is very easy to make a mistake which will be
difficult to track down ifyou do enter all these moni-

tor commands in immediate mode. If you use an
EXEC file (or separate EXEC files for each 4K file),

you will have a record of what you did, and you won't
have to retype all the commands ifyou need to make
changes.

The EXEC file shown on this page will generate
all five 4K EPROM source files. Before EXECing.
make sure that Integer and your desired Integer
associated Apple He monitor are resident in high
RAM. D8ROUTS.OBJ0. MOVEDOS.OBJO. and
DOS must all be resident on the same disk as the
EXEC file.

Some readers may recognize a similarity between
the DOS HOSS and quikLoader, the 512-kilobyte
firmware card I designed for the Southern Califor-
nia Research Group. That is because the DOS HOSS
is the ancestor of quikLoader. After conceiving of

MON I,0,C
INT
CALL -151
BLOAD DOS,A$6D00
2000 :FF
200K2000.2FFEM
BLOAD D8ROUTS.OBJ0,A$2000
BLOAD MOVEDOS.OBJ0,A$2800
2D00 <6D00 . 6FFFM
BSAVE INT/DOS-D8,A$2000,L$1000

2000<E000.E7PFM
2800<7000.77FFM
BSAVE INT/DOS-E0,A$2000,L$1000

2000<E800.EFFFM
2800<7800.7FFFM
BSAVE INT/DOS-E8,A92000,L$1000
*

2000<F000.F7FFM
2800<8000.87FFM
BSAVE INT/DOS-F0,A$2000,L$1000

2000<F800.FFFFM
27FC!A D8
2800 < 8800. 8FFFM
BSAVE INT/D0S-F8,A$ 2000, L$ 1000
NOMON I,0,C

and implementing the DOS HOSS as an application

for this book, I was so happy with the result that I

decided to develop it into acommercial product. The
quikLoader is considerably more ambitious since it

supports much larger EPROM and contains an
operating system that implements cataloging, load-

ing, and running of relatively large firmware appli-

cations in addition to instantaneous access to DOS
3.3 and Integer BASIC. Converting the 12K firm-

ware card into the DOSS HOSS is a great way t»

breathe new life into an old work horse. If, however,
you do not have a firmware card available, you can
get the same features and more with a quikLoader.

„. 1 - -
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chapter 7

Input/Output

in the Apple lie
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It bears repeating. MPU command of all devices

in the Apple lie computer is via signals decoded
from the address bus. All persons who program the

Apple become aware of this sooner or later, and all

users of the Apple can save themselves problems if

they understand command by addressing. The con-

cept of data transfer between the MPU and a

memory location is very easily grasped, but it must
be understood that the MPU also controls parts of

the computer via the address bus, often with no

related transfer of data on the data bus.

For the most part, I/O in the Apple is performed
under direct control of the MPU. This includes all

built-in I/O features except video output, and it also

includes most conventional I/O performed via pe-

ripheral cards. The MPU controls these devices by
addressing them, just as if it were addressing
memory. As every memory location has a specific

address, every I/O device which is directly con-

trolled by the MPU has a specific address or range
of addresses.

Now there is no "Control Address Bus" command
in the 6502's repertoire. The 6502 reads from or
writes to the data bus on every cycle. So what does
the programmer do when he wants to toggle the

speaker? He utilizes a "LDA $C030" or a "CPX
$C0;^0" or a "WHO GIVES A DARN $C0;iO" and

ip:nores the meaningless data bus. This is why you

can program the speal<er with a statement like

"SOUND = PEEK(-16336)". The object is not to

"PEEK" into memory. The object is to get $C030

onto the address bus, commanding the speaker to

toggle. Beneath the lid of the Apple, on every cycle,

whether memory or a control function is being

addressed, the state ofthe address bus is decoded to

tell the rest of the Apple what the MPU is doing.

The purpose of this chapter is to discuss the var-

ious I/O devices that are built into the Apple He, and

to show how addresses are decoded to give the MPU
control over I/O processes. Related subjects such as

peripheral slot capabilities and I/O firmware are

discussed. Video output generation is not discussed,

but is the sole topic of the following chapter.

PERIPHERAL ADDRESS
DECODING CIRCUITRY
Address decoding in the Apple is the process of

selecting one of 65,536 addressed locations from a

16-bit address. The overall scheme of address decod-

ing in the Apple I le is to d ivide the memory map into
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the major categories of RAM, ROM, and I/O inside

the MMU. Signals from the MMU are used to enable

data communication and to enable further address

decoding within the addressed category. These data

bus management signals were described in Chapter

5. The ones which pertain to I/O are CXXX (I/O

ENABLE), KBD', and MD IN/OUT'. KBD' enables

the contents of the keyboard ROM to the data bus

when read access is made to $CO00-$C01 F (Figure

7,4). MD IN/OUT' controls the direction of the pe-

ripheral slot data bus driver (Figure 7.6). CXXX is

the overall I/O enable signal that enables further

address decoding of I/O signals (Figure 7.1).

CXXX goes high when an address in the $CXXX
range is detected on the address bus. It is not

PHASE gated but follows the address bus after

MMU propagation delay. CXXX will not go high if

INTCXROM issetand $C100—$CFFF isaddressed,

ifSLOTCSROM is resetand$C3XX is addressed, or

if INTC8R0M is set and $C800-$CFFF is addres-

sed.

The CXXX signal is applied to the peripheral

address decoding circuitry where it enables

further decodingoftheaddressbus. All signalsgen-

crated here are PHASE gated and active when
low. The circuitry is LSTTL, so an active signal will

fall after PHASE rises and rise after PHASE
falls without the long delays associated with MOS
chips. Signals generated in the peripheral decoding
circuitry include

(C800-CFFF)'
C1XX'-C7XX'
C09X'-C0FX'
C07X'
C06X'
C04X'
COXX'

I/O STROBE'
I/O SELECTS'
DEVICE SELECTS'
TIMER TRIGGER'
SERIAL INPUT ENABLE'
C040 STROBE'
lOU DECODE ENABLE'

The DEVICE SELECTS', I/O SELECTS', and
I/O STROBE' are connected to the peripheral slots

where they can control peripheral cards. Decoding
these signalson the motherboard, rather than on the
cards themselves, eliminates redundant hardware
on the peripheral cards. It also makes it easy to

design cards so they will operate in any slot,

C07X' triggers the four paddle timers when
$C07X is detected on the address bus. C06X' causes
one of eight serial inputs to be placed on D7 of the
peripheral data bus (Figure 7.2). C04X' is connected
directly to pin 5 of the game I/O socket, and is the
C040 STROBE' output of the Apple.
The COXX'signal is connected to pin 30of the lOU

and enables address decoding in the lOU. Note the
contrast here between the MMU and the lOU, The

MMU monitors the entire address bus and decodes

the data bus management signals which control the

overall memory map. The lOU, however, monitors

only parts of the $COXX range to perform limited

I/O control and display configuration functions.

The peripheral address decoding hardware is

very simple, consisting of a NAND gate, a 74LS138
3 to 8 decoder, and a 74LS154 4 to 16 decoder (Fig-

ure 7.1). The NAND gate brings I/O STROBE' low

during PHASE when CXXX and All are high.

I/O STROBE' thus drops low during access to

$C800-$CFFF when INTCXROM and
INTC8R0M are reset.

During PHASE when All is low, the 3 to 8

decoder enables one of eight CnXX' signals. These

are the seven I/O SELECT' lines and COXX'.COXX'
enables further address decoding in the 4 to 16 de-

coder and the lOU. The 4 to 16 decoder generates the

seven DEVICE SELECT' signals ($COnX where n=

$9 to $F). C04X', C06X', and C07X'. The scheme for

decoding the $COXX range is that the 4 to 16 de-

coder generates all the signals that simply represent

a 16-byte address range. All other $COXX signals

are decoded in the lOU,
There are several interesting subtleties to the

peripheral address decoding connections,

1. CXXX must be high before peripheral address

decoding and lOU address decoding are enabled.

It is, therefore, possible for the MMU to inhibit

any of the address decoding pictured in Figure

7.1. However, theonly signals which the MMU
ever disables are I/O STROBE' and the I/O

SELECTS' (in conjunction with INTCXROM,
SL0TC3R0M, and INTC8R0M).

2. PHASE 1 is connected to an active low enable

input to B5, so PHASE high is a prerequisite

for any address decoded action in the $C000—

$C7FF range. Then why is PHASE 1 low gat-

ing also connected to CIO? Connecting PHASE
1 directly to CIO results in a quicker cutoff of

outputs of this chip after PHASE falls. This

results in operation nearly identical to that of

the Apple II in that the DEVICE SELECTS'
and C06X' do not linger past PHASE 0.*

3. R/W gating is not connected to the peripheral

address decoding circuitry. Therefore, com-

mand of Apple I/O features can be via read or

*Compatibility between the Apple II and Apple lie is desirable,

but I fee! that the DEVICE SELECT' signals should have been

allowed to linger a bit past PHASE in both machines. Since the

DEVICE SELECTS' are the primary data bus management

gates for the peripheral slots, they should straddle the falling

edge of 6502 PHASE 2.
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write access. However, ifyou write to the $C06X
serial input range, the serial input multiplexor
will compete with the bidirectional peripheral
data bus driver for control of D7 of the periph-
eral data bus. This is an undesirable situation

which should be avoided.

lOU SOR SWITCHES

The involvement of the lOU in the I/O processesof

the Apple lie is not extensive if you exclude video

generation from consideration. Actually, the lOU is

a custom video controller with a little bit of I/O

control circuitry thrown in. The little bit of I/O con-

trol includes cassette and speaker tog'gle lines, four

annunciator soft switches, the keyboard soft switch,

and provisions for reading the keyboard AKD (Any
Key Down) line. These functions are grouped to-

gether with the display mode soft switches in Figure

T.l.Thisfiguredepictsallsoftswitches and address

decoding functions of the lOU.

Table 7.1 shows the addresses which control the

lOU soft switches. Most of the soft switches have a

set address and a reset address. Exceptions are the

SPKR line which is toggled by access to $C03X. the

CSSTOUT line which is toggled by access to $C02X,
and the KEYSTROBE soft switch which is set by a

keypress or the auto repeat strobe and reset by write

access to $C01X or any access to $C010. The AKD
line and VBL' line are not programmable soft

switches, but they can be read similarly to the soft

switches. AKD and VBL' are gated to MD7 of the

data bus by read access to $C010 and $C019 respec-

tively for reading by the MPU.
The 80STORE, 80COL. ALTCHRSET, TEXT,

MIXED, PAGE2, and HIRES soft switches control
the display mode of the Apple He. They accomplish
this function by controlling which memory is

scanned for video output (Figure 5.3), by controlling
timing generation (Figure 3.9), and by controlling
address inputs to the video ROM (Figure 8.5). The
display mode soft switches are discussed in greater
detail in Chapter 8.

The annunciators. CSSTOUT, and SPKR lines

are output from the lOU. The annunciators are

connected directly to the game I/O socket, and
CSSTOUT and SPKR are processed then applied to

the cassette output jack and speaker.

The KEYSTROBE Softswitch performs no func-

tion other thantoindicatetotheMPU program that
a key has been pressed or that rapid keypresses are
being simulated by the auto repeat circuitry (Fig-

ure 3.8). In other words, the KEYSTROBE soft

switch exists only to be read by the MPU, not to

control functions internal to the lOU. Likewise, the

AKD line is routed through the lOU so it can be read

by the MPU.
When read access is made to $COO0—$C01F,

KBD' from the MMU goes low and the ASCII of the

latest keypress is output from the keyboard ROM to

MDO—6 of the data bus. This word is filled out, on

MD7 of the data bus. by KEYSTROBE ($COOX).

AKD ($C010). or one of the soft switches read at

$C011—$C01F. Thus, as far as the controlling pro-

gram is concerned, read access to $C000'-$C01F
fetches an 8-bit word with keyboard ASCII in the

lower 7 bits and the state of an lOU orMMU flag in

the most significant bit.

As with all drawings in Understanding the Apple
lie that show circuits internal to theMMU and lOU,
the lOU circuits of Figure 7.1 are only a functional

representation resulting primarily from my inves-

tigations of Apple lie operational features. Hope-

fully Figure 7.1 is functionally correct, but it does

not correctly depict such circuit details as true

arrangement of logic gates and flip-flops. Explana-

tions of some of the functional details of the lOU
portion of Figure 7.1 follow here.

1. All soft switches except KEYSTROBE, TEXT,
and MIXED are reset when the RESET' line

drops low. All soft switches appear to be cleared

at power up.

2. ALO—AL5 and AL7 are address bus values

AO—A5 and A7, latched from the RAM address

bus at RAS' falling during PHASE (Figure

5.3).

3. There appears to be a window during which

COXX'. A6. R/W. AL0-AL5, and AL7 are

monitored for commands which determine soft

switch states. If a soft switch command is held

valid at the lOU inputs for about 40 nanosec-

onds or more during the window, the affected

soft switch will respond to the command. As
well as I can determine, the lOU soft switch

window is PHASE • RAS" • Q3. The 6502

address valid period and consequent COXX'
valid period completely overlap this window.

4. AKD is delayed by two MPU cycle periods

before application to MD7. KSTRB is delayed

by two MPU cycle periods and quantized to one

MPU cycle period before application to the

KEYSTROBE set input. It is my belief that the

delay serves no function since keyboard ASCII

is readable approximately 10 milliseconds after

AKD goes high and 20 microseconds before the

KSTRB pulse. Quantizing KSTRB to one MPU
period prevents KEYSTROBE from setting
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Table 7.1 Address Control of lOU Soft Switct>es.

SOFT OFF ON READ
SWITCH ADDRESS ADDRESS ADDRESS CONDITION AFTER RESET'

KEYSTROBE $C010/
W$C01X

KSTRB/
AUTOSTRB

R$COOX NA (NOT APPLICABLE)

80STORE* w$cooo W$C001 R$C018 PAGE2 SWITCHES DISPLAY AREA
80COL wscooc W$CO0D R$C01F SINGLE-RES DISPLAY
ALTCHRSET W$COOE W$COOF R$C01E FLASHING TEXT ACTIVE
TEXT $C050 $C051 R$C01A NA
MIXED $C052 $C053 R$C01B NA
PAGE2* $C054 $C055 R$C01C PAGEl
HIRES* $C056 $C057 R$C01D LORES
ANO $C058 $C059 NA OFF
ANl $C05A $C05B NA OFF
AN2 $C05C $C05D NA OFF
AN3 $C05E ^cosr NA OFF
CSSTOUT** $C02X $C02X NA NA
SPKR** $C03X $C03X NA NA
AKD NA NA R$C010 NA
VBL' NA NA R$C019 NA

NOTES:
* PAGE2, HIRES, and 80STORE are mechanized identically in the MMU and lOU. The |

MMU passes the state of 80STORE tt) MD7 when $C018 is read, and the lOU passes the j

state of PAGE2 or HIRES to MD7 wilen .$C01C or $C01D is read.
** CSSTOUT and SPKR are toggled when their control addresses are accessed.

more than once fronn one KSTRB pulse. My
investigations indicate that the delay function is

clocked by RAS' falling during PHASE 0.

5. CSSTOUT or SPKR tine toggling appears to

occur if C02X or C03X is valid in the lOU at

RAS' risingduring PHASE 0. The line does not

actually toggle, however, until after RAS' falls

during the following PHASE 1,

6. When the MPU reads the state of an lOU soft

switch, the MD7 enable gate appears to be

PHASE • Q3' + PHASE 0'»Q3» RAS', which
is the last three 14M periods of PHASE and
the first 14M period of the following PHASE 1.

SERIAL I/O HARDWARE
Figure 7.2 is a schematic of Apple's serial I/O

devices. Most of these devices are connected to the

outside world through the game I/O socket (J15)

and the game I/O extension connector (J8). The
pins on thegame I/O socket and extension connector
are available to external devices such as joysticks

with pushbuttons. Additionally, the four annuncia-
tor signals and the C040 STROBE' are tied directly

to pins of the game I/O socket.

Apple He serial inputs are connected to D7 of the

peripheral data bus through the 74LS251 serial

input multiplexor. The LS251 is an 8 to 1 multi-

plexor whose tri-state output is enabled when C06X'

from the peripheral address decoding circuitry

drops low. AO, Al, and A2 from the address bus are

addressing inputs to the multiplexor, so access to

$C06X results in one of eight addressable inputs

being passed to D7. When read access is made to

$C06X, theMMU brings MD IN/OUT' high and the

addressed serial input is passed to MD7 for reading

by the MPU. Each input can be read at two

addi esses, but programming convention is to read

the serial inputs only at the low addresses ($C060—
$C067). The eight serial inputs and their addresses

are:

Cassette input

Pushbutton

Pushbutton 1

Pushbutton 2

Paddle

Paddle 1

Paddle 2

Paddle 3

$C060/$C068
$C061/$C069
$C062/$C06A
?C063/$C06B
$C064/$C06C
$C065/$C06D
$C066/$C06E
$C067/$C06F
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The serial input multiplexor is a good example of

how things come in groups of eight or other powers

of two in digital computers. Three address lines can

be in eight different states, so 8 to 1 multiplexors

exist for computer designers to use. This naturally

leads to a computer with eight serial inputs. There is

an operational oddity in the Apple that there are

four paddle inputs butonly three pushbutton inputs.

It becomes logical in the light of hardware conven-

ience. Eight serial inputs minus four timer inputs

minus one cassette input leaves room for three

pushbutton inputs.

A standard paddle set or joystick is shown con-

nected to the game I/O socket in Figure 7.2. This

illustrates the fact that plugging a standard paddle

set into the game I/O socket makes eightserial input

or output ports inaccessible there. If the paddle set

were shown attached to the extension connector, the

same four I/O lines would be utilized. There seems
to be an unnwritten law in the Apple world that only

PDLO, PDLl, PBO, and FBI will be commercially
supported . There are exceptions, but that is the gen-

eral rule.

The three pushbutton inputs {PBO, FBI, and
PB2) are actually TTL inputs to the serial input

multiplexor. They could be used for all sorts of serial

input but are normally used for pushbuttons. PBO is

also connected to the open Apple switch on the

keyboard, and FBI is also connected to the close

Apple switch. Both the PBO and FBI lines are

pulled down to ground by 470 ohm resistors on the

keyboard (Figure 7.4). When open Apple or close

Apple is pressed, 5 volts is applied to the LS251
input. When the key is released, the LS251 input is

pulled below the LSTTL low voltage threshold by
the 470 ohm resistor.

In addition to the pull-down resistors mounted on
the keyboard, most paddle sets and joysticks will

have PBO and FBI pull-down resistors mounted in

them. This is a throwback to the Apple II which did
not have pull-down resistors installed as the Apple
He does. The value of the pull-down resistors varies

depending on manufacturer but will be found to be
n the 200—1000 ohm range. Since this resistance is

•n parallel with 470 ohm resistors on the keyboard,
;he resistive load on the 5 volt line is 140—320 ohms
vhen a pushbutton or open/close Apple key is

pressed. If a paddle and joystick with 200 ohm pull-

lown resistors are installed in agame I/O extender,
ind PBO and PBl are pressed simultaneously, the 5
olt line is connected to ground through a resistance
f 45 ohms. This will cause the current load on the 5
olt line to increase by over 100 m illiamps while the

two buttons are pressed. This should cause no prob-
lems in most Apples, but it is something to think
about ifyour heavily loaded computer crashes some-
time when you press a pushbutton.
The Apple II shift key mod is available via

jumper pad X6 on the Apple He motherboard. The
shift key mod evolved as a method for distinguishing
between upper and lower case keyboard input on the
upper case only Apple II. The modification consists

of connecting the keyboard SHIFT line to PB2. A
program can then tell when ashift key is being held
down and thus distinguish between upper and lower
case keyboard entry. If you possess some software
which recognizes the shift key mod, but not upper/
lower case ASCII from the keyboard port, you can
utilize your software in the Apple He by soldering
the X6 pad. If you are not currently using the PB2
input at all, you may wish to solder X6 so you can use
PB2 for your own purposes. With X6 soldered, you
can activate all three pushbutton inputs from the

keyboard.

The four paddle inputs (PDLO, PDLl, PDL2, and
PDL3) from the game I/O socket and extension con-

nector are tied to a quad timer. These inputs are not

high/low binary voltage inputs like the pushbut-
tons. For that matter, the timers are not digital

devices, although they do have TTL compatible out-

puts to the serial input multiplexor.

The way each timer works is this: first, the timers
are triggered by $C07X access. The outputs of the

four timers then go high and each one stays high for

a period of time determined by the position of the

paddle connected to its input pin. The paddle knobs
are attached to 150,000 ohm potentiometers (varia-

ble resistors). Each of these potentiometers is part of

an R/C (Resistance/Capacitance) network which
determines the pulse width of one of the outputs of a

quad timer. They are designed so that the pulse

width in microseconds will be equal to (HP + 100) x

.022 where RP is the resistance of a paddle. Since the

paddles are 150,000 ohm pots, the timer outputs can

be varied from 2 (100 x .022) to 3300 (150100 x .022)

microseconds.

The four timer outputs are connected to the serial

input multiplexor so their high/low states can be

read by a program. The programming method is to

trigger the four timers, then poll the output of the

pertinent timer in a loop while counting the pro-

gram loops before the timer resets. Of course, a

standard paddle set uses only two of the four avail-

able timers.

The NE558/SE558 quad timer has a RESET
input which brings all four outputs low and inhibits
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triggering. This feature is not utilized in the Apple.

Each timer has its own input trigger, but in the

Apple, all four triggers are tied to the C07X' line. To

achieve the reset and individual trigger capabilities

would have required extra address decoding circuit-

ry and possibly would have decreased the perfor-

mance/cost ratio of the Apple. As it is, the common

trigger gives the capability of simultaneously read-

ing twoor more paddles, and the lack of reset merely

requires waiting for timer reset at the beginning of

timer polling routines. Unfortunately, neither of

these realities is supported by Apple firmware.

The timer set up in the Apple is an astonishingly

cheap way to achieve a 4-channei analog to digital

input capability. It is possible to obtain variable

resistors whose resistance is proportional to light,

heat, linear motion, rotational motion, chemical

composition, and probably a lot of other pertinent

things. This means that you can monitor all these

qualities with an Apple computer via the quad

timer. Of course, it takes a while to read these resis-

tances, 22 microseconds per thousand ohms. One the

other hand, how much is the temperature going to

change in a thousand microseconds?

The one thing the timers are the least suited to do

is the thing they are used quite often for, game
controllers for real time arcade type games. A
sophisticated HIRES arcade game on the Apple
requires all of a programmer's skill if the result is

fast paced realistic action. The 6502 in the Apple
executes an instruction every three or four microsec-

onds. It takes about 500 times as long to perform a

typical timer polling routine. Needless to say, pro-

gram speed is inversely proportional to the time

spent polling the timers. Were the Apple He de-

signed today, without the constraint of compatibil-

ity with the older Apple II, one would suspect that a

modern multichannel quick response analog to dig-

ital converter would be used for paddle input rather

than timers.

The eighth input to the serial input multiplexor is

the cassette input. The cassette input jack of the
Apple is connected to a high gain amplifier/shaper.
The amplifier takes the small signal from the ear-
phone jack of a cassette player and converts it to

high and low voltages which can be read correctly
by the serial input multiplexor. Of course, you can
still adjust the cassette player volume too high or too

low, but the amplifier gives you a very reasonable
chance of selecting a volume which works.
The cassette input amplifier/shaper is an elec-

tronic circuit that answers the question, "when is an
operational amplifier not an operational amplifier?"
The answer is that an LM741 operational amplifier

is not an operational amplifier when there is no
degenerative feedback. It then becomes a saturated
amplifier and, in the case of the Apple cassette
input, a threshold detector/signal shaper. Mild apol-
ogies for all that electronic language, but this isaii
electronic circuit. What it does is this:

1. Blocking capacitor ClO removes any DC com-
ponent of the input voltage and makes the pin 2
input to the LM741 vary above and below
volts.

2. The LM741 acts like a threshold detector. If the
voltage at pin 2 rises above .15 volt (very

approximately), the voltage at pin 6 will go as

negative as an LM741 can bring it (about

-4.3V) operating from a -5 volt negative sup-

ply. If the voltage at pin 2 lowers below -.15 volt

(very approximately), the voltage at pin 6 will

go as positive as an LM741 can bring it (about
-I-4.3V) operating from a +5 volt positive supply.

Thus, as long as the cassette input exceeds the

input threshold, the voltage at pin 6 will be an

8.Q volt p-p squared signal that switches high or

low as the input crosses the low threshold or

high threshold.

3. Pin 6 of the LM741 is connected to the serial

input multiplexor through a 12 thousand ohm
resistor. While Al 1-6 is at-^4.3 volts, 4.1 voltsor

so is felt at C12-4. While All-6 is at -4.3 volts,

the negative input clamp of the LS251 holds the

voltage at pin 4 very close to zero volts, and the

12 thousand ohm resistor limitsinputcurrentto

about .36 milliamps,

The neat thing about the cassette input circuit is

that even when your cheap tape recorder distorts a

digital square wave, asquare wave of correct pulse

width is presented to the input of the serial input

multiplexor. Figure 7.3 shows what happens whena
$30 tape player makes a sine wave outofyour square

wave. The LM741 still switches at points separated

in time by multiples of the period of the program

loop that stored the information to cassette. Of

course, there are limits to the distortion which an

Apple can work with.

The Apple 11Reference Manualfor lie Only states

that the nominal voltage required at the cassette

input is 1 volt peak to peak. This is a voltage one

would reasonably expect to find at the earphone

output of a cassette recorder. The cassette output of

the Apple is a much smaller voltage, comparable in

amplitude to the signal out of a microphone. This

voltage is the CSSTOUT signal from pin 7 of the

lOU reduced by a factor of 121. The CSSTOUT
signal level toggles once every access to $C02X. If

^:^^^'
>M
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Figure 73 Cassette Input Wave Shaping.

you assume that CSSTOUT swings back and forth

between and 3 volts while it is beings toggled, then

the cassette output jack swings between and .025

volts (3/121 = .025).

The SPKR signal from pin 8 of the lOU is a toggle

signal like CSSTOUT, except SPKR toggles when
$C03X is accessed. SPKR is applied to a simple
audio amplifier which drives the Apple's speaker.
The amplifier is necessary because the lOU cannot
directly drive a. 2 Y^ inch speaker. Current flow

through the speaker is in only one direction so the

speaker action is tense/relax rather than push/pull.

Alternate references to $C03X tense the speaker
diaphragm and then relax it, but the program can-

not determine whether a $C03X reference causes
tension or relaxation..Thisdampens the possibilities

of complex program control of the speaker tension.

In any case, an audio cycle consists of a tension hal f

cycle and a relaxation half cycle, so two $C03X ref-

erences are required per audio cycle. For example.
to program a 1000 Hz tone, you reference $C03X
2000 times a second.

There is an LED (Light Emitting Diode) con-
nected across the speaker jack on the Apple He
motherboard. However, the LED (CR2) does not
normally light because there is not enough voltage
developed across the speaker primary to cause vis-

ible light emission. The light does glow when SPKR
IS toggling with the speaker disconnected. You can
see this for yourself by disconnecting the speaker
plug and holding open Apple and close Apple and
pressingCONTROL-RESET. This causes firmware

diagnostic execution with speaker tones or light

emi.s.sion from the LED when the speaker is discon-

nected, The LED thus provides a means of verifying

diagnostic performance on a motherboard with no

speaker connected.

APPLE lie KEYBOARD CIRCUITRY

IVIost readers are aware that the Apple He key-

board is a considerable improvement over the old

upper case only keyboard of the Apple II, This i.s due

more to the deficiencies of the Apple II keyboard

than any exciting features of the Apple lie key-

board. Actually, the Apple lie has an adequate key-

board that can input all characters needed for

normal text handling applications. It lacks a built-

in numeric keypad and user-definable function

keys, but Apple owners seem to be able to manage
without them.

Though the keyboard itself is merely adequate,

there are some keyboard capabilities hidden in the

motherboard circuitry. What I'm speaking of is the

fact that the keyboard ASCII is mapped in a stan-

dard 2K ROM on the motherboard, and that anyone

who can program a 2K EPROM can define any of

the matrix keys in the Apple He to represent what-

ever ASCII he desires. Also, there is an alternate

keyboard set which can be selected if you install a

switch in the right place. With the keyboard ROM
which comes with the American Apple, the alter-

nate keyboard layout is the Dvorak (American Sim-

plified) keyboard. But if you burn your own
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keyboard EPROM, you can create any alternate

layout you desire.

FiRure 7.4 is a schematic diagram of the Apple lie

keyboard circuitry. Tlie source of detail for this

drawing is the Apple He schematic in the Apple II

Rf^frrrncf Maniml for lie Only, except for the key-

board itself. I couldn't find a schematic of the

keyboard but drew Figure 7.4 based on my investi-

gations of a real keyboard.

There is very little electron ic circuitry on the key-

board itself, just a bunch of spring loaded, normally

open switches. The majority of the switches are con-

nected in an X,Y matrix with eight X lines and ten

Y lines connected through the motherboard key-

board connector to a special purpose IC called a

keyboard encoder. The keyboard encoder scans

through its X drivers while monitoring its Y receiv-

ers to see if a key is pressed. For example, if the right

arrow key (key 61) is held down, the encoder will

detect this fact because it senses Y9 active when it

activates XO. When a matrix keypress is sensed, the

encoder produces code that is translated by the

keyboard ROM to ASCII.

Of the fiS keys on the Apple lie keyboard, 56 are

connected in the X,Y matrix. Keys not in the matrix

perform special functions which will be described

shortly. As far as the keyboard is concerned, press-

ing left or right SHIFT or CONTROL pulls the

SHIFT' or CTRi; line low respectively. The CAPS
LOCK key is similar except that it has a locking

mechanism that alternately locks it closed or

releases it to the open position. When CAPS LOCK is

locked in the down position, the CAPLOCK' line is

held low and the keyboard ROM produces upper
case alphabetic code. Pressing open Apple or close

Apple brings PBOor PBl high respectively. SHFT'.
CTRL', and CAPLOCK' are pulled up by IK ohm
resistors on the motherboard. PBO and PBl are

pulled down by 470 ohm resistors on the keyboard.

The RESET' line drops low if RESET and CON-
TROL are pressed simultaneously. This can be

changed so that RESET' drops low if only RESET is

pressed by reconfiguring the two jumpers on the

keyboard. These jumpers can be seen if you remove
the keyboard and look at the bottom of the keyboard
PC board. Solder the normally open jumper and
cut the normally closed jumper to make CON-
TROL not required tor RESET' to fall. I recom-
mend doing this since the RESET key on the Apple
He is recessed and separated from the other keys, so
accidentally resetting the computer is unlikely.

SHFT' and CTRL' are connected to control inputs
to the keyboard encoder so that they affect the code
generated by matrix keypresses. CAPLOCK' is an

input to the keyboard ROM and thus divides the
ROM into a caps locked section and a caps not-

locked section. RESET' is distributed to the MPU
the lOU, and the peripheral slots. While the key-

board provides a convenient physical location for

the RESET key, the other keyboard circuitry is not

affected by RESET'. PBO and PBl are inputs to the

serial input multiplexor and are read at $C061 and
$C062 (Figure 7.2). The open Apple and close Apple
keys have no association with the other keyboard
circuitry.

There are no matrix keys on the keyboard at the

junctions of YO—¥5 with X4—X7. These junctions

are reserved for a numeric keypad which can be

connected to J16 on the motherboard. The numeric

keypad could share matrix junctions with the key-

board, but the Apple implementation is superior.

With separate matrix junctions, the numeric key-

pad layout can be defined without regard to the

keyboard layout.

A numeric keypad is shown connected to J16 in

Figure 7.4. The characters shown next to the keypad

junctions are those of the keyboard ROMs supplied

with the Apple He. There are 24 junctions available

for the keypad (4 x 6), and these can be completely

redefined by installing a custom keyboard EPROM
in place of the ROM at E12.

The Apple lie keyboard encoder is a 3600-PRO

which is a special purpose version of the general

purpose 3600 encoder, "rhe general purpose encoder

is like a masked ROM in that the purchaser specifies

which code is output for each junction. Also, certain

options can be selected by the purchaser for pins

1—5. These options include internal or external

clock oscillator, lockout/rollover' control, output

complement control, chip enable control, any key

down output, and extra output data bit (BIO).

The 3600-PRO is a fixed version of the 3600.

Options and output code are standardized, and the

designer chooses his own code by running the output

from the encoder through a translator ROM or

EPROM. Fixed features of the 3600-PRO include an

internal oscillator controlled at pins 1, 2, and 3, a

lockout/rollover' select at pin 4 with internal pull

down resistor, uncomplemented outputs, and AKD
(any key down) output at pin 5. Other features of the

3600-PRO are fixed features of the general purpose

3600.

The keyboard encoder has an internal clock oscil-

lator whose frequency is set by external components

in the Apple He at approximately 50 KHz. The

switch bounce mask period is also set by an external

component. The bounce mask period is a delay from

keypress to data and strobe output in the encoder

.ja*
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which prevents interpreting switch bounce as mul-

tiple keypresses (see Figure 7.5). According to the

nomograph in the data sheet, a C71 value of .022

microfarads should result in a 7-millisecond mask

period in the Apple He.* However, I measure the

mask period in my Apple Heat 13 milliseconds, so I

compromise and say that switch bounce in the Apple

lie is masked for approximately 10 milliseconds.

Figure 7..'i is a timing diagram from the General

Instrument AY-5-,%()0 data sheet. As the diagram

shows, the data ready strobe is output only after a

key has stopped bouncing and the mask period has

passed. The strobe is a 20-micro5ecoiid (one clock-

pulse) positive jiulse which is output once for every

kevpress. This strobe is the KSTRB input to the

idu which sets the KFA'STRORE Softswitch (Fig-

ure 7.1) and resets the auto repeat delay function

(Figure ;i«).

It can be seen in Figure 7.5 that the data output of

the keyboard encoder is sot up.sometime in the clock

period preceding the data ready strobe. Actually,

Figure 7..^ is ext^>mei.^ misleading, because the

data output is set up very quickly after the begin-

ning of the clockpulse period preceding the data

ready strobe. In the Apjile lie, the encoder data is

actually set u]i for api)roximately 20 microseconds

*(;i']icr;il InstriitiH'iit pulilii-aliim ROM '.. ,\Y-.')-:!(ll)() Keyboard

before the data ready strobe goes high. This is far

more than the 450-nanosecond address to data prop-

agation delay of the keyboard ROM. Knowing this

it seems strange that Apple took pains to delay

KSTRB a couple ofMPU cycles in the lOU. Perhaps
they were misled by the 3600 data sheet timing

diagram into thinking the delay is necessary so that

ASCn from the keyboard ROM will be certain to

precede KSTRB.
Thfe AKD output of the encoder goes high when

any matrix key is pressed and stays high until all

matrix keys are released. This AKD output is routed

to the 10U where it enables the AUTOSTRB cir-

cuitry (Figure 3.8) and is pasSed to MD7 when
$C010 is read (Figure 7.1). Note that the AKD line

goeshigh immediately without waiting for the mask
period to pass. This means that there is a period of

approximately 10 milliseconds after a key is pressed

when a program will sense AKD active when read-

ing $C010, but when the keyboard ASCII will not

yet be updated to that of the current keypress. For

this reason, programs should normally wait until

KEYSTROBE is set before interpreting the key-

board ASCII. Using AKD for this purpose could

easily lead to errors.

The lockout/rollover' pin of the encoder in the

Apple He is open. Since the line is pulled low inter-

nally. Apple lie keypresses "roll over." This means
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STROBE
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OUTPUT

MINIMUM SWITCH CLOSURE
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Figure 75 Timing Diagram from AY-5-3600 Keyboard Encoder Data Sheet
(Courtesy of General Instrument Corp).
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that when a key is pressed while another key is held

down, the code for the new key is placed on the

encoder output line after the mask period. With
lockout, code from new keypresses are locked out

until the old key is released. Ifyou would like lockout

rather than rollover on your Apple lie, justjumper
pin 4 of your encoder to +5 volts.

The following quote from the AY-5-3600 data
sheet describes n-key rollover operation, "When a
match occurs, and the key has not been encoded, the
switch bounce delay network isenabled. If the key is

still depressed at the end of the selected delay time,

the code for the depressed key is transferred to the

output data buffer, the data ready signal appears, a
one is stored in the encoded key memory, and the

scan sequence is resumed. If a match occurs at
another key location, the sequence is repeated, thus
encoding the next key. If the match occurs for an
already encoded key, the match is not recognized.

The code of the last key encoded remains in the

output data buffer."

The output of the keyboard encoder is latched
information which cannot be modified by the
MPU. When a key is pressed and the mask period

passes, the code for that matrix junction is output
from the 3600-PRO. This code addresses the key-

board ROM, and the ASCII can be read at the output
of the keyboard ROM no more than 450 nanoseconds
after the code from the encoder becomes valid

(assuming 450-nanosecond ROM or EPROM). This
ASCII can be read at any time at $COO0—$C01F
before another matrix key is pressed and the new
code is val id at the output of the encoder long enough
to propagate through the keyboard ROM.
A Slot 1 peripheral card can disable keyboard

ROM response to $0000—$COIF by pulling
ENKBD' high. This deactivates the chip enable
input to the keyboard ROM. It is therefore possible
for an alternate keyboard interface card in Slot 1 to
steal response to $C000—$C01F. However, most
alternate keyboards designed for use with the Apple
He do not plug into Slot 1 but plug directly into the
motherboard keyboard connector. The capability of
disabling the keyboard ROM from Slot 1 is probably
meant to support some motherboard production
checkout test apparatus.
The output of the 3600-PRO forms the word

B1B4B5B6B7B8B9,B2B3, where B2B3 is the shift/

control mode ident and B1B4B5B6B7B8B9 is the
junction code. After the mask period when a
matrix key is pressed, B2B3 is latched to 11 nor-
mally, 10 if CONTROL only is also pressed, 01 if

SHIFT only is also pressed, and 00 if both CON-
TROL and SHIFT are also pressed. This normal/

control/shift/both operation is the inverse of what
the 3600-PRO data sheet indicates because the data
sheet assumes that the control and shift inputs to the
encoder are active when high.* In the Apple, the
control and shift inputs to the encoder are active
when low.

At the same time that mode ident is latched at
B2B3, unique code for the X,Y junction of the
matrix key that is pressed is latched at
B1B4B5B6B7B8B9. For example, if the XO-YO
junction key is pressed, 0000000 is latched at
B1B4B5B6B7B8B9.
You can represent the XO-YO junction as XY = 00

or the X5-Y4 junction as XY = 54 (decimal). When
you do this, the B1B4B5B6B7B8B9 code for any
keypress is the binary equivalent of the decimal
number XY. The 7-digit binary equivalent of 54 is

0110110, so when the X5-Y4 switch is pressed, the
3600-PRO latches 01 10110 at B1B4B5B6B7B8B9.
The BlB4B5B6B7B8B9.B2B3code from the key-

board encoder is applied to the ASA7A6A5A4A3A'2,
AlAO address lines of the keyboard ROM. Since
B1B4B5B6B7B8B9 is the binary equivalent of XY,
the ROM address for any matrix keypress is equal to

XY X 4. For example, the "J" key is located at the
X2-Y6 junction so the address for "J" in the key-
board ROM is 26 X 4 = 104 - $68. Therefore, the

keyboard ROM contains ASCII for SHIFT/CON-
TROL-J at $68, CONTROL-J at $69. SHIFT-J at

$6A. and ALONE-J at $6B.

The two most significant addressing bits of the

keyboard ROM, A9 and AlO, are connected to the

CAPLOCK' and ENVID' (AN2 if Rev A) lines.

What this means is that there are four separate sets

of ASCII in the keyboard ROM, two of which are
commonly used. The two which are commonly used
are the caps locked, standard set ($000—$13F) and
the caps unlocked, standard set ($200—$.X'?F). Con-
tinuing with the previous example, the caps locked,

standard addresses for J are $68—$6B, and the caps
unlocked, standard addresses for J are $268~$26B.
The caps locked set is almost identical to the caps

unlocked set. The only difference is that the ALONE
code for the 26 letters of the alphabet is upper case,

not lower case. Thus, the CAPS LOCK key is used to

force alphabetic characters to upper case without
affecting the numeric and special characters.

*There are internal pull down resi.stors on the control and shift

inputs to the 3600 so there is good rea.son for the data sheet

assumption that these lines are active when high. The internal

resistance values are very large, however, and the IK mother-

board resistors puli the SHFT' and CTRL' lines very close to 5
volts when neither SHIFT or CONTROL is pressed.
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The two sets of keyboard ASCII which are not

commonly used are the caps locked, alternate set

($400—$53F) and the caps unlocked, alternate set

(1600—$73F). In American Apples this alternate

set contains the Dvorak (American simplified) key-

board layout. Dvorak is a superior keyboard layout

which allows faster touch typing than the QWERTY
layout, but is rarely used because the QWERTY
layout is the English lang-uage standard. It is also

rarely used in the Apple He because many owners

don't even know that Dvorak is built in, and they

wouldn't know how to access it if they did know it

was there. An application note at the end of this

chapter shows how to install a switch that wil I allow

the operator to select the standard keyboard layout

or the alternate layout.

In Apples built for use in foreign countries, the

standard keyboard set is the same as that of Ameri-

can Apples. The alternate set, however, corresponds

to the normal keyboard layout for the primary lan-

guage of that country. Additionally, on export

motherboards designed for use in countries using

the PAL television system, a simple ALTCHR line

selects between the standard and alternate key-

board and videocharactersets without conflict with

the ENVID' line (see Figure 8.6).

Table 7.2 summarizes the contents of the key-

board ROM of American Apples. This table is

indexed by XY matrix number, so it should be very

useful to persons wishing to program a custom key-

board EPROM. ASCII output for all four keyboard
sets and all four mode idents is shown, as well as a

base address for each key showing the ROM address

of the caps locked, standard, SHIFT/CONTROL
entry.

Apple has used two different versions of the key-

board ROM in its American Apple. The earlier

Apple He's came with the 341(2)-0132-B ROM, and
more recent Apple lie's come with the 341(2)-0132-C
ROM (Apple's part numbers)*. There is very little

difference between the B and C ROMs—just some
minor changes to the Dvorak special characters and
the numeric keypad characters. Those matrix junc-
tions in Tkble 7.2 which have a (B) entry and a (C)

entry are those that were changed in the C ROM.
The apparent reason for changing the keyboard

ROM was that the quote, colon, and question mark
keys in the Apple Dvorak layout were not in accor-
dance with a standard Dvorak layout being pro-

posed by the American National Standards Insti-

tute. Since Apple has taken on a leadership role by
Apple documentation and the copyright notice in the keyboard
ROM refer to the part number as 341-0132, However, the ROM in

my Apple He is marked 342-0 132-B

including Dvorak as an alternate layout, it is good
that they quickly took steps to conform to the pro-
posed standard.

The change to the keypad layout looks like an
afterthought. The SPACE and ? of the B ROM were
deleted to make room for up and down arrows in the

C ROM. I assume that Apple makes the C ROM
available to anyone who buys a keypad which sup-

ports the newer layout. Of course, any keypad
manufacturer can sell a keypad with any 4 x 6 or

smaller layout and make it work in the Apple He by
including an inexpensive custom keyboard ROM
which the buyer can plug into the motherboard.

T^ble 7.2 tells a few other interesting tales if you

look carefully. For one thing, the Apple He key-

board is capable of producing every ASCII code

from $0—$7F when used with the keyboard ROM
that comes with the computer. CONTROL-2 and

CONTROL-6 appear to have been made to corre-

spond to ASCII $00 and $1E specifically to attain

this capability.

Another feature of keyboard operation that can be

gleaned from Ikble 7.2 is that, of the special function

matrix keys, only ESC and DELETE produce

uniquecode{excludingnumeric keypad keys). TAB,

RETURN, left arrow, right arrow, down arrow,

and up arrow produce code that is identical to that of

CONTROL-I. CONTROL-M, CONTROL-H, CON-
TROL-U, CONTROL-J, and CONTROL-K, respec-

tively.

Keyboard Operational Summary
Circuits related to the keyboard operation have

been covered in other chapters and sections of

UnderManditig the Apple He, This includes the

AUTOSTRB circuitry of Figure 3.8, the KBD' gen-

eration logic of Figure 5.13b, and the KEYSTROBE
soft switch and AKD reading circuitry of Figure

7.1. So the reader will not have to search the entire

book for keyboard reference material, a summary of

keyboard operational features is presented here.

1. ASCII for any matrix keypress becomes avail-

able for reading by the MPU approximately 10

milliseconds after the key is pressed.

2. Apple He keys roll over so that ifa key is pressed

when another key is held down, the ASCII for

the new key will be read by a program after the

bounce mask period,

3. When an address in the $C00O—$C01F range is

read, the MMU brings KBD' low during

PHASE to gate the ASCII of the last matrix

keypress from the keyboard ROM to MDO—
MD6 of the data bus.
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4. The AKD line goes high while any matrix key is

held down. AKD is routed to the lOU, and the

lOU places the state of AKD (delayed 2—3
MPU clock periods) on MD7 of the data bus if

$C010 is read. For about lOmilliseconds after a

key is pressed, the MPU will sense AKD high at

$C010 but will read outdated keyboard ASCII
at$COOO-$C01F.

5. The KSTRB line goes high for approximately 20

microseconds one time for each matrix key-

press. There is a bounce mask period of about 10

milliseconds between the keypress and the

KSTRB pulse. The KSTRB pulse occurs kbout

20 microseconds after the ASCII for that key-

press is available for reading by the MPU.
KSTRB is routed to the lOU where it is delayed

2—3 MPU clock periods before it sets the

KEYSTROBE soft switch.

6. If a key is held down for 534—801 milliseconds

(depending on the relationship of the keypress

to flash counter bit F3), the lOU starts to gener-

ate internal auto repeat strobes at the rate of 15

Hz. These AUTOSTRBs set the KEYSTROBE
soft switch as if the operator was pressing a key

repeatedly at a very fast rate. Both the

AUTOSTRB delay and frequency are functions

of the display vertical scan rate (Figure 3.8).

7. Either AKD or KSTRB clears the AUTOSTRB
delay generator in the lOU so that pressing any
matrix key interrupts the auto repeat function.

8. The KEYSTROBE soft switch is set by KSTRB
or AUTOSTRB. It is reset at power up or by

MPU access to $C010 or write access to $C01X.
Its state is read via MD7 of the data bus when
read access is made to $COOX.

9. Programmable functions are:

ADDRESS FUNCTION
K?CO0X Read KSTRB and ASCII
R$C010 Read AKD and ASCII;

reset KEYSTROBE
R$C011-$C01F Read lOU or MMU soft

switch and ASCII
W$C01X Reset KEYSTROBE

PERIPHERAL SLOT CONNECTIONS
It is hard to know where to start talking about

)eripheral slot I/O. You can do so much from the
lots. They are as versatile as modern microeom-
::)uter architecture with full connection to the
.iddress bus and data bus. It's like someone designed
- really neat computer but on the blueprints drew

' .even empty squares with the message, "user, please

fill in the blanks." One never knows what lurks

beneath the lid of an innocent looking Apple.

The capabi lities of the peripheral slots seem more
clear when you look at the connected signals in

groups. Figure 7.6 illustrates the peripheral slot

connections—grouping the signals functionally. The
power supply voltages, for instance, are all grouped
together. One quickly sees that all of the power
supply voltages available in the Apple are also

available at the peripheral slots.

Paramount in importance among the peripheral

slot signal s are the address bus with R/W , the data
bus, and the timing inputs. Consider what we know
about MPU control ofthe Apple. All data transfer is

over the data bus under control of the address bus
during PHASE 0. All I/O control is via the address

bus. The correct inference is that you can duplicate

any motherboard action with a peripheral card

design. This gives you an idea of the variety of tasks

that can be accomplished. Of course, most of the

things people are going to stuff into Apple pe-

ripheral slots haven't even been dreamed of yet.

The peripheral slot data bus is connected to the

main data bus through the bidirectional driver, B2.

The purpose of this driver is to supply the data bus

current needs of a variety of peripheral cards that

might be installed. Because of the d river, the load on

the main data bus does not fluctuate as the pe-

ripheral slot load is varied, and a heavier peripheral

slot load can be tolerated than could be without the

driver.

The MMU provides directional control to the

bidirectional driver via the MD IN/OUT' line. The
nature of this control is such that the driver is opera-

tionally transparent. In other words, the operation

is just about the same as if the peripheral slots were

connected directly to the data bus. Simply put, when

data needs to be transmitted from the slots or serial

input multiplexor to the data bus (such as when a

read access is made to a DEVICE SELECT'
address), the MMU brings MD IN/OUT' high dur-

ing PHASE so that direction of the driver is in to

the data bus. Otherwise, the MMU leaves MD
IN/OUr low.*

The OE' input to the bidirectional driver is always

low except during PHASE 1 of write cycles. Actu-

ally, the Apple He would work very well if OE' was

simply grounded. The only effect I can see of isola-

ting the data bus from the peripheral data bus dur-

ing PHASE 1 of write cycles is to prevent video data

from motherboard RAM from beingavailable at the

See Chapter 5.MEMORYMANAGEMENT INTHE APPLE
He. KDB' and MD IN/OUT' for a complete discussion of the

MD IN/OUT' signal.
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Table 72 Apple Me Keyboard ASCII (1 of 2).

XY
SW ROM*

ADDR QWERTY
CAPS LOCK SO CAP UXK

DVORAK
CAPS LOCK NO CM LOCK

cr SH iuT
BO CT SH AL BO CT SH AL BO CT SH AL BO

m 01 $00i} ESCAPE IB IB IB IB IB IB IB IB KSCAPE IB IB IB IB IB 16 IB IB
01 02 $004 1 1 21 31 21 31 21 31 21 31 1 i 21 31 21 31 21 31 21 31

40 3202 03 9008 2 @ 00 00 40 32 00 00 40 32 2 @ 00 00 40 32 00 00
03 04 $00C 3 # 23 33 23 33 23 33 23 33 3 # 23 33 23 33 23 33 23 33
04 05 $010 4 5 24 34 24 34 24 34 24 34 4 ? 24 34 24 34 24 34 24 34
05 07 5014 6

" IE IE 5E 36 IE IE 5E ?6 6
'

IE IE 5E 36 IE IE 5E 36
06 06 S018 5 % 25 35 25 35 25 35 25 35 5 % 25 35 25 35 25 35 25 35
07 08 S01C 7 & 26 37 26 37 26 37 26 37 7 & 26 37 26 37 26 37 26 37
08 09 S020 8 * 2A 38 2A 38 2A 38 2A 38 8 * 2A 38 2A 38 2A 38 2A 3B
09 10 $024 9 ( 2B 39 28 39 28 39 28 39 9 ( 28 39 28 ^9 28 39 28 39
a0 16 5028 TAB 09 09 09 09 09 09 09 09 TAB 09 09 09 09 09 09 09 09"

11 17 $02C 11 11 51 51 11 11 51 71 / ? (B) 3F 2P 3F 2F 3F 2F 3F 2F
11 17 $02C Q 11 11 51 51 11 11 51 71 ' " (C) 22 27 22 27 22 27 22 27
12 18 5030 W 17 17 57 57 17 17 57 77 . < 3C 20 3C 20 30 20 3C 2C
13 19 $034 E 05 05 45 45 05 05 45 65 . > 3E 2E 3E 2E 3E 2E 3E 2E
14 20 5038 R 12 12 52 52 12 12 52 72 P 10 10 50 50 10 10 50 70
15 22 503C Y 19 19 59 59 19 19 59 79 F 06 06 46 46 06 06 46 66
16 21 $040 T 14 14 54 54 14 14 54 74 Y 19 19 59 59 19 19 59 79
17 23 $044 U 15 15 55 55 15 15 55 75 G 07 07 47 47 07 07 47 67
18 24 $048 I 09 09 49 49 09 09 49 69 C 03 03 43 43 03 03 43 63
19 25 $04C 0F 0F 4F 4F 0F 0F 4F 6F R 12 12 52 n u Ji 52 72
20 31 $050 A 01 01 41 41 01 10 41 61 A 01 01 41 41 01 01 41 61
21 33 $054 04 04 44 44 04 04 44 64 E 05 05 45 45 05 05 45 65
22 32 5058 S 13 13 53 53 13 13 53 73 0P 0F 4F 4F 0F 0F 4F 6F
23 36 $05C H 08 08 48 48 08 08 48 68 D 04 04 44 44 04 04 44 64
24 34 $060 F 06 06 46 46 06 06 46 66 U 15 15 55 55 15 15 55 75
25 35 $064 G 07 07 47 47 07 07 47 67 I 09 09 49 49 09 09 49 69
26 37 $068 J 0A 0A 4A 4A 0A 0A 4A 6A H 08 08 48 48 08 08 48 68
27 38 $06C K 0B 0B 4B 4B 0B 0B 4B 6B T 14 14 54 54 14 14 54 74
28 40 $070 3A 3B 3A 3B 3A 3B 3A 3B S 13 13 53 53 13 13 53 73
29 39 $074 L 0C 0C 4C 4C 0C 0C 40 60 N 0E 0E 4E 4E 0E 0E 4E eE
30 44 $078 Z lA lA 5A 5A lA lA 5A 7A * " (B) 22 27 22 27 22 27 22 27
30 44 5078 Z lA lA 5A 5A lA lA 5A 7A ; : (c) 3A 3B 3A 3B 3A 3B 3A 3B
31 45 507C X 18 18 58 58 18 18 58 78 Q 11 11 51 51 11 11 51 71
32 46 $080 c 03 03 43 43 03 03 43 63 J 0A 0A 4A 4A 0A 0A 4A 6A
33 47 $084 V 16 16 56 56 16 16 56 76 K 0B 0B 4B 4B 0B 0B 4B 6B
34 48 $088 B 02 02 42 42 02 02 42 62 X 18 18 58 58 18 18 58 78
35 49 $08C N 0E 0E 4E 4E 0E 0E 4E 6E B 02 02 42 42 02 02 42 62
36 50 $090 M 0D 0D 4D 4D 0D 0D 4D 6D M 0D 0D 4D 4D 0D 0D 4D 6J)
37 51 $094 , < 3C 2C 3C 2C 3C 20 3C 2C W 17 17 57 57 17 17 57 77
38 52 $098 . > 3E 2E 3E 2E 3E 2E 3E 2E V 16 16 56 56 16 16 56 76
39 53 $09C / ? 3P 2F 3F 2F 3F 2F 3F 2F z lA lA 5A 5A lA lA 5A 7A_
40 KP S0A0 / 2F 2F 2F 2F 2F 2F 2F 2F / 2F 2F 2F 2F 2F 2F 2F 2F
41 KP S0A4 left(B) 08 08 08 08 08 08 08 08 left(B) 08 08 08 08 08 08 08 08
41 KP $0A4 down(C) 0A 0A 0A 0A 0A 0A 0A 0A down ( C

)

0A 0A 0A 0A 0A 0A 0A 0A
42 KP $0A8 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
43 KP ?0AC 1 31 31 31 31 31 31 31 31 1 31 31 31 31 31 31 31 31
44 KP S0B0 2 32 32 32 32 32 32 32 32 2 32 32 32 32 32 32 32 32
45 KP 50B4 3 33 33 33 33 33 33 33 33 3 33 33 33 33 33 33 33 33
46 29 ¥0Ba \ 1 IC IC 7C 5C IC IC 7C 5C \ 1 IC IC 7C 5C IC 10 7C 5C

AL ALOHB
1

an SHIFT
CT CONTBOL
BO BOTH
KP KEYPM) KEY
(B) m 341(2) -0132--B KEYBOARD ROM
IC) 341121 -9132 -C KEYBOARD ROM

A^a $00n for capa lock, standard
$20n for no Lock,, standard
$40n for capa lockr Dvorftk
560n foe ho lock, Dvorak

wliere n •» for BOTH
1 for COHTROL
2 for SHIFT
3 for ALONE

,4»
ijti
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Table 72 Apple lie Keyboard ASCII (2 of 2).

XY
SH
*

ROM*
ADDR QWERTY

CAPS LOCK NO CAP LOCK
DVORAK

CAPS LOCK NO CAP LOCKBO CT SH AL BO CT SH AL BO CT SH AL BO CT SH AL
47
48
49

13

11

12

$0BC
$0C0
$0C4

= +
)

'-V
--~

2B 3D 2B 3D-
29 30 29 30
IF IF 5F 2D

2B 3D 2B
29 30 29
IF IF 5F

3D
30
2D

] )

)

[ (

ID ID 7D 5D
29 30 29 30
IB IB 7B SB

ID ID 70 5D
29 30 29 30
1 R 1 R 7Fl c;tj

50
51

KP
KP

$0C8
$0CC

)

ESC (B)
29 29 29 29
IB IB IB IB

29 29 29
IB IB IB

29
IB

)

ESC (B)
29 29 29 29
IB IB IB IB

29 29 29 29
IB IB IB IB
0B 0B 0B 0B
34 34 34 34
35 35 35 35
36 36 36 36
37 37 37 37

51 KP ?0CC up (C) 0B 0B 0B 0B 0B 0B 0B 0B up (C) 0B 0B 0B 0B
52 KP $0D0 4 34 34 34 34 34 34 34 34 4 34 34 34 34
53 KP ?0D4 5 35 35 35 35 35 35 35 35 5 35 35 35 35
54 KP $0D8 6 36 36 36 36 36 36 36 36 6 36 36 36 36
55 KP ?0DC 7 37 37 37 37 37 37 37 37 7 37 37 37 37
56 56 50E0 7E 60 7E 60 7E 60 7E 60

« -Sr

7E 60 7E 60 7E 60 7E 60
57 26 $0E4 P 10 10 50 50 10 10 50 70 L 0C 0C 4C 4C 0C 00 4C 6C
58 27 $0E8 [ { IB IB 7B 5B IB IB 7B 5B ; : (B) 3A 3B 3A 3B 3A 3B 3A 3B
58 27 $0E8 [ { IB IB 7B 5B IB IB 7b 5B / ? (C) 3F 2F 3F 2F 3F 2F 3F 2F
59 28 $0EC : } ID ID 70 5D ID ID 7D 5D = + 2B 3D 2B 3D 2B 3D 2B 3D60 KP 50F0 * 2A 2A 2A 2A 2A 2A 2A 2A * 2A 2A 'IK 2K "2A 2a Ih 2A
61 KP $0F4 rght(B) 15 15 15 15 15 15 15 15 rght(B) 15 15 15 15 15 15 15 15
61 KP ?0F4 left(C) 08 08 08 08 08 08 08 08 left(C) 08 08 08 08 08 08 08 08
62 KP $0F8 8 38 38 38 38 38 38 38 38 8 38 38 58 38 38 38 38 38
63 KP ¥0FC 9 39 39 39 39 39 39 39 39 9 39 39 39 39 39 39 39 39
64 KP 5100 • 2E 2E 2E 2E 2E 2E 2E 2E . 2E 2E 2E 2E 2E 2E 2E 2E
65 KP 5104 + 2B 2B 2B 2B 2B 2B 2B 2B + 2B 2B 2B 2B 2B 28 2B 2B
66 42 5108 RETURN 0D 0D 0D 0D 0D 0D 0D 0D RETURN 0D 0D 0D 00 0D 0D 0D 0D
67 63 $10C up 0B 0B 0B 0B 0B 0B 0B 0B up 08 0B 0B 0B 0B 0B 0B 0B
68 58 ?110 SPACE 20 20 20 20 20 20 20 20 SPACE 20 20 20 20 20 20 20 20
69 41 5114 1 H 22 27 22 27 22 27 22 27 - IF IF 5F 2D IF IF 5F 2D
70 KP $118 ? (B) 3F 3F 3F 3F 3F 3F 3F 3F ? (B) 3F 3F 3F 3F 3F 3F 3F 3F
70 KP $118 ESC (C) IB IB IB IB IB IB IB IB ESC (C) IB IB IB IB IB IB IB IB i

71 KP $11C SPCE{B) 20 20 20 20 20 20 20 20 SPCE(B) 20 20 20 20 20 20 20 20
71 KP ?11C rght(C) 15 15 15 15 15 15 15 15 rght(C) 15 15 15 15 15 15 15 15
72 KP $120

( 28 28 28 28 28 28 28 28 ( 28 28 28 28 28 28 28 28
73 KP $124 - 2D 2D 2D 2D 2D 2D 2D 2D - 2D 2D 2D 2D 2D 2D 2D 2D
74 KP $128 RETURN 0D 0D 0D 0D 0D 0D 0D 0D RETURN 0D 0D 0D D0 0D 0D 0D 0D
75 KP $12C / 2C 2C 2C 2C 2C 2C 2C 2C r 2C 2C 20 2C 2C 2C 2C 2C
76
77

78
79
57r

14 5130 DELETE 7F 7F 7F 7F 7F 7F 7F 7F DELETE 7F 7F 7F 7F 7F 7F 7F 7F
62 5134 down 0A 0A 0A 0A 0A 0A 0A 0A down 0A 0A 0A 0A 0A 0A 0A 0A
60 $138 left 08 08 08 08 08 08 08 08 left 08 08 08 08 08 08 08 08
61 §13C right 15 15 15 15 15 15 15 15 right 15 15 15 15 15 15 15 15

30

31

32

33

'34

35

J6

17

J8

i9

** ^140 J 20 20 20 4A 20 20 20 4A J 20 20 20 4A 20 20 20 4A
Itir

**

S144 20 20 4F 20 20 20 4F 20 20 20 4F 20 20 20 4F 20
5148 H 20 48 20 20 20 48 20 20 H 20 48 20 20 20 48 20 20
514C U 4E 20 20 20 4E 20 20 20 N 4E 20 20 20 4E 20 20 20

kit
$150 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
5154 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20** 5158 M 20 20 20 4D 20 20 20 4D M 20 20 20 4D 20 20 20 4D** 515C A 20 20 41 20 20 20 41 20 A 20 20 41 20 20 20 41 20

it $160 C 20 43 20 20 20 43 20 20 C 20 43 20 20 20 43 20 20
** S164 D 44 20 20 20 44 20 20 20 D 44 20 20 20 44 20 20 20

XY = 80-69 are not used in the Apple lie because xa of the keyboard encoder is
not Gtjnnected. In the Apple ROMs, this area contains the name, "JOHH MACD",
short for John HacDougall.

Addregoes ?16fi-SlFP, 536S-53FF, S56e-S5FF. and $76e-S7PF are not used because
the keyboard enco<1er supports 90 matrix junctions, not 12S. In Apple ROMs,
this area ia filled with $AH, except for $7D8-S7Ff which oontaitis this or a
aimilar meooage: "341-0132B COPYRIGHT APPLE COMPUTER 1982".
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I/O SELECTS' (7,1)

.A*

(3,9) CLKEN'

DMA PRIORITY CHAIN NC

INTERRUPT PRIORITY CHAIN NC

(7,4| ENKBD'*

VIDEO SYNC (8.S)

GR*Z (8,51 Q]

COLOR REF (3,9)

DEVICE SELECTS' (7,1)

NOTES:

m Slot 7 pin 23 is not connected in revision A.:

'—
' present in Revision B only.

Figure T& Schematic; Apple lie Peripheral Slot ConnecHont.
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peripheral slots when PHASE rises during write

cycles. I suspect that Apple did this for compatibil-

ity with the Apple II although I might be missing

something they ran up against in the design.

A number of timing signals are available at the

peripheral slots. You can't have too many of these

signals at hand to help synchronize peripheral card

functions to the motherboard. PHASE 1. Q3. 7M,
COLOR REFERENCE (Slot 7), 6502 SYNC, and

video SYNC (Slot 7) are present. Notably absent

are 14M, HAS'. CAS', and an INHIBIT' priority

chain. With signals like these begging to be con-

nected, it's surprising that pins 19 and 35 of Slots 2

through 6 are not connected.

Important 6502 control inputs are connected to

the peripheral slots. These are IRQ', NMF, RESET'.
and RDY. They are connected in a wire-OR config-

uration with 3300 ohm pull-up resistors so any card

can cause an interrupt, reset the Apple, or stop the

6502 via the READY line. The RESET' line is also

connected to the keyboard RESET key and to the

lOU which responds to RESET' in addition to gen-

erating a negative RESET' pulse when the Apple is

first turned on.

Other wire-OR lines from the peripheral slots are

the DMA' line and the INHIBIT' line. DMA' al lows

a peripheral card to isolate the MPU from the

address bus and data bus so it can gain control of the

Apple for fast I/O or other purpose. INHIBIT' dis-

ables MPU communication with motherboard and
auxiliary card memory, and opens up $0000—
$BFFF and $D000—$FFFF addressing for any
sort of peripheral card response.* Note that between
INHIBIT', INTCXROM, SL0TC3R0M, and the

Slot 1 ENKBD' line, provisions exist for assigning
all addressing in the $0000-$C01F and $C090-
$FFFF ranges to the peripheral slots.

The Apple He is different from the Apple II in

that 3300 ohm resistors are used to pull up the pe-
ripheral slot wire-OR lines as opposed to the 1000
ohm pull-up resistors of the Apple 11. This value
may have been switehed becau se the 6502 data sheet
specifies 3000 ohm resistors for 6502 wire-OR lines,

but it sure lengthens the rise time of the wire-OR
lines. In fact, the 3300 ohm resistors cause such slow
switching that some peripheral cards may require a
parallel pull-up resistor on a wire-OR line to operate
properly in the Apple He. I found that this was
lecessary on the DMA' line to enable D MAnual

INHIBIT' alsodisables $C100-$CFFF motherboard ROM, so
ny peripheral card can use INHIBIT' to (rain access to $C100—
CFFF addresses that are configured for motherboard ROM
esponse.

Controller (Figure 4.7) to successfully steal a cycle
from the old DMA based Softcard in an Apple He.

Slot 1 has two signals connected which are not

available at the other slots, ENKBD' and CLKEN'.
These are present primarily for diagnostic and test-

ing purposes, but innovative peripheral card designs

could make good use of them. When ENKBD' is

high, the keyboard ROM is inhibited and the other
devices can place data on MDO—6 of the data bus
when read access is made to $C000—$C01F. When
the CLKEN' is high, the motherboard 14M signal is

disabled, and a card in the auxiliary slot can inject

an alternate master clockpulse reference onto the

14M tine. If, as normally is the case, ENKBD' and
CLKEN' are not connected on the Slot 1 card, moth-
erboard pull-down resistors pull these lines low so

the affected circuits can function normally.

The USERl' line of the Apple II is not present in

the Apple He. This was a hardware means by which
any peripheral card could disable all I/O address

decoding in the $C000—CFFF range by pulling a

single line low. In the Apple He, motherboard or

peripheral card resident programs can disable I/O

decoding in the $0100—$CFFF range using the

INTCXROM. SL0TC3R0M, and INTC8R0M soft

switches, but the capability of inhibiting DEVICE
SELECT' and other $COXX decodingdoes not exist.

Pin 39, the USERl line in the Apple II. is the 6502
SYNC line in the Apple He. Having 6502 SYNC
present is very helpful in hardware applications

such as execution of single instructions and identify-

ing op codes on the data bus. For example, it is

possible for a peripheral card in any Apple lie slot to

detect the execution of an RTI instruction by looking

for SYNC high and $40 on the data bus when
PHASE fails. By detecting 6502 instructions in

this manner, it is actually possible for peripheral

cards to respond directly to 6502 program instruc-

tions.

The DEVICE SELECT's, I/O SELECT's, and

I/O STROBE' are address decoded signals which

identify addresses on the address bus in the ranges

assigned to the peripheral slots. These address

ranges could have been assigned by convention only.

For example, a Slot 1 peripheral card could easily

decode the $C09X address range without the aid of

its DEVICE SELECT' input, but then how could

you operate that card in a slot other than Slot l?The

card would have to have switches to configure it for

different slots. Also, having DEVICE SELECT'
decoded on the motherboard lends the force of

hardware reality to the convention that $C09X
belongs to Slot 1. This is fairly important consider-

ing the diversity of .sources for Apple peripheral
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cards. Needless to say, decoding the address ranges

on the motherboard also reduces the chip count of

most peripheral cards.

The DEVICE SELECT' input to each peripheral

slot identifies a 16-bit address range assigned spe-

cifically to that slot. This range is normally used to

command a peripheral to do things like gate data to

the data bus or disable one of its functions. A card

design may require only one programmed com-

mand, such as a speech synthesis board which says a

word when you store a value to itsonly address. This

type of card can use the DEVICE SELECT' to

trigger its action and it requires noon-board address

decoding circuitry. Peripheral slot RAM cards usu-

ally have a number of different configurations.

DEVICE SELECT' enables reconfiguation of the

card, and the new configuration is determined by

the low order address bits and R/W. A card can

distinguish between 32 possible commands in the

DEVICE SELECT' range by decoding the states of

AO, Al, A2. A3. andR/W.
The I/O SELECT' input to each peripheral slot

identifies a 256-byte addressing range uniquely

assigned to that slot. This address range is normally

used by a 256-byte program in ROM or PROM. It

has to be taken u p by a 256-byte program if the card

is to be capable of response to BASIC "PR#" and
"IN#" commands. What these commands do is cause

program flow to vector to the first address of the I/O

SELECT' range, so there must be a program stored

there if PR# and IN# are going to work.*

The I/O STROBE' signal identifies $C800-
$CFFF addressing for all seven peripheral slots

which share this range on an equal basis. The idea is

to store a big I/O handling program on a 2K ROM or

PROM on a peripheral card and then give that card
sole access to $C800—$CFFF when it is active for

input or output. As described in the next section, the

peripheral cards utilizing this "I/O STROBE'
ROM" must deactivate response to the I/O
STROBE' when $CFFF is detected on the data bus
during PHASE 0. This protocol prevents two ROMs
from simultaneously trying to control the data bus
when I/O STROBE' goes low. The I/O STROBE'
ROM capability makes possible such peripherals as

smart printers, smart 80-column cards, and smart

PR#0.IN#0,PR#3, and IN#3areinterpreted as special cases by
Apple lie firmware. PR#0 and IN#0 cause program flow to

vector to motherboard video output and keyboard input routines
rather than to a nonexistent program i n nonexistent Slot 0, and . if

a RAM card is installed in the auxiliary slot. PEl#3 and 1N#3
cause program flow to vector tomotherboard 80-columii routines
rather than Slot 3 firmware routines.

EPROM programmers with driving programi
stored in firmware.

It is important to remember that any prograii]

can disable the I/O SELECT' signals and I/C
STROBE' by manipulating the INTCXROM
SL0TC3R0M, and INTC8R0M soft switches. Gen-
erally, programs will do this because they need to

access motherboard firmware routines in the
$C100—$CFFF range without interference fnjm
peripheral card ROM. The monitor does this in a
number of situations. The idea is to disable slot

ROM, call the motherboard subroutine, then reena-

ble slot ROM after subroutine execution. Another
reason to disable I/O SELECT' and I/O STROBE'
would be to enable a peripheral card to steal

$C100—$CFFF addressing via the INHIBir line.

The remaining four peripheral signals are DMA
IN, DMA OUT, INTERRUPT IN, and INTER-
RUPT OUT. These are the DMA and interrupt

priority chain connections described ingreatdetail

in Chapter 4, They are there to keep two or more
cards from trying to simultaneously perform sim-

ilar functions. Only one card can perform DMA or

interrupt the MPU at one time. The priority chains

can be used to keep order by giving high priority to

lower numbered slots.

A peripheral slot priority chain which does not

exist but is very badly needed is an INHIBIT' prior-

ity chain. Apple realized this when they designed

the old 12K firmware card for the Apple II. Their

solution was to use the DMA priority chain to prior-

itize the INHIBIT' based firmware card so thatyou

can install two or more firmware cards in adjacent

slots. If two or more firmware cards are enabled at

the same time, only the highest priority card will

attempt to respond to its addressing range. This use

of the DMA priority chain illustrates that the two

priority chains are assigned to the DMA and inter-

rupt functions by convention only. The hardware

reality is that you can use the DMA and interrupt

priority chains for any sort of serial communication

between slots.

There is no need for DMA IN or INTERRUPTIN

signals at Slot 1 because Slot 1 is the highest priority

slot. Similarly, there is no need for DMA OUT or

INTERRUPT OUT signals at Slot 7. As a result,

pins 27 and 28 of Slot 1 and pin 24 of Slot 7 are not

connected, not assigned, and available for connec-

tion to signals ifApple ever decides to do so. Pin 23 of

Slot 7 is connected via the X7 jumper to GR+2from

pin 2 of the lOU. If your S!ot 7 peripheral requires

identification of GRAPHICS time, its installation

procedure probably includes soldering of the X7

jumper. i^^tif
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I/O STROBE' Protocol

The I/O STROBE' signal at pin 20 of the pe-

ripheral slots is the ROM enabling signal for any

peripheral card on which $C800—$CFFF is cur-

rently active. There are no motherboard control

signals to tell the various slots when they may or

may not respond to the I/O STROBE', so Apple

decided on the following protocol which cards

responding to I/O STROBE' must follow:

1. When pin 1 (I/O SELECT') goes low, a pe-

ripheral card may begin to actively respond to

the I/O STROBE' at pin 20.

2. When $CFFF is on the address bus during

PHASE 0, all peripheral cards must stop

responding to the I/O STROBE'.

An example should clarify how the I/O STROBE'
protocol works. Assume that Slot 1 and Slot 2 have

peripheral cards installed and that both have a

$C800—$CFFF ROM on board. A PR#1 is executed

from BASIC which results in 6502 program flow

vectoring to address $C100 for all character output.

The card at Slot 1 responds to $C1XX addresses by

placing a program on the data bus, and by activa-

ting response to the I/O STROBE'. Suppose that the

program driven out at address $C100 begins with:

C100:
C103:

BIT $CFFF
JMP $C800

On the last cycle of execution of the first instruction,

response to the I/O STROBE' is deactivated on all

peripheral cards including Slot 1, However, on the

first cycle of execution of the second instruction,

$C1XX is back on the address bus and I/O STROBE'
response is again activated at Slot 1. It is now safe to

begin execution of programs stored in the $C800—
SCPFF ROM at Slot 1. The ROM at Slot 2 will not

interfere with Slot 1 access to $G800-$CFFF,
because it is designe'd to ignore the I/O STROBE'
ifter an access to $CFFF.

It is possible for a peripheral card to store its

$CnXX program and its $C800^$CFFF program
)n a single 2K ROM. This is accomplished by ena-
bling the output of the ROM to the data bus when
t/O SELECT' (pin 1) goes low, or when I/O

5TR0BE' response is activated and I/O STROBE'
pin 20) goes low. If the card is located at Slot 1, the

i56 bytes at $C1XX will be identical to the 256 bytes
It $C9XX. The 256 bytes at $C1XX can be accessed
tt any time. The 2048 bytes at $C800—$CFrF can
»e accessed only when I/O STROBE' response is

ctivated (after a $C1XX access).

Recall from Chapter 5 that INTC8R0M inhibits

I/O STROBE' and activates motherboard ROM
response to $C800—$CFFF addressing, that

INTC8R0M is set by access to $C3XX when SLOT-
C3R0M is reset, and that INTC8R0M is reset by

access to $CFFF. In other words, the Apple He
80-column motherboard firmware, in conjunction

with SL0TC3R0M and INTC8R0M, fully emulates

a Slot 3 peripheral card that responds to I/O

SELECT' and I/O STROBE', with one subtle dif-

ference. The difference is that motherboard firm-

ware has hardware priority over the slots in response

to $C800-$CFFF. When INTC8R0M is set. moth-

erboard firmware doesn't have to make an access to

$CFFF to disable peripheral card response to I/O

STROBE' because I/O STROBE' is inhibited by

INTC8R0M.
The I/O STROBE' ROM capability should not be

confused with the capability to steal addresses

$0100—$FFFF from motherboard ROM via the

INHIBIT' line. I/O STROBE' gives a peripheral

card access to 2048 bytes of addressing when
INTCXROM and INTC8R0Mare reset. By pulling

INHIBIT' low, any peripheral card can disable all

motherboard memory from response to $0000—
$BFFF and $C100-$FFFF.

THE APPLE t/O SYSTEM: KSW AND CSW
The peripheral slot capabilities are determined

by the signals connected to them, butour perception

of how they work is very much colored by the opera-

tingsystems that normally control them. The prece-

dents for I/O control in the Apple were established

by the old Monitor ROM, the 2K ROM which con-

tained $F800—$FFFF firmware in the original

Apple II. The main precedent is that memory loca-

tions $36 and $37 always contain the address of the

Apple's primary output routine, and locations $38

and $39 always contain the address of the Apple's

primary input routine. $36 and $37 are referred to

in the monitor listing as CSW (Character output

switch), and $38 and $39 are referred to as KSW
(Keyboard input SWitch).

Apple Monitor I/O

The Apple Il/IIe monitor has evolved over the

years just as the original Apple II evolved into the

Apple lie, but a very large portion of the Apple lie

monitor is identical to the original monitor that was

written by a computer hobbyist in his spare time

back in the 70s. In particular, the same system is

normally in effect where every keyboard input is

followed immediately by video output, and the input
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and output routines are determined by KSW and

CSW. lb see how this system works, let's examine

what happens at power up, initially assuming that

there is no disk controller installed.

The way the Apple presents itself to us is this: at

power up, KSW is set to the address of a firmware

routine (KEYIN) which waits for a keypress while

it displays a cursor; CSW is set to the address of a

firmware routine (COUTl) which stores the ac-

cumulator in TEXT memory while keeping track of

the next screen memory address. Then, after search-

ing for a disk controller and not finding it, the

Applesoft BASIC interpreter is entered. This pro-

gram, as do Integer BASIC, the system monitor,

and many others, talks to humans through the

GETLN (GET LiNe) routine.

GETLN gets a series of characters from the

primary input device which it finds by doing a

JUMP INDIRECT to KSWL ($38). After it gets

each character, it stores it in an Input Buffer

(memory locations $200—$2rF), and sends it to the

primary output device by doing a JUMP INDI-

RECT to CSWL ($36). GETLN continues to input

and output characters until it receives a carriage

return code from the input device. The program
which called GETLN is then able to examine the

"line" of data in the input buffer and take action

based on its contents. The GETLN routine is largely

responsible for our impression of how the Apple
talks to us.

Linking I/O to Other Devices

CSW and KSW are the I/O links. You can link the

driving program for any device to the Apple and

make it the primary input or output device. This is

because most programs perform input or output by
jumping to the address contained in KSW or CSW,
As an example, you can connect a serial output

device to one of the annunciator ports and place a

control program in RAM. You then make this device

the Apple's primary output by placing the entry

address of your control program at CSW, If your

program is typical, after it outputs each character to

your device, it jumps to the COUTl routine so the

character is also output to the screen.

Any peripheral slot can be assigned as the Apple's

primary input or output device by doing a "PR#n" or

"IN#n" from BASIC, or an "n CONTROL-P" or "n

CONTROL-K" from the monitor. When a PR#1 is

performed, $00 and $C1 are stored at locations $36
and $37. This means that if you do a PR#1, the card

in Slot 1 had better respond to $C100 with a pro-

gram, because the 6502 is going to be executing at

that address real soon.

If, at power up, a disk controller is located, the
program beginning at $CnOO ($C600 if Slot 6)on the

controller is executed. This is the bootstrap pro-

gram that begins the DOS loading procedure. After
DOS 3.3 is booted, CSW and KSW are set to

addresses $9FBD and $9E81 {$B84B and $B84E ii

ProDOS). Then all input/output passes through the

DOS, which checks to see if it is disk related. For
example, "CATALOG" is not a valid BASIC com-
mand, but it can be executed from BASIC whilethe

DOS is connected, because it is a valid DOS com-
mand. While you are entering BASIC code from the

keyboard with DOS connected, entries are checked

for DOS validity before control is passed to the

BASIC interpreter for command processing, If a

BASIC program is actually running, the DOS does

little processing of input or output data except to

check output data for a leading "CONTROL-D"
character. The "CONTROL-D" is a flag which tells

the DOS that a disk related command follows.

Entering PR#2 while the DOS is connected does

not make Slot 2 the primary output slot. CSW and

KSWwill still contain $9EBD and $9E8LThe DOS
intercepts the PR#2 and does its own output setting

routine. DOS maintains its own I/O links—we will

call them DOSKSW and DOSCSW, DOSCSW is

$AA53,$AA54 ($BE30/$BE31 if ProDOS), and

DOSKSW is $AA55/$AA56 ($BE32/$BE33 if Pro-

DOS). PR#2 with DOS 3.3 connected results in

$AA53 and $AA54 being set to $00 and $C2. Slot 2

becomes the secondary output behind the DOS. If a

PR#2 is performed from a running program, Slot 2

will probably actually become the primary input

and output device, or it may not become connected at

all, depending on its $C2XX firmware. Ifthe$C2XX

firmware automatically sets both CSW and KSW to

some value, then the DOS will be disconnected and

Slot 2 will be connected as primary input and out-

put. If the $C2XX firmware leaves the DOS con-

nected at KSW, the first time an input is performed,

the DOS will disconnect Slot 2 and reset CSW to

$9EBD. The way to do a PR#2 from a running

BASIC program and leave the DOS connected is to

do a PRINT : PRINT CHR$(4); "PR#2". The

CHR$(4), CONTROL-D, flags the DOS that a disk

related command is following. The DOS type PR#2

is performed, making Slot 2 the secondary output

behind the DOS.'*

*A subtle difference between DOS 3.3 and ProDOS processinjis

that DOS 3.3 identifies disk related commands from a carriage

return output followed by "CONTROL-D", while ProDOS identi-

fies disk related commands from a BASIC PRINT statement in

which "CONTROL-D" is the first character output. PRIhfT ;

PRINT CHR$(4)r "PR#2" should satisfy the requirements ofboth

DOS 3.3 and ProDOS.
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Similar steps must be taken in assembly language

programs. If you change CSW to $9000, then the

first time a character input is called for, the DOS
will change CSW baclt to $9EBD. You can do one of

threethings to getaround this. You can changeCSW
to $9000 and change KSW to $FD1B, disconnecting

the DOS entirely and connecting the keyboard as

primary input. You can modify DOSCSW (AA53/4)

to $9000, leaving the DOS connected. You can also

store $9000 at CSW and do a "JSR $3EA". This is a

DOS routine which takes the value you stored at

CSW or KSW and transfers it to DOSCSW or

DOSKSW, then restores CSW and KSW to $9EBD
and $9E81. $3EA is easy to remember if you
remember "3 EACH".*

Peripheral Cards and Primary i/O Devices

The various peripheral cards can be divided into

three categories: those with onboard firmware at

$CnXX, those capable of being the Apple's primary
input or output device which have no $CnXX firm-

ware, and those which would normally not be the

Apple's primary input or output device. The first

category includes such cards as 80-column cards,

smart printer interfaces, remote terminal inter-

faces, and the disk controller. The presence of

onboard firmware with response to the simple PR#n
and IN#n commands should be an important factor

in an Apple owner's choice among similar commer-
cial products.

Peripheral cards with onboard firmware at

SCnXX generally will not work in Slot 3 if a RAM
card is installed in the auxiliary slot. This is because
PR#3 is interpreted by Apple lie firmware as a
command to activate the 80-column firmware if an
auxiliary RAM card is present. The basic conflict is

that the 80-eolumn firmware is addressed at$C3XX
and $C800-$CFFF, the Slot 3 I/O SELECT' and
I/O STROBE' ranges. When the 80-column firm-
ware is active, SL0TC3R0M is reset and Slot 3 I/O
SELECT' is consequently inhibited. Cards which do
not respond to I/O SELECT' have no conflict with
the 80-column firmware, and they can be used in

Slot 3 without restriction.

The 80-column firmware, in conjunction with
SL0TC3R0M and INTC8R0M, emulates a Slot 3

peripheral card that responds to I/O SELECT' and
I/O STROBE'. Tb me, this represents a weakness

•There is no equivalent to a "JSR $3EA" in ProDOS, but the
equivalents to DOSCSW and DOSKSW do exist. The ProDOS
I/O links are VECTOUT($BE30/|BE31) and VECTIN($BE32/
SBE33), and these locations must be mod ified d i rectly to lin k I/O

' routines to ProDOS.

since the 80-column capability should be automatic
and not preclude the use of any I/O device. I don't
think you should have to enter PR#3 to get an 80-

coiumn display, and I don't think you should lose

your 80-column display when you press RESET or

enable an I/O device via PR#n. For that matter, I

don't think you should have to install an auxiliary

card to achieve an 80-column display capability.

The second category of cards is like the first

except that the user must load the driving software
from disk or other medium. This driving software
will typically bury itself above "HIMEM" and link

itself to the Apple via CSW and KSW or DOSCSW
and DOSKSW. This is a definite step down in con-

venience from smart cards with firmware at $CnXX
and possibly $C800—$CFFF. The program at

$CnXX goes a little beyond offering the convenience
of PR#n and IN#n commands. Commercial pro-

grams such as word processors, assemblers, and
data base managers allow records to be output to

any slot, if the slot has a $CnXX driver. These pro-

grams usually make no provision for linking output

to a RAM address.

The third category of cards is not normally linked

to the Apple via KSW and CSW. A 16K RAM card is

not a conventional I/O device but simple memory
expansion. A 128K card, however, may come with

an associated disk emulator program which does get

linked. The DMA based manual controller shown in

Figure 4.7 is a device which would not be thought of

in connection with the links. A secondary MPU card

would not be linked. A speech synthesis card might
be linked, but it would just as often be driven by

special purpose subroutines in a larger program.

Understanding which of the three categories the

cards in a given Apple fall into is a big step in

understanding what is going on in that Apple. The
concept of peripheral slots integrated with the bus

structure of the motherboard is so powerful that the

"spirit" of the Applemay be under the control of any
card or associated control program. When the con-

trol breaks down and things do not function as they

should, the owner has only his own intellect to fall

back on to sort things out. Know your peripheral

cards; know your motherboard; know your opera-

ting systems; know your Apple.

I/O TIMING

I/O timing is the timing of the address decoded

signals. All motherboard I/O and most peripheral

slot I/O is controlled by signals decoded in the

MMU, peripheral address decoding circuitry, or
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lOU. Access to a DEVICE SELECT' address exer-

cises much of the address decoding chain, so that is

the example chosen for analysis.

Figure 7.7 shows read and write timing for access

to $C090. The read and write are identical except for

data bus management. Data bus management in a

write to $C090 is identical to that of RAM in a write

cycle, because in all non DMA writecycles, the data

bus and peripheral data bus are receivers of 6502

write data. I/O read cycle data bus management is

different from that of a RAM read cycle, because

MD IN/OUr rises during PHASE when I/O

addresses are read.* MD IN/OUT' switches the

direction of the peripheral data bus driver to allow

the MPU to receive data coming from I/O devices.

A description of important events of Figure 7.7

follows here. Please refer also to Figure 7.1 for

clarification.

1. CASEN' and CXXX go high after an address in

the CXXX range becomes valid on the address

bus. Even though these signals are not gated by

PHASE in the MMU, the logic circuits which
they enable are gated by PHASE (or PHASE
1 low). CASEN' high disables communication
with motherboard RAM during PHASE 0, and
CXXX high enables I/O signals to be activated

during PHASE 0.

2. COXX' falls after PHASE rises and rises after

PHASE falls during access to $COXX. This

enables further decoding in the lOU and the 4 to

16 decoder at CIO. I/O SELECT' signal timing
is identical to that of COXX'.

3. C09X' (Slot 1 DEVICE SELECT') falls after

COXX' falls and rises after PHASE falls dur-
ing access to $C09X. Timing of C04X', C06X',
C07X', and the other DEVICE SELECT' sig-

nals is identical to that of C09X',
4. The peripheral data bus driver is isolated from

both the data bus and peripheral data bus dur-
ing PHASE 1 of write cycles. Video data from
motherboard RAM is therefore not available at
the peripheral slots when PHASE rises dur-
ing write cycles. During PHASE of write
cycles, firstmotherboardRAMvideo data, then
6502 write data is passed from the data bus to

the peripheral data bus.

5. MD IN/OUT' rises at PHASE rising plus
MMU propagation delay (about 60 nsec) during

Reading keyboard data is an exception. Bus management when
reading keyboard data is identical to that of reading mother-
board ROM. In both instances, an MMUsimaHKBD', ROMENX'
or R0MEN2') drops !ow during PHASE to gate data from a
ROM to the data bus.

read access to $C090. This switches the direc-
tion of peripheral slot data bus driver so that the
data bus receives signal information from the
peripheral data bus. The peripheral card in Slot
1 can now place data on the peripheral data bus
in response to its DEVICE SELECT' input. If
the Slot 1 card does not take control, the floating
peripheral data bus stores motherboard video
data which is valid on the peripheral data bus
when MD IN/OUT' rises. The video data is

transmitted to the data bus for reading by the

MPU.
6. MD IN/OUT' falls at PHASE falling plus
MMU propagation delay (about 50 nsec) during
read access to $C090. This switches the direc-

tion of the peripheral slot data bus driver so that

the peripheral data bus receives signal infor-

mation from the data bus. The Slot 1 card must
now release control of the peripheral databusor
it will compete with the peripheral data bus
driver. In most, and perhaps all, Apple lie's,

MD IN/OUT' falls after 6502 PHASE 2 falls.

The DEVICE SELECT' and I/O SELECT' sig-

nals are commonly used by peripheral cards to gate

data to the data bus during read access, Their tim-

ing for this function is less than perfect, as Figure

7.7 shows, but they still work. The problem is that

DEVICE SELECT' and I/O SELECT' {same as

COXX' in Figure 7.7) come too early. They fall

before MD IN/OUT' rises, and they rise before 6502

PHASE 2 falls. As a result, peripheral cards are

likely to compete with the peripheral slot driver for

control of the peripheral data bus for a short period

at the beginning of DEVICE SELECT' or I/O

SELECT'. Also, peripheral cards often will not hold

read data valid when 6502 PHASE 2 falls.

Early DEVICE SELECT' and I/O SELECT'
timing only poses a problem when relatively fast

devices (such as the data register of the disk con-

troller) are responding to them with data. With

slower devices like NMOS ROM, data response is

delayed enough from gating inputs that data is

always valid at the right times. But even fast

response peripheral cards work with the early

DEVICE SELECT' and I/O SELECT'. The short

duration bus fight occurs at a time when critical

data transfer is not taking place, and it seems to

cause no damaging system noise. The early removal

of data at the trailing edge causes no problem

because data bleeds off very slowly from the floating

peripheral data bus. In other words, Apple gets

away with it, but peripheral card designers should

be aware of the early timing.
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Timing for the C06X' serial input enable signal is

identical to that of DEVICE SELECT', and the

same timing abnormality exists. When read access

is made to $C06X. C06X' falls before MD IN/OUT'

rises, and the serial input multiplexor momentarily

competes with the peripheral driver for control of

D7 of the peripheral data bus. Also. C06X' rises

before PHASE 2 falls so the serial input multi-

plexor is not holding D7 valid when PHASE 2 falls.

Again, the slow bleed off of data from floating D7

results in correct data transfer to the MPU.
Figure 7.7 shows that when a peripheral card

doe.s not respond to read acces.s in its DEVICE
SELECT' range by placing data on the data bus, the

MPU will read the motherboard video data from

PHASE 1 video scanning. This occurs because first

the floating data bus, then the floating peripheral

data bus, then the floating data bus again store the

video data while MD IN/OUT' switches peripheral

driver direction to, from, and to the data bus. In the

same way, motherboard video data is read by the

MPU when access is made to any non-responding

address in the $C020-,$CFFF range.

THE AUXILIARY SLOT

The auxiliary slot is of a different nature than the

peripheral slots. It is not connected to the address

bus or f>5()2 control lines, has no enabling signals

like DEVICE SELECT', is not assigned to any
addresses in the Apple memory map. and has only a

very limited DMA capability. Instead of being a

versatile I/Oorexpansionportin the Apple memory
map, the auxiliary slot is wired so that the installed

card can be integrated into the operation of a func-

tional area of the Apple lie. Figure 7.8 shows the

wiringconnectionstotheauxiliarycard with related

signals grouped together. There are three major
signal groups, the RAM group, the timing group,

and the video generation group.

The RAM signal group consists of the multi-

plexed RAM address bus, the video data bus, the

data bus, R/W, R/W'80, CASEN'. and EN80'. As
shown in Chapter 5, these connections (along with
some of the timing inputs) support a 64KRAM card,
scanned for video output during PHASE 1, and
accessible by the MPU during PHASE 0. This is the
function we normally think of in connection with the
auxiliary slot, simply because it is the one commonly
supported by commercially available cards.

The Apple lie design supports full access to 64K of

RAM in the auxiliary slot, but it is possible to place
multiple 64K banks on an auxiliary card and switch
between them by decoding the $C07X range. The

C07X' signal appears to be connected to pin 6 of the
auxiliary slot for just this purpose. In this sense
C07X' is like a DEVICE SELECT' signal for the
auxiliary slot. It can be used for this purpose as long
as a program that resets the paddle timers does not
interfere with the auxiliary card bank selection

functions.

Another scheme which has been used in auxiliary

card designs is to include an alternate microproces-

sor in addition to one or more 64K banks of RAM.
This means that the auxiliary card is actually a

separate microcomputer with its own RAM, copro-

cessing with the motherboard 6502, and capable of

communicating via data in auxiliary RAM accessi-

ble by either microprocessor. All I/O in this copro-

cessing arrangement is accomplished by the

motherboard MPU, including loading of programs

from disk to auxiliary RAM where they can be exe-

cuted by the alternate MPU,
The timing signal group consists of full connec-

tion to all outputs of the timing generator plus the

ENTMG' line, A diagnostic card in the auxiliary

slot can thus monitor all of the timing signals to

determine whether or not they are operating cor-

rectly. The diagnostic card can also pull ENTMG'
high to disable all outputs of the timing HAL and

inject substitute signals to the motherboard (see

Figure 3,9). Furthermore, if an associated card in

peripheral Slot 1 pulls CLKEN' high to disable

14M, the auxiliary card can inject an alternate 14M

signal to the motherboard.

The video generation signal group consists of

all of the address and chip enable inputs to the video

ROM plus PICTURE', SYNC, CLRGATE' and

ALTVID'.* A card in the auxiliary slot can thus

monitor all of the video ROM inputs plus PIC-

TURE', SYNC, and CLRGATE' to verify correct

operation and isolate faults. It can also disable the

video ROM and, consequently, the PICTURE' sig-

nal and then inject its own ALTVID' signal in reac-

tion to the other video group signals and in place of

the PICTURE' signal. The ALTVID' signal is there-

fore an alternate picture signal, injected from the

auxiliary card to the motherboard when ENVID' is

pulled high. It could also be used to bring various

areas of the screen to the white level while ENVID
is low, regardless of the current state of the scanned

display map.

'Another way of sUting this is that the video generation signal

group consists of the lOU signal outputs related to video genera-

tion plus PICTURE', ENVID', and the video data bus. Note that

the video data bus can be considered as part of the video genera-

tion group as well as the RAM group.
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Both the timing and video generation signal

groups represent diagnostic capabilities. In other

words, these signal groups support computerized

verification, fault isolation, and production check-

out of Apple lie motherboards by special purpose

auxiliary cards. Of course, it is quite possible that

operational designs wilt appear which utilize alter-

nate timing signal or picture signal injection to

achieve a goal, but these cards will probably also

include one or more 64K banks of RAM. Too many
people like 128K ofRAM in their Apple to give upon

the idea.

Some auxiliary slot signals do not fit neatly into

the three signal groups. The signal groups are not

absolute divisions but convenient ways of picturing

the auxiliary slot functions. ROMENl', R0MEN2',
EN80', and CASEN' could be thought of as an
MMU group, and it is possible that Apple diagnostic

cards are used to verify MMU management func-

tions. Also, ROMENl', R0MEN2', and ENPIRM
might be considered as a ROM signal group for

Revision A motherboards. An auxiliary card can

inhibit Revision A motherboard ROM by pulling

ENFIRM low (see Figure 6.1). Whatever Apple had
in niind for ENFIRM, they dropped it and changed

ENFIRM to FRCTXT' in Revision B (see Figure

3.9). This is the major operational improvement of

Revision B, the capability of forcing TEXT mode at

the timing generator so that DOUBLE-RESgraph-
ics displays are possible.
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SOFTWARE APPLICATION

PROGRAMMING THE GAME PADDLES

The PREAD routine of the monitor is pqinted out

by the Apple II Reference Manual for lie Only as a

convenient subroutine for reading any of the four

paddle inputs to the Apple. Actually, PREAD is

used by the Applesoft and Integer BASIC PDL(n)
expressions, and it is called by many programs you

might purchase for the Apple. There are some lim-

itations to PREAD which are not irreversible lim-

itations of the Apple. They're just weaknesses in

PREAD. This application note explores the PREAD
routine and illustrates some alternate program-

ming methods for reading the timers.

PREAD is designed to read the paddle whose

number (0—3) is contained in the X-register. For
instance, ifyou want to read Paddle 1, you place 1 in

the X-register and do a "JSR $FB1E". PREAD will

return with the Accumulator scrambled and a

number from to 255 in the Y-register which

represents the position of the paddle. The way
PREAD works is this:

1. It begins by triggering the four timers (LDA
$C070).

2. After 10 cycles, it begins polling the pertinent

timer {$C064,X) in an 11-cycle loop. The Y-reg-

ister is incremented in the loop and thus accum-
ulates the number of loop executions. Program
flow exits from PREAD when the pertinent

timer is found to be reset.

3. If the polling loop is executed 256 times, the

routine is exited immediately with 255 in the

Y-register.

The PREAD comment in the monitor listing says

"COUNT Y-REG EVERY 12 USEC". This is not

true; the Y-register counts approximately every 1

1

microseconds. Possibly the programmer made an

error when computing the execution cycles of the

instructions involved, and possibly the comment is

the only error. The routine may have originally been
written for 12-cycle loops during Apple II develop-

ment, then changed to 11-cyele loops because some
marginal tolerance components would not work
with 12 cycles. Perhaps they forgot to change the

:omment. Whatever the reason, this comment in the

^pple II and He reference manuals indicates 12-

;ycle loops while the routine utilizes U-cycle loops.*

The basis of the workings of PREAD is this: you
vant a number between and 255 returned. The
™er duration will vary between 2 and 3302

microseconds with a 150000 ohm paddle and a .022

microfarad input capacitor. However if the values

of both of these components are 10% low, the timer

duration will vary between 2 and 2673 micro-

seconds. The 256 bops of 11 cycles take 2760 micro-

seconds in the Apple. 256 loops of 12 cycles take 301

1

microseconds. Eleven-cycle loops are a good dura-

tion to use with plus or minus 10% tolerance compo-
nents, but a very small number of resistance/

capacitance combinations might never allow the

PREAD routine to reach a count of 255. It is possible

that Apple specifies plus or minus 5% on the capaci-

tors or the potentiometers. Most Apple paddles have

a large slack area on the clockwise side where

PREAD returns 255 no matter where you set the

paddle. This is because PREAD allows for compo-

nent tolerance. An improved Apple would have a

large resistance trimmer pot across each paddle

which would let theownercalibratehispaddleset to

ll-cye!e polling loops.

So the PREAD routine polls the timer in a loop

which takes into account realistic possibilities of

component variation. That is all to the good, and

PREAD is an adequate utility for many purposes.

There are, however, some weaknesses in PREAD.
IVy running the following Applesoft program:

10 FOR A = TO 500 : NEXT :

A = PDL(0)
20 B = PDL(l) : HOME :

PRINT A;" ";B : GO TO 10

It simply reads the paddle inputs and prints them.

The FOR/NEXT loop is a short delay to minimize

screen flicker. With the program running, leave

Paddle 1 fully clockwise and change Paddle to

some low setting. The result is that Paddle inter-

feres with Paddle 1. This is because all four timers

are triggered every time $C07X is accessed. In the

Applesoft program, the "A = PDL(O)" causes

PREAD to be called with in the X-register. This

triggers all four timers, and when the Timer pulse

is short, the PREAD routine is exited in a relatively

short period of time. However Timer 1 will still be

set if Paddle 1 is further clockwise than Paddle 0,

"Another interesting commenterror in the monitor listing can be

found at $FA6F—$FA74 of Apple 11 Autostart monitor and

Apple Il3 monitor listinprs. The code here brings ANO and AN 1 to

TTL low. but the eomment and mnemonic labels indicate that

ANO and ANl are beinfr brouRht to TTL high.
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When the "B ^ PDL(l)" statement is executed,

PREAD is entered with X = 1, and the timers are

triggered again. But the timer pulse may still be

hiRh from the previous PREAD routine which read

Timer 0, and the timers are not retriggered by

C07X' if they have not yet reset from the pre-

vious trigger. This means that the Timer 1 pulse

will be dropping after a short period of time after

PREAD is entered, even though Paddle 1 is a long

ways clockwise.

There are two ways which this sort of interference

may be avoided in BASIC programs. One is to

always ensure there is a time delay between reading

different paddles. It does not take much in BASIC.

"15 FOR C = TO : NEXT" in the above program

does the trick, or just insert a few instructions

between PDL(n) expressions. The second way is to

poll the timer in BASIC to make sure it is reset

before trying to read it. In the above program: "15

IF PEEK(-1628.S) > 127 THEN 15". Actually, the

delay in this last cure is probably long enough to

ensure that Timer 1 is reset by the time -16288 is

actually examined, but you will be sure if you use it.

The interference between timers is more pro-

nounced when calling PREAD from assembly lan-

guage programs. This is because machine language

is so fast that hunrireris of instructions can be exe-

cuted after a PREAD routine, and some of the

timers may still bo set. It is also possible for a

PREAD to a timer to interfere with a subsequent

PREAD to the same timer. Consider the following

program sequence:

LDX #0
JSR PREAD
JSR PREAD
STY SAVEPt)

You may have wanted to cause a paddle variable

delay with this sequence. Now if Paddle is fully

clockwise, the first PREAD is done normally, but
the second one returns a low value instead of 255.

This is because the first PREAD is exited as soon as

256 polling loops have been performed. Timer is

still set though, and it is therefore already set when
the second PREAD isentered. The resultis a return
value in the Y-register of 70 or so instead of the

expected 255.

Misreading a timer due to a previous call to

PREAD can be avoided by preceding all calls to

PREAD with a check like this:

LDX PDLNUH
NOTRDY LDA PDL0,X

BMI NOTRDY
JSR PREAD

This simply waits until a timer is reset before
attempting to trigger and read it. Of course, there
would have been no problem in BASIC or assembly
language if this check had been included at the
beginning ofPREAD in the motherboard firmware.
An aspect of PREAD that should be well under-

stood is that it takes a long time, and that the time it

takes gets longer as you turn the paddle clockwise.

This can be used to advantage in a paddle variable

delay routine which allows the user to vary execu-

tion speed by adjusting a paddle. More often, the

time delay is a nuisance, causing unwanted time

delays in a computer that can't afford them. One
way to speed programs callingPREAD is to only use

counts 0—63. The paddle tweaker becomes aware

that there is no control when he goes too far clock-

wise and controls his Formula-1 racer with less

paddle range. Average paddle reading time is

reduced by 75% and the sensitivity of the computer

action to the paddle tweaker's touch becomes
greater. This is tolerable with a paddle set but less

tolerable with a 1-inch joystick which is already

very sensitive to the touch.

Assembly language programmers should not feel

tied to PREAD, PREAD is handy and often ade-

quate, but it's not the last word in reading paddles.

Figure 7.9 is a program which reads Paddle and

Paddle 1 simultaneously, an obvious capability

since all timers are triggered simultaneously. This

paired paddle poller polls the pair of paddles pre-

cisely in 22-cycle loops, and therefore returns values

equal to one half of what they would have been if

read by PREAD. The Paddle value is returned in

the Y-register and the Paddle 1 value is returned in

the X-register. The values can each be shifted left

one bit for compatibility with PREAD if this is

desirable. The advantageof reading the two paddles

together is that paddle reading time is cut in half.

The full mechanical range of each paddle is used

and the number returned is to approximately 160.

It can be argued that no resolution is lostsince 1/256

resolution exceeds the practical resolution of a, %

inch diameter carbon potentiometer and possibly

the stability of a 558 timer. In other words, it's hard

to find a point on the pot where the PREAD routine

returns a single value that does not jump back and

forth between readings. It is also very hard to adjust

the paddle so as to increase or decrease the returned

value by one. Resolution of 1/160 is easily good

enough for this hardware.

A final recommendation for speeding paddle

reading is to integrate the timer polling with other

program execution. The time delay problem exists
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SOURCE FILE: SIMULREAD
^ ******************************************************
2 *

3 *

4 * SIMULTANEOUS READ OF PADDLE -0 AND PADDLE-1
5 *

6 * BY JIM SATHER
7 *

8 * 1/24/83
9 »

10 *

Ij^ ******************************************************
12 *

13 *

14 * PADDLE-0 DIVIDED BY 2 IN Y-REG
15 * PAODLE-i DIVIDED BY 2 IN X-REG
16 *

17 * SIMULTANEOUS READ PROGRAM LOOP IS 22 CLOCKPULSES.
18 *

19 * MONITOR PREAD ROUTINE PROGRAM LOOP IS 11 CLOCKPULSES
20 *

0000
0000
0000
0000
0000

0000
0000
0000

0000 21 *

C064 22 PDL0 EQU 3C064
006 5 23 PDLl EQU $C065
C070 24 PTRIG EQO $C070
0000 25 *

0000
»1ivm riD T L

26 *

1 T r n km Lj n it 1^ SIMULREAD. OBJ0**'-»-t^ «£iAi OQjb(»i riuE. SMrtnc 13
1F00 27 ORG $1F00
1F00 :AD 70 C0 28 DOIT LDA PTRIG
1F03 :A2 00 29 LDX #0
1F05 >A0 00 30 LDY #0
1F07 :48 31 PHA GI
1F08 ;e8 32 PLA
1F09 :24 00 33 GOTPDLl BIT 50
1F0B :AD 64 C0 34 CHKPDL0 LDA PDL0
1F0E 10 0D 35 BPL GOTPDL0
1F10 :EA 36 NOP
IFII :C8 37 INY
1F12 :AD 65 C0 38 LDA PDLl
1F15 t30 02 39 BMI NOGOTS
1F17 :10 P0 40 BPL GOTPDLl
1F19 :E8 41 NOGOTS INX
IFIA .4C 0B IF 42 JMP CHKPDL0
IFID 43 *

IFID 44 *

iFlD 24 00 45 GOTPDL0 BIT $0
IFIF AD 65 C0 46 LDA PDLl
IF22 30 F5 47 BMI NOGOTS
1P24 60 48 RTS

GIVE SOME SPACE FOR COUNT =

**• SUCCESSFUL ASSEMBLY: NO ERRORS

j
Figure 7.9 Assembler Listing: A Paddle Reod Program.
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as lone as normal program flow must wait thou- can check the previously triggered timer to see if it

sands of microseconds for a timer to reset. When the has reset yet and increment a counter if it hasnl

Daddies must be read often and speed is important, You wind up reading the timer with a resolution of

it may be necessary to arrange routines so that they about 1/33 which really issufficientfor many tasks,

can check the timer states occasionally, only inter- Of course, this would be a complicated program, but

rupting program flow momentarily. For example, the results would be rewarding. Complicated pro-

suppose that you are computing HIRES plot coordi- grams are within the capabilities of any reader of

nates ina 100-cycle loop. At the end of each loop, you this book who has the time and the urge.

fet«
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EXTENDING THE GAME I/O SOCKET
Have you ever seen an Apple with two joysticks

plugged in? Why not? It's a capability of the Apple.

The answer is that when a standard joystick or pad-

dle set is plugged in to the game I/O socket, the pins

for one pushbutton input, two paddle inputs, four

annunciator outputs, and the C040 STROBE'
beconne inaccessible there. It would do you no good

to plug another joystick into the extension jack in the

back, because all the standard joysticks support

only Paddle and Paddle 1. Your two joysticks

would just interfere with each other,

Now I don't mean to imply that the extension jack

gives no added capabilities. To the contrary, when a

joystick or paddle set is installed in the extension

jack, all of the game I/O signal lines are still acces-

sible at the game I/O socket. Additionally, even

when a plug is installed in the extension jack, it is

fairly easy to attach a spring loaded clip to any of the

signal 1 ines on the back of the extension jack . But the

fact remains, if you want to switch between paddle
and joystick or use two joysticks connected simul-

taneously to the four Appie timers, you need to use

some sort of extension device which supports the

capability,

Several game I/O extenders are commercially
available for the Apple. Th is application note shows
two extension circuits you can build yourself. One is

simple, allowing you to plug a joystick or paddle set

into the game I/Osocketand still havea 16-pin DIP
socket available with the remaining I/O pins acces-

sible. The other is more complex, allowing you to

have two paddle sets and two joysticks simultane-
ously connected with switched control betw^een

paddles or joysticks. This game I/O extender also

contains an extension socket for connection to other

devices.

Let's look at the simpler circuit first, pictured in

the photos of Figure 7. 10. Th is is a padd le set with an

extension socket soldered on top of its 16-pin plug.

Pins () and 10 are removed from the upper socket

because these are the PDL and PDL 1 inputs

which are being used by the paddle set. PBO and

PB 1 are fed to the extension socket even though they

are used by the paddle sets. Switch inputs can be

paralleled, so one of several switches can operate a

given pushbutton input. Potentiometers, however,

cannot be connected simultaneously to a timer

input. They would interfere with each other.

Thebenefitof the extension socket is that with the

extended paddle set installed in the game I/O

socket, the other signal lines are still accessible

there. But the modification must be performed

carefully to ensure mechanical strength. The first

step is to buy a high quality Ifi-pin DIP socket. You

will also need to buy a Ifi-pin plug and cover like the

one used on Apple paddle sets designed for the game
I/O socket. We assume that the i>lug to be modified

on the paddle set or joystick is so thoroughly glued

and sealed that .\'ou cannot hope to solder a socket to

it. Here is the procedure to mount the extension

socket on your paddle set:

1. Se[)aratc the cover from the plug on j'our paddle

set. If \'ou think ycsu can solder a socket to this

mess, proceed to step 8.

2. If you cannot salvage the old plug, remove the

two resistors from it (if they are there), and cut

the wires from it which lead to the jjaddles.

'A. Strip one inch of the outer insulation from the

wire bundle going to each pafldle. This exposes

three insulated wires in each bundle. If Apple is

consistent, the green wire goes to +5V, the white

ijlitiitiji

VIJJJJJJ

Figure 7.10 A Modified Game I/O Plug.
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wire is the pushbutton wire, and tiie black wire

is the paddle wire. This should be verified with

an ohmmeter. With the ohmmeter, find the two

wires connected to the pot. The resistance across

them will vary between and 150,000 ohms as

the paddle is turned. The wire left over is the

pushbutton wire. Now find which wire is shorted

to the pushbutton wire when the pushbutton is

pressed. This is the 5 Volt wire, and the other

wire is the paddle wire.

4. Some paddle sets have a fourth wire going from

the plug to the paddles. This wire is ground and

should be connected to pin 8 of the plug. Pres-

ence of the ground wire idicates that pushbut-

ton pull-down resistors are mounted in the

paddles instead of the plug. The ground wire

can be identified because there will be 200

—

1000 ohms resistance between it and the push-

button wire.

5. Cut the paddle wires for each paddle back |4

inch. Leave the other four wires at their present

length. Strip ii inch of insulation off the end of

all six wires.

6. Figure 7. 11 shows the wiringof the plug. Install

the two resistors first (if they were there), mak-
ing sure the leads do not extend very far beyond
the solder posts. If you are certain that the pad-
dle set will be used only in an Apple He and
never in an Apple II, do not install the resistors.

If there are no resistors and you wish to use the
paddle set in an Apple II, install 560ohm resis-

tors as shown in Figure 7.11. Make certain the
resistors are not in the paddle body before doing
this (see step 4).

7. Connect the wires and solder. Use a low wattage
iron and do not overheat the pins or the plastic

base will be damaged. Insert the plug into a
spare socket while soldering to keep the pins

aligned if the plastic becomes soft from over-

heating.

8. If necessary, sand down the corner of your
socket so the plug cover will slip over it. Pull

pins 6 and 10 out of the socket or cut them off if

the plastic is molded around the pins.

9. Fit the socket over the paddle set plug and hold

this assembly lightly together in a soft jawed

5V WIRES

BUTTON-0 WIRE

BUTTON-1 WIRE

PADDLE-0 WIRE

PADDLE-1 WIRE

TO TO
PADDLE PADDLE

1

Figure 7.1 1 Wiring a Paddi© Set Plug.

,i^
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Figure 7.12 This Game I/O Extender Can Support Two Sets of Paddles end Two Joysticks Simultaneously.

vise. All wires should be dressed inside the pins

of the socket and the socket pins should be out-

side of the plug pins. Solder the 14 pins of the

socket to the appropriate pins on the plug.

10. Check out the operation of your paddle set and

extension socket.

11. If you desire, fill the area between the plug and

expansion socket with epoxy or a sealant like

RTV. This will give your assembly more me-

chanical strength. Do not seal the assembly

until you are certain it works correctly.

12. Cut the top off the plug cover so the topless plug

cover is 5/16 inches high. Cut out a small notch

for the wires to pass through. Slip the cover over

your assembly and glue it on with a small

amount of epoxy cement. Remember that you

may want to get back in there some day.

Figures 7.12 and 7.14 are photos and a schematic

diagram ofthe more ambitious game I/O extender.

This unit is meant to sit outside of the computer case,

connected to the game I/O socket via a 16-pin DIP
jumper. It is basically six 16-pin sockets wired

together with some configuration switches. The
scheme is this: two of the sockets are meant for

paddle sets. One of the paddle sockets is connected

normally but the other is connected so a standard

paddle set will control Timers 2 and 3. Two of the

sockets are meant for joysticks. The joystick sockets

are wired so all four timers are utilized by two joy-

sticks. Switch S2 places the joysticks in one of two
possible configurations as shown in Figure 7. 13. The
paddles and joysticks may be connected at the same
time. Switch Si enables either the joystick or the

paddles.

A third switch is necessary if you wish to use the

extender with an Apple 11 with the SH IFT key mod
installed.TheSHIFTkey mod works by connecting

the SHIFT key to PB2, but neither the SHIFT key

mod nor a pulled down pushbutton will work if both

are connected to FB2 at the same time. The game

I/O extender allows you to have both installed by

selecting between them via S3. The norma! SHIFT
key mod istoconnectoneof theSHIFTkeystopin 4

of the game I/O socket. With the game I/O ex tender,

the SHIFT key should be connected to pin 16 (nor-

mally not connected) of the game I/O socket. Then

switch S;^ can select between pin 16 and a paddle or

joystick pushbutton for routing to the PB2 input.

In the Apple He. the shift key mod is available via

the X6 motherboard jumper. When this jumper is

made, a puDed down pushbutton cannot be con-

nected to PB2 for reasons cited in the previous para-

graph. If you must have the SHIFT key mod in the

Apple He. two alternatives are: leave S3 in the

SHIFT key mod position when the gameextender is

installed in an Apple He with X6 soldered, or con-

nect a wire from the SHIFT' line to pin 16 of the

game I/O socket instead of soldering X6.

The extender construction technique is to mount

the six sockets on a general purpose IC board. Use

the type with feed through solder holes so wires can

be connected on both sides of the board. The board is

mounted in a case with six holes through which the

sockets fit. A nibbling tool is good for cutting the

holes. The installation procedure is: install the

sockets in the board; wire the board and switches as

shown in Figure 7. 14; mount the board and switches

in the case. The appearance of your extender will

vary with your selection of switch styles and enclo-

sure. Enjoy your extender. It's really pretty handy.
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PADDLE A PADDLE B

©0 ©
JOYSTICK CONFIGURATION 1

JOYSTICK A JOYSTICK B

JOYSTICK CONFIGUAHATION I

JOYSTICK A JOYSTICK B

©
®

© 0^^ 0^El
Figure 7.13 Game I/O Extender Configurations.
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Figure 7.1 4 Schematic: A Game I/O Extender.

fili^



Input/Output in the Apple lie 7-37

HARDWARE APPLICATION

GAINING ACCESS TO THE ALTERNATE KEYBOARD SET

The keyboard circuitry of the Apple He is typi-

cally Apple. Man, this circuitry is neat, a versatile

design which makes the Apple He superior to other

computers. Also typical of Apple, the keyboard ver-

satility is not advertised as a selling point, it is not

documented for people who don't read schematics,

and minor changes are made which make it difficult

for information disseminators like myself to devise

clear, concise descriptions. Hey up there at Apple.

We're not witless walking wallets down here. We
can appreciate the finer features of the Apple He.

Enough criticism. The Apple He does have a very

versatile keyboard circuit which enables access to

an alternate keyboard layout and easy redefinition

of the keyboard and numeric keypad layouts. Also,

the inclusion of Dvorak as an alternate keyboard

layout might lead to similar action by other manu-
facturers and eventually lead to acceptance of

Dvorak as the English language standard keyboard

layout. Conventional wisdom is that Dvorak doesn't

have a chance because too many people have learned

QWERTY, and normally available typing machines
are all QWERTY. But suppose Dvorak becomes
available as an alternate layout on virtually all typ-

ing machines. Wouldn't some people convert to

Dvorak, and wouldn't typing instruction courses

begin to teach Dvorak? If the seedling takes root, we
all may be touch typing at a higher pitch in a gener
ation or two.

There are other reasons for accessing the alter-

nate keyboard set than learning to touch type in

Dvorak. Suppose you have a numeric keypad and
wish to assign special function ASCH to the various
keys so your application software is easier to oper-

ate. For example, i£ you use Applewriter a lot, you
could assign the ASCH of the various Appleuriier
control keys to the alternate numeric keypad junc-
tion code. Normally your keypad would have
numeric ASCII, but selecting the alternate set

would make your keypad an Applewriter controWer.
Of course, you would need to program a custom
keyboard EPROM with your desired alternate key-
pad layout to gain this feature.

Other uses for the alternate set are possible. The
question is, "how do you access the alternate set?"
The answer is "there are several ways, none ofwhich
is particularly complex." Read on.

If you have a Revision A motherboard, you can
access the alternate set by soldering the X2 jumper

and cutting the XI jumper. Then AN2 will switch

between keyboard layouts with the alternate layout

selected when AN2 is set ($G05D). You can then

switch between layouts at anytime from a program,
or at the keyboard by accessing $C05C/D or

-16292/1.

You can also make AN2 switch between keyboard
sets with Revision B motherboards, but it is more
involved because the keyboard ROM AlO input is

connected to ENVID'. You can make AN2 control

ENVID' by soldering the X3 jumper, but enabling
the alternate keyboard layout will disable video

generation. I don't know what Apple was thinking of

when they tied ENVID' to the keyboard ROM,
If you really want AN2 control of the keyboard

layout on a Revision B motherboard, perform the

following:

1. Cut the X2 jumper to isolate ENVID' from the

keyboard ROM.
2. Solder a short wire between the back half of the

X2 jumper and the back half of the X3 jumper
(don't solder the two halves of X3 together). The
back half is the half situated toward the back of

the motherboard.

A problem with using AN2 to switch between

keyboard layouts is that the alternate set will always

be selected after a system reset. It is true that all the

annunciators are reset when RESET' drops low , but

the firmware RE SET' handler proceeds to set AN2
and AN3 (I don't know why). The result is that your

keyboard will be set to Dvorak at power up and

whenever RESET is pressed. This is probably

undesirable, but you can reverse the situation by

installing a keyboard EPROM identical to the nor-

mal keyboard ROM but with the top half swapped

with the bottom half. Then the QWERTY layout

will be selected by system resets.

I recommend installinga manual switch to select

between keyboard layouts rather than depending on

AN2. The reason is that you never know what some

program is going to do with AN2, and you might

find yourself in Dvorak when you want to be in

QWERTY. Other reasons are that a special key-

board EPROM is not required, and that this is the

sort of function over which manual control is best.

The manual switch needs to bring pin 19 of the

keyboard ROM high or low (see Figure 7.4). Here is

one installation that will work.
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1. Solder wires to the bases of pins 12, 19,and24on

a 24-pin IC socket.

2. Solder the other ends of the wires to a single

pole, double throw switch such that pin 19 is

connected to the common terminal, and pins 12

and 24 are connected to theother two terminals.

3. Remove the keyboard ROM and install the

socket/switch assembly in the vacated mother-

board socket.

4. Install the keyboard ROM in the socket/switch

assembly.

5. Mount the switch in a convenient hole at the

back of the Apple He,

6. If Rev A, cut jumper XI to isolate pin 19 of the

keyboard ROM from ground.

7. If Rev B, cut jumper X2 to isolate pin 19 of the

keyboard ROM from ENVID'.

Theswitch will now placeeither 5 volts or ground

on pin 19 of the keyboard ROM. thus selecting

between character sets.

Are two keyboard layouts enough for you? If you

need more, you can carry the above installation

procedure a step further to mechanize switching

between four sets on a 4K EPROM (2732). The 2732

is compatible with the 2716. except that pin 21 is

All instead of VPP, Perform the following to adapt
to 2732:

1. Wire a 24-pin IC socket as instructed in the

above installation procedure.

2. Bend pin 21 of the wired socket out so it will not

make contact when the socket is inserted into

the keyboard ROM socket on the motherboard.
3. Solder a wire between pin 21 of the socket and

the common terminal of a second single pole,

double throw switch.

4. Solder a short jumper between the terminal of

thefirstswitch that is connected topin24ofthe

socket and one of the two terminals on the
second switch.

5. Solder a short jumper between the terminal of
the firstswitch that is connected to pin 12 of the
socket and the remainingunconneeted terminal
of the second switch.

6. Install the socket/switch assembly as above
mounting the two switches near each other on
the back of the Apple He. The 2732 EPROM
with your four keyboard layouts is installed in

the wired socket which, in turn, is installed in

the keyboard ROM socket of the motherboard.

The preceding paragraphs mentioned several

instances in which you might wish to program your
own keyboard EPROM. There are other reasons for

doing this. One reason is to operate with a numeric
keypad that wasn't originally designed for the

Apple He. This is done simply by reprogramming
that part of the keyboard ROM assigned to the

numeric keypad. Another reason isto makea minor
change in the standard layout to suit your prefer-

ence. For example, I use both a Kaypro and an

Apple He, and am annoyed by the fact that the

arrow keys on the Apple are laid out "left, right,

down, up," and the arrow keys on the Kaypro are

laid out "up, down, left, right." I don't care how they

lay out the arrows as long as they're the same so I can

get used to them. The solution is to reprogram the

keyboard ROM so that the Apple He keys are laid

out like the Kaypro keys. Then just pull off the key

caps and reinstall them in the new order.

T^ble 7.2 provides a useful guide for persons wish-

ing to program thei r own keyboard EPROM for any

reason. EPROM addresses for any key can be com-

puted from the Table 7.2 base address using the

guide at the bottom of the table. Use of 2732 will

create a second table, identical to Tkble 7.2 except

with base addresses increased by $800,
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chapter 8

Video Generation

The marriage of data processing: and video dis-

play technology has been one of the most important

developments in the advance of computers. Com-
bined with the keyboard, the video display provides

a direct communication link between people and

computersthatmakestheold, expensive, physically

large computers seem to be just machines. Imagine
communication with your Apple using a teletype

terminal with no video display. How would that

affect important applications like word processing,

spread sheet accounting, data base management,
graphics display, and Donkey Kong? Without video,

the Apple wouldn't be worth owning.
Of course, the Apple does have a video display

capability, and a large portion of the motherboard
hardware is related to the generation of video. We
have seen in other chapters that many features of

bus structure, timing, and RAM addressing in the

Apple He are dictated by the fact that the dissim ilar

tasks of stored program execution and video display

generation are performed simultaneously in this

computer. Additionally, the video scanner (inter-

nal to the lOU) and video generator (partly inter-

nal and partly external to the lOU) are functional
areas that exist for the sole purpose ofmaking up the

video display. All of these functional areas are inter-

connected in a scheme which allows Apple pro-

grams to control the video output.

Figure 8.1 is a simplified diagram of the video

display control processes ofthe Apple He. As Figure

8.1 shows, the MPU controls the output of video in a

very indirect way. Under direction of the control-

ling program, the MPU sets the screen mode, com-

putes a correct address in memory, and stores

selected code at that memory address. In so doing,

the MPU is setting up a small area of the screen

map. The extent of MPU involvement and, by

extension, programmer involvement in outputting

video consists entirely of setting up this screen map.

The actual output of video is controlled by the video

scanner which scans memory and drives out the

map, and by the video generator which processes the

map to produce the VIDEO signal. You can actu-

ally stop the MPU by pulling READY or DMA' low,

and the Apple will continue to output to the screen

the map which was set up by the MPU before you

stopped it.

Compare this indirect MPU involvement to a

printer output port where the MPU—under pro-

gram control as always—actually stores coded data
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at a special address to output it to the printer. The

sneaking access to RAM by the video scanner is an

pxampie of DMA, which is like someone else sleep-

inir with your spouse. RAM in the Apple is very

nromiscuous. It goes to bed with the video scanner

every other night. Then on most off nights.-it goes to

bed with the MPU. The MPU has no idea what

unfaithful RAM is up to during PHASE 1,

The video generator must take theoffsprmgof the

scanner/RAM affair and interpret it as text, LORES

graphics, or HIRES graphics to produce a signal

which causes a television or monitor to produce the

computer display. This signal is referred to as the

VIDEO signal, and it is one of the more complex

signals in the Apple. The purpose of this chapter is

to discuss the nature of the VIDEO signal, how it is

produced in the video generator, and operational

features of the Apple He resulting from the way the

VIDEO signal is produced. Other chapters of the

book contain detailed descriptions which are impor-

tant in achieving a broad understanding of how the

tasks of video generation and program execution

are integrated in the Apple lie. These include de-

scriptions of overall video generation (Chapter 1).

video scanning within the context of bus structure

(Chapter 2), the video scanner (Chapter 3). and

RAM addressing (Chapter 5). The subject at hand is

the video generator, and we begin our discussion

with a description of the Apple He VIDEO signal.

THE APPLE lie VIDEO OUTPUT SIGNAL

Let's watch a television show for a minute; how

about . . . Taxi"! That Louie is really something. The

picture we see originates with a camera which out-

puts composite video, a signal composed of picture,

synchronization, and color information. This signal

is routed to a transmitter which modulates a radio

frequency signal with the composite video and with

audio from a microphone. The radio frequency sig-

nal is distributed nationwide to local stations which

transmit the signal to receivers in their areas, The

television in your home is a receiver/processor

which extracts the audio and composite video from

the radio frequency signal and processes it to form

the picture we see and the sound we hear.

The previous paragraph could be describing tele-

vision in any number of countries or continents in

the world which broadcast television signals based

on similar principles. The exact details of various

signals vary, however, among several standard sys-

tems used in various areas of the world. The Ameri-

can standards were formulated by the NTSC
(National Television System Committee)and adopted

by the FCC, which allowed black and white televi-

sion broadcastingafter July 1, 1941. Updated NTSC
standards for color television broadcasting were

adopted by the FCC on December 17, 1953. The

American television must be designed to receive

and process NTSC standard signals.

When the original Apple II was built, the FCC

frowned on the idea of computers outputting radio

frequency signals to a television because it is pos-

sible for a tiny amount of the computer signal to be

radiated and cause interference with television

reception in the neighborhood. Please note that this

level of radiation leakage is not a health hazard and

is smaller than the man-made electromagnetic fields

in which we all live. To avoid conflict with FCC

regulations, the Apple 11 was designed to output

composite video which will drive an NTSC standard

composite video monitor. Later, the Apple lie was

designed tooutput video which iscompatible, and in

most respects identical, to the video which is output

from the Apple II.

If you modulate a radio frequency signal with the

Apple's VIDEO signal, that radio frequency signal

will drive an NTSC standard television receiver. Of

course, your thirty dollar RF modulator may tend to

leak RF radiation and interfere with neighborhood

television reception. The television takes the radio

frequency signal and converts it back to the same

VIDEO signal that left the Apple's video output

jack. From this point in itscircuitry, the television is

identical to a composite video monitor.

Figure 8 2 shows the characteristics of the Apple

VIDEO signal. It is made up of three components:

the PICTURE signal, SYNC, and the COLOR

REFERENCE BURST. The signals are added

together in such a way that a television can teH them

apart The television can separate the SYNC from

the VIDEO signal because, during SYNC pulses,

the VIDEO signal is at a '°^er voltage than at any

other time. It also can detect the COLOR BURSl,

because it knows where to look for it-nght behind

the horizontal sync pulse on the "back porch of the

horizontal blanking gate
vtnFO ^isrnal

There is a voltage point on the VIDEO signal

called the black reference. Voltages above the

black reference cause the picture tube electron

bean^ to strike the interior face of the tube with

enough velocity for light emission to result. The

VIDEO signal goes above the black reference only

w!ien i?is time t^ paint, and
^^^^y^^^^^^^l^^e

reference the rest of the time. The SYNC pu Ises are

blacker than black, extending below the blanking

s gnal to a point where they are detected as sync not

a pkture signal, by the television. We thus have
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Figure S2 The Apple lie VIDEO Signal.

three signal levels, the white level, the black level,

and the syne level. The Apple signal is immensely
less complicated than normal television composite
video in this regard. The level ofthe picture signal in

composite video can be any voltage between the

black level and white level at any instant. This is the
way television reproduces the remarkable variety of

lightingshades found in a normal television picture.

Even black and white television is really black and
white and innumerable shades of gray. The Apple
video, when color information is not present, is truly
black and white.

The horizontal and vertical sync pulses both de-

scend below the black level. Any sharp negative
edge in the sync level is interpreted by the television

as horizontal sync. Any long duration negative pulse
in the sync level is interpreted as vertical sync. The

vertical sync pulse in the Apple lasts for four com-

plete horizontal scans. As in normal television video,

there are sharp serrations in the vertical sync pulse

so that horizontal sync can be detected, even in the

middle of the vertical sync pulse.

There are 262 horizontal sync pulses for every

vertical syne pulse in the American Apple. The 4-

cycle horizontal sync pulse occurs in the middle of

HBL, the 25-cycle horizontal blanking gate. Dur-

ing HBL, the VIDEO signal is held below the black

reference level, creating the right and left black

margins on the screen {see Figure 8.3). The picture

signal occurs between the horizontal blanking gates,

naturally, creating the screen display between the

leftand right margin. The vertical sync pulse occurs

in the middle of VBL, the 4550-cycle (70 horizontal

scans) vertical blanking gate. The VIDEO signal

,.i
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is held below the black reference level during the

entire VBL period, creating the lower and upper

black margins on the screen.

Assume the electron beam is at the top left corner

of the screen, and that the Apple display window on

your television is 10 inches across. The beam is mov-

ing left to right as you look at the screen, at about 10

inches per 40 microseconds or about 14,000 miles

per hour. Since we are at the top, the vertical sync

pulse has just occurred and it is the second half of

VBL. The beam scans across to the right side of the

screen, but we don't see light on the screen because

VBL holds the VIDEO signal in the black. The

horizontal sync pulse causes the beam to retrace

very rapidly to the left side (none of this slow poke

14,000 mph stuff) so it can scan across left-to-right

again. This cycle continues as the beam moves

across again and again and less speedily down the

screen to the first displayed line, aboutan inch from

the top of the screen.

In the la.st undisplayed line. VBL ends about an

inch from the right side, but HBL begins at the same

time, so the screen is still blanked. After the beam
scans past the right edge, horizontal sync occurs,

causing retrace, and the beam begins the first dis-

played line. When the beam gets aboutan inch from

the left side of the screen, H BL ends and the VIDEO
signal begins switching back and forth between the

black level and the white level, decreasing and
increasing the energy in the electron beam to cause

bright spots and lines on the screen interspersed

with black spots and lines.

About an inch from the right side of the screen,

HBL forces the VIDEO signal into the black where
it remains until the beam has scanned past the left

margin of the next line. This cycle continues for 192

displayed horizontal scans. At the end of the display

period of the last displayed line, VBL and HBL
begin together, marking the start of the bottom
margin. The beam scans the rest of the way to the

bottom in the black, then the vertical sync pulse

causes a rapid retrace to the top of the screen, where
we began our description of the continuous cycle of

the electron beam.
In NTSC standard television scanning, a process

known as interlacing takes place. In interlacing,

alternate vertical scans are displaced vertically by
half the distance between two horizontal scans. This
means it takes two vertical scans to actually paint
the complete television picture, and it is a tricky way
of increasing vertical resolution without increasing
flicker. In NTSC scanning, there are 262.5 horizon-
tal scans in each vertical scan for a picture com-
posed effectively of 525 lines. The Apple SYNC is

not set up to cause interlacing. It causes a non-inter-
laced vertical scan of 262 lines, 192 of which are
displayed.

COLOR SIGNALS

The COLOR REFERENCE BURST isa 14-cycle
sample of the COLOR REFERENCE signal from
the .timing generator. Color television sets are de-

signed to look for a 3.58 MHz signal after the hori-

zontal sync pulse. From this short burst, the

television is capable of reconstructing the whole

COLOR REFERENCE signaUtdoes this by "phase

locking" an oscillator to the COLOR BURST. By
this method, the COLOR REFERENCE is trans-

mitted to the television, but it is not present at the

same time as picture information, so it does not

interfere with the picture. Since theCOLORBURST
occurs during HBL, it is not displayed on the screen.

The COLOR BURST does not occur if the TEXT
soft switch is set. When no COLOR BURST is

present, the color generation in the television is

inhibited, so elimination of the BURST prevents

undesirable coloration of screen text. The COLOR
BURST is not inhibited during TEXT time in

MIXED mode, so the four lines of text at the bottom

of the screen in MIXED displays have coloration

(green, violet, and white assuming SINGLE-RES
display mode).

Picture information in an NTSC standard televi-

sion signal is divided into two components, the color

component and the brightness component. The

chrominance signal contains the color information

of the picture, and the luminance signal contains

the brightness information of the picture. The two

signals are transmitted simultaneously and pro-

cessed together in the radio frequency and interme-

diate frequency stages of a television set. Once the

television signal has been converted from radio fre-

quency to composite video, the television separates

the chrominance signal from the luminance signal

and processes them individually.

The chrominance signal is a highly complex com-

bination of two 3.58 MHz signals 90 degrees out of

phase with each other. In an amazing mathema.ti-

cal/electronic manipulation, the chrominance sig-

nal contains the color information of each spot on the

screen while the luminance signal contains the

brightness information of each spot. Part of this

mathematical manipulation is that the chrominance

and luminance signals are present together in over-

lapping frequencies, yet do not interfere with each

other. In television video processing, the chromi-

nance signal is separated from the composite video,

fcS^ '1""^
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then red, blue, and green color signals are extracted

from the chrominance signal by comparing it to the

COLOR REFERENCE.
In Apple video, the PICTURE signal takes the

place of the luminance and chrominance signals of

normal broadcast NTSC composite video. The PIC-

TURE signal is a simple binary signal that goes

high or low in accordance with text or graphics

patterns produced from the screen map during dis-

play periods.

In television processing, the Apple VIDEO signal

is recovered from the modulated carrier wave and is

present at the output of the "second detector." The
higher frequency components will, however, look

different than they did at the videooutputjack of the

Apple. This is because the square waves of the

VIDEO signal are converted to their sine wave
components that are within the bandwidth of the

television signal paths. In televisions with the nor-

mal 4.1 MHz IF bandwidth, those square waves
greater than about 1.37 MHz are converted to sine

waves of the square wave frequency. This includes

the COLOR REFERENCE BURST and higher

frequency PICTURE signals, such as those which
produce color in the Apple's display. This modified

Apple video is present at the input to the luminance
and chrominance amplifiers, as well as other sec-

tions of the television.

The modified PICTURE signal(ahigh frequency
sine wave, a low frequency square wave, or medium
frequency combination) is passed by the luminance
amplifier and ultimately controls the brightness of

the display. If the modified picture signal is oscil-

lating at 3.58 MHz, it will also be passed by the

chrominance amplifier to the synchronous demodu-
lator where it is compared with the reconstructed
COLOR REFERNCE to produce red, green, and
blue color signals. Thus, the Apple VIDEO signals
which produce colored displays on the screen are
those with a 3.58 MHz PICTURE signal.*

Processing in a composite video monitor is similar
' to that in the video sections of a television, but the
high frequency square waves may or may not have
been converted to sine waves by the time they reach

; thechrominance and luminance amplifier inputs. If

!
they are not already sine waves, the high frequency

:
square waves will be converted to sine waves in the

;
luminance and chrominance amplifiers. In high

.
frequency response monochrome monitors, there is

( no chrominance amplifier. The video amplifiers of
J these monitors will pass the square waves of the

• Someexceptions to this rule and further discussion on television

I
processing are cotitainecS in a technical note at the end of this

J
chapter.

f

Apple VIDEO signal with little distortion. An
exception is LORES or HIRES80 gray PICTURE
signals, which will be converted to sine waves by
monitors of less than 21 MHz frequency response.
The features of Apple graphics are largely depen-

dent on the way the Apple passes color intelligence

to the television. There is no need to store HIRES
color information in memory. Dot position deter-

mines color. Think of the savings in memory over a
system where the color information of dots is stored

as separate intelligence, The flip side of this coin is:

think of the elaborate programs required to produce
colored displays dependent on dot position.

There are four classes of Apple video concerning
color. First is black, the absence of luminance.
Second is white, the absence of color caused by pic-

ture signals less than 3.58 MHz. This occurs when
two adjacent HIRES40 dots or four adjacent
HIRES80 dots are turned on, increasing signal

pulse width and decreasing frequency so there is no
3.58 MHz signal for the TV to interpret as chromi-
nance. Additionally, white occurs in a "COLOR =

15" LORES block, which is identical to seven adja-

cent HIRES40 dots in four adjacent horizontal

scans. White also occurs in TEXT mode where there

is no COLOR BURST.
Third is gray, the absence of color caused by 7

MHz picture signals. This occurs in "COLOR = 5"

and "COLOR - 10" LORES blocks and in HIRES80
displays in which every other dot is turned on,

LORES colors 5 and 10 are identical to each other in

shade and intensity and are the same as white

except less bright. White horizontal lines are caused

by long periods of white level VIDEO signal . Gray is

caused by 7 MHz oscillation of the VIDEO signal

between white level and black level. The alternating

black level causes gray to be less bright than white.

Fourth is colored video. This video is 3.58 MHz
whether it is HIRES or LORES. There are four such

HIRES40 colors and twelve such LORES and

HIRES80 colors. Four of the LORES/HIRES80
colors are identical to HIRES40 colors: green, violet,

orange, and blue. The remaining eight colors come

in four tones: light and dark blue, light and dark

magenta, light and dark blue-green, and light and

dark brown. Of these eight colors, six can be pro-

duced in HIRES40 as interference between adja-

cent bytes of graphics data with bit 7 set on one byte

and reset on the other.

This explanation of Apple color is based on analy-

sis of the hardware and timing of the video genera-

tor. The details are a little involved, but tread thou

in my footsteps, tenacious reader, and thy tootsies

will not freeze.

^li.-,...
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DISPLAY MAP MEMORY
REPRESENTATIONS

The way in which displayed objects are represent-

ed in memory varies with the display mode. TEXT
characters are represented by ASCII with some

variations in the code for NORMAL, INVERSE, or

FLASHING characters. GRAPHICS patterns are

represented directly in memory with illuminated

portions represented by ONE and blanked portions

represented by ZERO. Details of these representa-

tions are illustrated in Figure 8.4.

TEXT ASCII from the display map is interpreted

in one of two ways, depending on the ALTCHRSET
soft switch. With ALTCHRSET reset, $00-$3F

represent 64 INVERSE upper/special/numeric

characters, $40—$7F represent 64 FLASHING
upper/special/numeric characters, and $80—$FF
represent a complete 128-character NORMAL
ASCII set. With ALTCHRSET set, $00-$7F repre-

sent a complete 128-character INVERSE ASCII

set. and $80—?FF represent a complete 128-charac-

ter NORMAL ASCII set.

The ALTCHRSET variation affects only the

interpretation of INVERSE and FLASHING code,

not the NORMAL code. When NORMAL or

FLASHING text is to be displayed, the controllinK

program must coordinate ALTCHRSET configura-

tion with maskingof bits6 and 7 of stored character

code to achieve the desired display. A complete list

of the TEXT character representations is given in

Tkble 8.4.

The name of the ALTCHRSET soft switch leads

one to believe that it lets the user select some alter-

nate to the standard dot patterns which make up

Apple He TEXT mode characters. This is not true
ALTCHRSET only lets you switch between the
funky INVERSE/FLASHING representations of

the original Apple II and the businesslike full

ASCII INVERSE representation. If you want an
alternate character set, you can get it by replacing

the INVERSE patterns in the video ROM with your
desired set in a custom video EPROM.

In TEXT mode, each 40-byte display line in RAM
is scanned eight consecutive times. For example, if

$C1 (code for NORMAL "A") is stored at $400, $Cl is

driven out of RAM during each of the first eight

horizontal television scansjust before the beam gets

to the first displayed character position. Video gen-

eration circuitry interprets VA, VB, and VC from
the video scanner to determine which of the eight

7-dot patterns that make up "A" on the screen it is

time to shift out. As a result, 40 bytes contain the

display intelligence for eight horizontal scans.

Memory scanning in LORES is identical to that of

TEXT, with each 40-byte display area scanned

eight times consecutively. But, rather than ASCII
for a text character, actual dot patterns are stored to

represent LORES blocks. Each memory location in

the display map contains two 4-dot patterns, the

upper block pattern in bits —3 and the lower block

pattern in bits 4—7. During the first four times a

40-byte display area is scanned (as identified by

VC), the upper block pattern is processed by the

video generator, and the lower block pattern is pro-

cessed during the second four times a 40-byte dis-

play area is scanned.

Video generator processing of a 4-dot LORES
pattern consists of shifting the pattern to the PIC-

TURE signal at a 14 MHz rate (twice the speed of

TEXT
ALTCHRSET

TEXT
ALTCHRSET

LORES
GRAPHICS

HIRES
GRAPHICS

1

f

NORMAL ASCI Q
^ ^

D7 D6 D5 D4 03 02 D1 DO

1
'

UPPER CASE,
SPECIALj

NUMERIC CODE.

D7 06 05 D4 D3 02 D1 DO

^ ^

AS Cll Q

07 D6 D5 D4 03 D2 D1 DO

= INVERSE
1 = NORMAL

LOWER BLOCK
PATTERN flOTATED
AT 14 MHz
DURING VC.

UPPER BLOCK
PATTERN ROTATED
AT 14 MHz
DURING VC.

D7 06 05 04 03 02 01 DO

= INVERSE
1 = FLASHING

NOTES:

7-DOT PATTERN SHIFTED AT
7MHz(HIRE540)OR14MHl
(HIRESSO).

= NO DELAY (HIRES40}

1 = DELAY (HIRES*)|

[T] Characters displayed for CONTROL ASCII
identical to uppercase

Q] D7 has no effect in HlfiESao mode
S Text code and LORES patterns are driven out o1

memory for eight consecutive horizontal scans
HIRES patterns are driven out only for one
horizontal scan

Figure hA Display Map Data Formats.
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HIRES40 and TEXT40 patterns). The signal alter-

nations resulting from this high speed shift are too

fast to be displayed clearly on a color television, so

they are blurred into colored blocks. You can actu-

ally see the LORES pattern alternations if you use a
high frequency response video monitor with the

Apple instead of a television.

HIRES patterns are stored directly in bit 0—6 of

display memory locations as 7-dot patterns. Pro-

cessing of these patterns consists of shifti ng them to

the PICTURE signal, seven dot positions per micro-

second (HIRES40) or seven dot positions per '/g

microsecond (HIRES80). The patterns are shifted

out LSB first, sotheLSB represents the leftmost dot

position on the screen. This is the reverse of the way
you visualize the numerical representation of the

stored pattern (numbers have the LSB on the right).

Bit 7 of stored HIRES patterns is the delay bit. If

this bit is set in HIRES40 processing, the entire

7-dot pattern is delayed by one 14M period (one

fourth aCOLOR REFERENCE period). This delay

results in a very slight shift right, and consequent

change in coloring, of the 7-dot pattern on the

screen. Without the delay, HIRES40 patterns are

black, white, green, and violet. With the delay,

HIRES40 patterns are black, white, orange, and
blue.

InHIRESSO processing there is no delay feature-
it is not necessary because, with the higher resolu-

tion, the delay colors and other colors can be
generated. Display memory bit 7 has no effect in

HIRES80 mode.

VIDEO GENERATOR HARDWARE
The video generator consists of circuits that men i-

tor the video scanner, the display mode soft switches,

and the data driven from the display map in RAM to

produce the VIDEO signal. This includes a consid-

erable amount of logic circuitry in the lOU plus the
, video ROM, PICTURE signal load/shift register,
: and video summing amplifier. Figure 8.5 is a sche-
;matic diagram of these circuits.

Akeyconceptin Applelle video generation isthat
joi a video counter scanning memory to drive out a
display map in synchronization with the scanningof
an electron beam across the face of a CRT. In Chap-
ter 5, it was shown how the video scanner outputs
areaddressing inputs to motherboard and auxiliary
card RAM during PHASE 1. In this chapter, it will
be seen that all facets of video generation are per-
formed in synchronization with the video scanner.
Ihis is accomplished by generating signals as a log-
ical function of the video scanner inside the lOU.

These scanner gated signals perform various func-

tions in the video generation task such as blanking
the picture, gating the COLOR BURST, and serv-

ing as the sync portion of the VIDEO signal.

A second key concept in Apple lie video genera-
tion is that of the video ROM, translating video data
from the display map in RAM to dot patterns which
are shifted out to become the PICTURE signal.

Every half cycle, when PHASE rises or falls, new
video data is present at the address inputs of this

ROM. Depending on the display mode and the cur-

rent state of the video scanner, the video ROM trans-

lates the data on the video data bus (VIDO— 7) to

graphics or text patterns. Then the video patterns

are loaded and shifted out by the load/shift regis-

ter. In SINGLE-RES modes, the patterns resulting

from auxiliary card RAM data are ignored and the

patterns resultingfrom motherboard RAMdataare
loaded and shifted out: seven HIRES dot positions,

one LORES block, or one TEXT character per
microsecond. In DOUBLE-RES modes, patterns

resulting from both motherboard and auxiliary

card RAM data are loaded and shifted out: 14

HIRES dot positions, two LORES blocks, or two
TEXT characters per microsecond.

VIDO—VID5 are direct addressing inputs to

A3—A8 of the video ROM. VID6 and VID7 are indi-

rect addressing inputs, processed first in the lOU to

implement FLASHING text and the functions of

the ALTCHRSET soft switch. Processed VID6 and
VID7 are labeled RA9 and RAIO (ROM Address 9

and 10) and connected to the A9 and A 10 address

inputs to the video ROM. The other address inputs to

the video ROM are SEGA, SEGB, SEGC, and GR+2
from the lOU. Additionally, WNDW' from the lOU
and ENVID' from the auxiliary slotarechipenable

inputs to the video ROM.
The control inputs to the video ROM which come

from the lOU are gated by video scanner states.

These signals are delayed by one or two video

scanner clocks (RAS' rising during PHASE 1) for

overall timing alignment. For example, SEGC is

simply VC from the video scanner, delayed one

scanner clock. The reason for the delay is that it

takes time for data from video scanner access to

RAM to become valid at VIDO—VID7. The delay in

the video scanner signals causes video data and con-

trol signals from the same video scanner state to be

present at the video ROM at the same time. This is

particularly important in the case of LORES graph-

ics since HO patterns are different than HO' patterns.

The switching related to GRAPHICS/TEXT time

switching in MIXED mode is delayed by two scanner

clocks. This is sothatthe lastGRAPHICS pattern at
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the lower right of the display window will be
entirely shifted out before the timing HAL is con-
figured for TEXT shifting. MIXED mode switch-
ing is covered in a later section of this chapter.

It is normal to think of horizontal scan lines as
beginning with horizontal sync, but, in the Apple, it

is logical to think of horizontal scan lines as begin-
ning with the first cycle of HBL. This is because
HBL begins when the horizontal portion of the video
scanner is preset and when the vertical portion
increments. Signals gated by the video scanner tend
to switch just after the display period ends. So as not
to confuse it with the television horizontal scan, the
65-cycle period beginning with the horizontal preset
will be referred to in the following discussion as the
horizontal period.

Inputs to the Video ROM
ENVID' is a pulled down line connected from pin

29 of the auxiliary slot to an enable input of the video
ROM. The data output lines of the video ROM are
pulled up, so disabling the ROM yields high data
which represents a black picture. An auxiliary card
can, therefore, blank the motherboard PICTURE
signal by bringing ENVID' high. Also, an auxiliary

card can inject an alternate inverted picture signal

to the motherboard on ALTVID'.
The fact that a high level out of the video ROM

represents a black level on the screen is simply a
matter of hardware convenience. "Black equals
high" polarity here makes it easy to blank the dis-

play via pull-up resistors, and results in proper
polarity of dot patterns at the video summing ampli-
fier. A side effect is that dot patterns in the video
ROM are inverted from the polarity in which
GRAPHICS patterns are stored in theRAM display
map. In HIRES or LORES patterns stored in RAM,
"1" represents illumination and "0" represents
blanking.

TheENVID' line is also connected through the X2
jumper to an addressing inputof the keyboard ROM
on Revision B motherboards, so pulling ENVID'
high also selects the alternate keyboard layout (see
'Figure 7.4). Additionally, you can install a jack at
the J19 location and plug an ENVID' switch into it,

or you can solder jumper X3 and control ENVID'
from a program via AN2.

/ WNDW is the blanking gate of the Apple He, the
Signal which blanks the picture to cause the black
^margin around the display window. It goes high
whenever HBL or VBL inside the lOU goes true

Inn r^
scanner clock).WNDW is connected from

y U-38 to the other enable input of the video ROM.
Like the ENVID' line, when WNDW is high, the

video ROM is disabled and a black PICTURE signal

results.

The HBL and VBL signals are not outputs of the

lOU, I only deduce their existences because the logi-

cal way to develop WNDW is as a combination of

HBL and VBL, generated respectively from states

of the horizontal and vertical portions of the video
scanner. Also, WNDW is true at exactly the same
scanner states as the HBL + VBL BLANKING gate
of the original Apple II (plus one scanner clock). On
an oscilloscope, WNDW is seen to consist of 192
alternating negative {40 scanner states) and positive

(25 scanner states) levels followed by a very long
positive level (4550 scanner states). The long posi-

tive level is the vertical blanking period, and the
short duration alternations are the alternating hori-

zontal display and horizontal blanking periods.

VIDO—VID5 are address inputs to the video
ROM as mentioned previously. The video ROM
translates VIDO—VID5(and VID6—VID7, present
via RA9 and RAlO) to dot patterns for loading and
shifting to the PICTURE signal. The general pro-

cess is for the video to translate data from the dis-

play map on VIDO—VID7 to dot patterns as dictated
by other address inputs {GR+2, SEGA. SEGB, and
SEGC).
The GR signal in Figure 8.5 is not the reset state of

the TEXT/GRAPHICS soft switch. Rather it rep-

resents GRAPHICS time, which is all of the time in

GRAPHICS NOMIX mode and all times except V4
. V2 of GRAPHICS MIXED mode. V4 • V2 identi-

fies TEXT time in MIXED mode, and it is true

during the last 32 horizontal periods of VBL' and
during the last 38 undisplayed horizontal periods of

VBL. This means that in MIXED mode the Apple
switches to GRAPHICS then back to TEXT during
VBL, but it is not significant because the screen is

blank during VBL.
GR+1 and GR+2 are the GR signal, delayed by one

and two scanner clocks respectively. GR+1 is used in

identifying HIRES time for scanner addressing

(Figure 5.3) and in signal selection for SEGA and
SEGB. GR+2 identifies GRAPHICS time in RA9
and RAlO generation and is the GRAPHICS time

output of the lOU. As an addressing input, GR+2
divides the video ROM into GRAPHICS patterns

and TEXT patterns.

GR+2 is also a direct input to the timing HAL on

Revision A motherboards where it inhibits DOU-
BLE-RES timing during GRAPHICS time. In

Revision B, GR+2 is inverted and gated by FRCTXT'
before application to the timing HAL. If FRCTXT'
is pulled low (normally by resetting AN3 with a 64K
RAM card installed in the auxiliary slot), gated

''""»^A
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GR+2' is forced high. This enables DOUBLE-RES
timing in the HAL if 80COL is set.

SEGA, SEGB, and SEGC are addressing inputs

to the video ROM which subdivide the ROM differ-

ently depending on whether it is TEXT time or

GRAPHICS time as identified by GR+1. The SEGA,

SEGB, and SEGC signals are selected as listed in

Tkble 8.1, then delayed one scanner clock before

leaving the lOU.

TheTEXT time assignments are such that SEGA,
SEGB, and SEGC determine which of eight seg-

ments of a 7 X 8 text pattern is being drawn. Recall

that VA, VB, and VC are not addressing inputs to

RAM in TEXT/LORES scanning so the same 40

bytes of display memory are scanned eight times

consecutively for each line of text or pair of LORES
block rows. The assignment of VA, VB, and VC
during TEXT time means that SEGA, SEGB, and

SEGC determine which of eight segments of a 7 x 8

text pattern is to be driven out of the video ROM.
Since these text segment address lines are con-

nected to the three least significant address inputs

of the video ROM, you will find the eight segments of

each character pattern stored adjacently if you

examine the text areas of the video ROM.
During GRAPHICS time, there is no need to iden-

tify each segment of the text lines, but there is need

for other identification. VC is still needed to deter-

mine whether it is time to display the upper or lower

row of LORES blocks. The LORES VC area of the

video ROM contains a map of the patterns on

VIDO—VID3, and the LORES VC area contains a

map of the patterns on VID4—VID7. As an ex-

ample, if VID7—VIDO descending is 1011 1000, the

LORES, VC. HO' output of the video ROM is OUl
0111 (the inversion of the pattern in VID3—VIDO).
The LORES, VC, HO' pattern is 0100 0100. It will be

seen later that the shift/load register rotates* these

LORES patterns at a 14 MHz rate, effectively shift-

ing the 4-bit pattern to the PICTURE signal 3.5

times in a LORES40 cycle.

The presence of HO as an addressing input satis-

fies LORES requirements. Recall from Chapter 3
that the beginning phase of the 3.58 MHz COLOR
REFERENCE alternates 180 degrees every MPU
cycle, and that this phase can be defined in terms of

HO. The color of a GRAPHICS pattern is different
when driven from an even location than it is when
driven from an odd location if no correction is made
for the aiternatingphase ofCOLOR REFERENCE.
There is no correction in HIRES, so even patterns
are of different color than odd patterns. LORES
*In this chapter, the term "rotate" is used in the same sense that
"rotating" bits is used in 6502 assembly lan^age.

Table 6.i

SEGA, SEGB, SEGC Signal Assignments.*

GR+r
GR+1

SEGA

VA
HO

SEGB

VB
HIRES'

SEGC

VC
VC

•Selected signals are delayed one scanner clock before
being output from lOU.

GRAPHICS is corrected, and that is why HO is an
addressing input to the video ROM duringORAPH-

1

ICS time.

The correction consists of storing LORES pat-

terns shifted two bits in the HO areas of the video

ROM. Continuing the above example with 1011

1000 on the video data bus, the LORES, VC, HO
pattern is 1101 1101 (1000 inverted and rotated two

bits). The LORES, VC, HO pattern is 0001 0001

(1011 inverted and rotated two bits). The 2-bit bias is

equivalent to ^k cycle of COLOR REFERENCE
which is the required correction.

The third addressing input during GRAPHICS
time is HIRES', the inversion of the HIRES soft

switch. This is needed at the video ROM because

HIRES 7-dot patterns must be routed through the

video ROM without regard to VC and HO. If you

examine the HIRES GRAPHICS areas of the video

ROM, you will find that there is no difference

between VC and VC patterns or HO' and HO
patterns.

The SEGB output of the lOU is also routed to the

timing HAL where it is used to distinguish between

HIRES and LORES when gated GR+2' is low

(GRAPHICS time). The timing HAL needs to iden-

tify HIRES40 GRAPHICS so it can delay HIRES
timing by one 14M period ifVID7 is high. This is the

way the HIRES delayed feature is implemented in

the Apple lie.

The HIRES patterns stored in the videoROM are

simple inversions of the patterns on VID6--VID0.

The state ofVID7 does not affect the HIRES pattern

from the ROM because VID7 is the HIRES delay

bit, not the on/off condition of a dot. As it is with HO

and VC, the VID7' and VID7 portions ofthe HIRES

area of the video ROM are identical. Similary, the

MSB of HIRES patterns from the video ROM is not

used. In the video ROM supplied with the Apple He,

the MSB is set on all HIRES patterns.

The remaining address inputs to the video ROM
are RA9 and RAIO. Like SEGA, SEGB, and SEGC,

the functions ofRA9 and RAIO depend on whether it

is GRAPHICS or TEXT time. During GRAPHICS
time as identified by GR+2, and duringTEXT time

.-;'''iifi.',
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when ALTCHRSET is set, RA9 and RAIO are equiv
alent to VID6 and VID7, respectively (with lOU
propagation delay). During GRAPHICS time, this
allows the video ROM to translate HIRES and
LORES VID7-VID0 GRAPHICS patterns into
Inverted patterns as described above, with direct
map through of HIRES patterns and VC/HO varia-
tions of LORES patterns.

Table 8.2 shows the TEXT and GRAPHICS time
signal assignments to RAIO and RA9. Note that
RAIO and RA9 are equivalent to VID7 and VID6

:
except during TEXT time when ALTCHRSET is

reset. The special logic is necessary to implement
I

FLASHING text, and because there are differences

!
in the character code when ALTCHRSET is reset.

J
Based on the Table 8.2 signal assignments, the

: TEXT time RA9 and RAIO states for various states

of VID6, VID7, and ALTCHRSET are compiled in

, "Eible 8.3.

There is logic to the RAIO and RA9 states, but it is

a little involved. For starters, each TEXT character
is represented in the Apple display map by an 8-bit

word. This means 256 possible character represen-
tations can be present on VID7—VIDO in TEXT
processing. However, there are only 128 characters
in a standard ASCII set, the control, special/
numeric, upper case, and lower case groups. As a
result, two complete alternate sets of ASCII can be
represented in theTEXT display map. Additionally,
the ALTCHRSET soft switch enables a programmer
to select between two methods of interpreting the
TEXT display code.

The original Apple II displayed only 64 upper
case alphabetic, numeric, and special characters
represented by the lower 6 bits of video data from
the display map. The two most significant bits were
interpreted by the video generator to display the
characters as NORMAL, INVERSE, or FLASH-
ING text. The Apple He TEXT display is compat-
ible with the old Apple II format when ALTCHRSET
is reset, The only difference is that thecomplete 128
NORMAL character set can be displayed, not just
the upper case, special set.

When ALTCHRSET is set, the video data is inter-
»^^d as 128 NORMAL characters and 128 IN-
^'ERSE characters, instead of 128 NORMAL, 64

INVERSE, and 64 FLASHING characters. Stored
code for INVERSE characters is identical to that of
NORMAL characters except VID7 is high for NOR-
MAL characters and low forINVERSE characters.

T^ble 8.4 shows the characters of the video ROM
that correspond to code stored in the display map.
The ALTCHRSET layout seems far more logical

since it is simply a complete INVERSE set and a
complete NORMAL set. In fact, the TEXT area of
the video ROM is exactly like the ALTCHRSET
portion of Table 8.4. That is, RAIO, RA9, and VID5
divide the TEXT area of the video ROM as follows:

RAIO RA09 VID5 CHARACTER SET

1

1

1

1

1

1

1

1

1

1

1

1

INVERSE control (upper)

INVERSE special

INVERSE upper
INVERSE lower

NORMAL control (upper)

NORMAL special

NORMAL upper
NORMAL lower

There are no FLASHING text patterns stored in

the video ROM. Flashing text is mechanized by
switching the RAID and RA9 address between 00
and 10 for that video data with VID7 low and VID6
high when ALTCHRSET is reset. Switching be-
tween 10 and 00 alternately selects NORMAL
control/special and INVERSE control/special char-
acters. The control characters in the Apple lie video
ROM are identical to uppercase alphabetic charac-
ters, so the flashing text switches between IN-
VERSE and NORMAL upper case, numeric, and
special characters. The FLASH signal toggles once
for every 16 video scanner overflows (Figure 3.8), so

FLASHING text switches back and forth at a 1.87

Hz rate (3,74 alternations per second).

ALTCHRSET' INVERSE and FLASHING text

is coded differently than NORMAL text and
ALTCHRSET INVERSE text. VID5 is high for

uppercase and low for special and numeric charac-
ters with ALTCHRSET' INVERSE and FLASH-
ING text, but VID5 is low for uppercase and high
for special and numeric characters with NORMAL
and ALTCHRSET INVERSE text. As a result.

video output routines should make appropriate

Table 82 RA9, RAIO Signal Assignments.

GR+2 ALTCHRSET RAIO RA9

1 X

1

VID7
VID7 + VID6* FLASH

VID7

VID6
VID6.VID7

VID6
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Table 83 RA9,RA10 TEXT Time States.

ALTCHRSET VID7 VID6 RAIO RA9 CHARACTERS

INVERSE control/special

1 FLASH Flash INVERSE/NORMAL*
1 1 NORMAL control/special

1 1 1 1 NORMAL upper/lower

1 INVERSE control/special

1 1 1 INVERSE upper/lower

1 1 1 NORMAL control/special

1 1 1 1 1 NORMAL upper/lower

Flashes between NORMj\L control/special and INVERSE control/special.

transformations to store correct code for desired

INVERSE or FLASHING characters in the dis-

play area. The 40-column firmware of the Apple lie

does not correctly output lower case INVERSE
video for display with ALTCHRSET set because it

was written for the Apple II, not the Apple He. The
80-co!umn firmware supports ALTCHRSET text,

but it outputs INVERSE characters correctly only

if ALCHRSET is set. In other words, use the 80-

column firmware to output lower case INVERSE
text from your Applesoft programs, but use the 40-

column firmware if you wish to mix INVERSE and
FLASHING text.

Loading and Shifting of Dot Patterns

For each 1-microsecond period between rising

edg-es of PHASE 0, there are two 500-nanosecond
accesses to the video ROM. Video data from the

auxiliary card becomes valid on the video data bus
shortly after PHASE rises and remains there until

shortly after PHASE falls. Also, shortly after

PHASE falls, video data from the same mother-
board RAM address becomes valid and remains
valid until shortly after PHASE rises. The pattern

from the video ROM takes no more than 450 nano-
seconds to become valid after its address is valid

(assuming Apple uses a450 nsec ROM), so the auxil-

iary card pattern is valid toward theend ofPHASE
0, and the motherboard pattern is valid toward the
end of PHASE 1.

The output of the video ROM is connected to a
74LSI66 load/shift register that loads the dot pat-

terns and shifts them out, The patterns are loaded
when LDPS' drops low near the end of PHASE (if

DOUBLE-RES) and near the end of PHASE 1

(always). When the 8-bit load/shift register is not
loading data, it is rotatingthe data in an end around
shift. The rotation is only important in LORES40

mode, because new data is always loaded before the

old data is completely rotated in the other modes.

The loading and shifting of dot patterns is con-

trolled by three signals from the timing generator,

LDPS', VID7M, and 14M. LDPS' is the load/shift

control as noted before, 14M is the load/shift regis-

ter clock, and VID7M serves as the clock enable

(since it slightly lags 14M). The register loads or

shifts data every time 14M rises when VID7M is

low. The timing generator brings VID7M continu-

ously low during DOUBLE-RES modes and

LORES40 mode to enable 14 MHz processing. Dur-

ing TEXT40 and HIRES40 modes, VID7M is low

every other 14M rising, so processing is at 7 MHz,

Note that auxiliary patterns appear at the input

lines of the shift register every 500 nanoseconds,

regardless of the Apple He display mode (assuming

an auxiliary RAM card is installed), However, in

SINGLE-RES mode processing, the timinggenera-

tor does not bring LDPS' low at the end of PHASE 0,

so the auxiliary RAM pattern is not processed. Dis-

play mode control is thus maintained via timing

generator signals. More details of these timing sig-

nals will be discussed in following sections.

The QH output of the load/shift register is con-

nected to the PICTURE' line, so the PICTURE' line

rises and falls as a function of the rotating dot pat-

terns. If QH is low or if the ALTVID' line from the

auxiliary slot is low, the PICTURE signal goes high,

a level that results in illumination on the television

screen. The least significant bitfrom the videoROM
is connected to the QH input of the load/shift regis-

ter, so it is logical to think of QH as the least signifi-

cant bit. It can then be clearly stated that patterns

are shifted with inversion to the PICTURE sig-

nal. LSB first.

The PICTURE signal is applied to the video

summing amplifier through a resistor that biases it
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Table 84 Displayed Text Characters.

ALTCHBSET'

INVERSE FIASH HORHAL

UPPER SPECIAL UPPER SPECIAL C(»ITR0L SPECIAL UPPER LOWER

000 016 032 048 064 0B0 096 112 128 144 160 176 192 208 224 240
ASCII 50t> 510 520 $30 $40 550 $60 570 $80 $90 5A0 $B0 500 $D0 $E0 $F0

$0 Li P @ P e P @ P \ p
1 $1 A Q 1 1 A Q 1 1 A Q 1 1 A a q
2 52 B R 2 B R 2 B R 2 B R b r
3 $3 C S # 3 C S # 3 C S # 3 C S c s
4 $4 D T $ 4 D T $ 4 D T S 4 D T d t
5 $5 E U % 5 E U % 5 E U % 5 E U e u
6 $6 F V & 6 F V E, 6 F V & 6 F V f V
7 $7 G w 1

7 G W 7 G W 7 G w g w
8 $8 H X { 8 H X ( 8 H X ( 8 H X h X
9 $9 I y ) 9 I Y ) 9 I Y ) 9 I Y i Y

10 $A J z *
« J Z * ! J Z « J 7, j z

11 ?B K L + / K [ + ; K [ + K r k (

12 $C L \ 1 < L \ < L \ < L \ 1 \

13 $D M J
- = M ] - = M ] M ] ID }

14 ?E N *
. > N > N > N n

15 $F — / ? O / ? / ? - o :s

ALTCHRSET

INVERSE NORMAL

UPPER SPECIAL UPPER LOWER CONTROL SPECIAL UPPER LOWER

000 016 032 048 064 080 096 112 128 144 1<S0 176 192 208 224 240
ASCII $00 510 $20 $30 $40 550 $60 $70 $80 590 5i^0 $B0 $C0 $D0 $E0 $F0

$0 @ p @ P P @ P @ P % P
1 $1 A Q 1 1 A Q a q A Q I 1 A Q a q
2 $2 B R ri 2 B R b r B R 2 B R b r
3 S3 C S # 3 C S c s C S * 3 C S c s
4 $4 D T 5 4 D T d t D T ? 4 D T d t
5 S5 E U % 5 E U e u E U i 5 E U e u
6 56 F V & 6 F V f V F V 6 F V f V

i 7 57 G w '

7 G W g w G W 7 G W q w
* ! !® H X ( 8 H X h X H X 8 H X h X
9 59 I Y ) 9 I Y i y 1 Y 9 I Y i y

10 5A J Z *
; J Z J z J Z J Z j z

11 5B K C + K [ k { K [ - K [ V (

12 $C L \ # < L \ 1 1
L \ < L \ 1

\13 5D M 3 - = H ] m 1 M ] = M 3 m )

^1 ^^ N A
* > N n N " > N n

P ?F - I ? O O S£ O _ ? _ o !«

WOTES: K checkerboard
"Mouse text" replaces letters and characters at ASCII = $40—$5P in the enhanced firmware video
ROM (see Chapter 6, The Apple He Firmware Upgrade).

jiS-i'-S-**J.
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to the correct voltage amplitude relative to SYNC
and COLOR BURST'. The three signals—PIC-

TURE, SYNC, and COLOR BURST'—are summed
together to make up the Apple He VIDEO signal of

Figure 8.2. The VIDEO signal is routed from the

summing amplifier to J12, J13, and Jll. the video

output jack at the back of the Apple.

SYNC is a direct output of the lOU, generated

from states of the video scanner. It is a combination

of horizontal sync (a four scanner state pulse occur-

ring in the middle of HBL) and vertical sync (four

56-state pulses occurring in the middle ofVBL). For

the American Apple, Figure 8.2 shows horizontal

and vertical sync detail. Figure 8.5 shows the

SYNC logic equation, and the Figure 5.9 memory
scanning map shows exactly when SYNC occurs.

COLOR BURST' is a 14-cyc!e (four video scanner

states) inverted sample of the COLOR REFER-
ENCE signal. It is gated by CLRGATE' from the

lOU which drops low immediately after horizontal

sync if theTEXTsoftswitch is reset(see Figure 8.2).

CLRGATE' never drops low ifTEXT is set, so there

is no COLOR BURST, and consequently no undesir-

able coloring of screen characters, in TEXT mode.

ColoringofTEXTcharactera does occur in MIXED
GRAPHICS mode because the COLOR BURST is

not turned off, even during TEXT time.

SYNC and CLRGATE' transitions do not occur

quickly after the video scanner states, but appear to

be clocked out by Q3 falling during PHASE 0. I

speculate that this is done to remove gate width
variations and switching spikes that can occur in

logic gating. There is very good basis for this specu-

lation because a switchingspikeon the vertical sync
line causes a visible dark line in the left hand blank-
ing margin of older Apple lis. I'm sure that Apple is

rightly wary of reintroducing a problem that they
once solved.

Video Generation in Export Appies
The differences between foreign and American

Apples are related primarily to video scanning and
VIDEO signal generation. If not for television sys-

tem incompatibility, the Apple lie could be made to

operate in any country by installing a power sunnW
that would operate from the line voltage of that
country. Supporting the special text requirements
of the various languages is no problem because you
can simply plug in a keyboard ROM and video ROM
for any language.

The unfortunate reality is that there are several
television systems used throughout the world, in-
compatible with each other to one degree or another.
One area of incompatibility is the scanning rate, The
NTSC standard scanning pattern is made up of 525
horizontal scans in two interlaced fields scanned at
60 fields per second. Other television systems have
pictures made up of 625 horizontal scans in two
interlaced fields scanned at 50 fields per second.
Apple lie compatibility with televisions and moni-
tors designed to scan at the slower rate is achieved
through installation of a 50 Hz lOU, as opposed to

the 60 Hz lOU of American Apples.

In the 50 Hz lOU, the vertical portion of the video
scanner presets to OUOOIOOO, fifty less than the 60
Hz Oil 1 UOIO. This adds 50 scans to the normal 262
for 312 horizontal scans in a 50 Hz Apple. All 50 of

these scans are added to VBL so that VBL is 120

scans long instead of 70. Additionally, the vertical

sync is shifted from that of the 60 Hz lOU so equal

black margins are maintained at the top and bottom
of the screen, Horizontal scanning and sync are the

same in both lOUs.
The vertical sync equation in 50 Hz lOUsis VBL»

V5' • V2' • VO' . VC • (H5 -^ H4 + H3) as opposed to

VBL.V2.Vl'.VO'.VC.(H5-^H4-^H3)in60H^
lOUs. Vertical syne consists of four 56-state pulses,

just as in American Apple scanning. These occur

dur ing horizontal periods 73, 74, 75, and 76 of VBL
in 60 Hz Apple scanning. By way of comparison, 60

Hz lOUs have 36 horizontal periods in VBL up

through vertical sync and 34 horizontal periods in

VBL afterwards. 50 Hz lOUs have 76 horizontal

periods in VBL up through vertical sync and 44

horizontal periods in VBL afterwards.

The critical states ofVA—V5 in both 60 Hz and 50

Hz lOUs are summarized in Table 8.5. Old Apple

hands may recognize that Apple He 60Hz scanning

Table 85 American (60 Hz) and European (50 Hz) Scanning Differences.

American
European

START VBL
V543210CBA
H1000000
1.11000000

VERTICAL
SYNC

V543210CBA
H11000XX

PEIESET ON
OVERFLOW
V5432i0CBA
011111010
011001000

VERTICAL
SYNC

V543210CBA

0110100XX

END VBL
V54321gCBA.
100000000
100000000

,:-«*ll'
\l:-\:^\
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7

is identical to that of the RFI Revision Apple II. and
that 50 Hz scanning is identical to that of the RFI
Revision Apple II with 50 Hz jumpers made.
The 50 Hz scanning of foreign Apples is fine tuned

by changingthe 14 MHz crystal on motherboards in
which 50 Hz lOUs are installed. The frequency is

changed from 14.31818 to 14.25045 in motherboards
with discrete circuit oscillators, and to 14.25 in

motherboards with hybrid circuitosciliators(and in

50 Hz Apple He's). This is done so that the Apple lie
horizontal scan period is approximately equal to the
64-microseeond horizontal period of 50 Hz television

systems.

Changing 14M slightly alters the 6502 execution
speed (from 1.0205 MHz to 1.016 MHz) and reduces
COLOR REFERENCE to 3.56 MHz. The 6502
speed reduction is apparently not enough to make
disk I/O unreliable when reading American disks
on 50 Hz Apples or vice versa. The reduction in

COLOR REFERENCE frequency is not important
because, while COLOR REFERENCE is the refer-

ence for color on the PICTURE' line in 50 Hz
Apples, it is not of the frequency at which color is

passed to a television or monitor.

The second important area of incompatibility in

television systems is the different methods of rep-
resenting color information. The three principle
systems are NTSC, PAL (Phase Alternating Lines),

and SECAM (SEquential Color And Memory).
There are no Apple He SECAM adaptors, but the
Apple He is used in some SECAM countries using
RGB adaptors and monitors. This is especially true
of France, whose television sets have an RGB input
jack (the Peritel jack) in the back. PAL is the system
used in European Economic Community countries
{except France), and Apple competes in this impor-
tant computer marketplace by manufacturing an
Apple He PAL motherboard.
Figure 8.6 is a schematic of the circuitry that is

idded to an NTSC motherboard to make it a PAL
motherboard. This figure is an Apple drawing, re-
produced here with permission of Apple Computer,
,'.nc. The notes in italics and the video ROM and
teyboard ROM depictions were inserted by this
^uthor. The PAL circuitry is nearly identical to the
ircuitry of the Apple II "Eurocolor" card, so basi-
ally an Apple He PAL motherboard is an Ameri-
an motherboard with a 14.25 MHz oscillator, a 50

m* ^' ^'*''^'^" language video and keyboard
^^"JMs, and a built-in Eurocolor card.

^
PAL video usesa4.43619 MHz color subcarrier as

l?M ^ ^^^ 3-579545 of NTSC, and the PAL
jUi^UR BURST alternates 90 degrees in PHASE
wety horizontal scan. Televisions and monitors

designed to display PAL video will not, therefore,

automatically produce colored displays from 3.56

MHz Apple He dot patterns interspersed with 3.56

MHz REFERENCE BURSTS. To generate a signal
that will produce a color display on a PAL monitor,
the PAL circuitry extracts color information from
the serial dot pattern and 3.56 MHz COLOR REF-
ERENCE, Then a PAL VIDEO output signal is

constructed with luminance signal, modulated 4.44

MHz color subcarrier, phase alternating 4.44 MHz
COLOR BURST, and scanning sync*
The dot patterns on the PICTURE' (SEROUT')

line are shifted at 14 MHz to an LS164 serial in,

parallel out shift register and sampled as 4-dot pat-
terns, four dots being the number of HIRES80 dots
in a COLOR REFERENCE cycle. Every time
COLOR REFERENCE rises, a new 4-dot pattern is

latched in an LS175 quad D flip-flop. The output of
the four flip-flops is a 4-bit number which repre-
sents the phase relationship between the current
4-dot pattern and COLOR REFERENCE, in other
words, the color of the Apple He dot pattern.

The 4-bit color word is converted through sum-
ming re.sistors to DC voltage levels representing
weighted R-Y (red minus luminance) and B-Y
(blue minus luminance) color signals. These are the
color signals which are used to modulate a subcar-
rier in conventional PAL broadca.=?t television. The
color signals are summed with modulator balance
voltages and burst gate voltages, and applied to the
R-Y and B-Y reference inputsofaTCA6,50 chromi-
nance demodulator.

The TCA650 is an IC that is intended for use as a
synchronous demodulator in PAL or SECAM tele-

vision sets. In the Apple He PAL circuitry, the
TCA650 is used for exactly the opposite function,

modulating a constant phase subcarrier with B-Y,
modulating a phase alternated subcarrier with
R—Y, and combining the two modulated subcarri-

ers to form the chrominance signal. This is not a
norma! TCA650 application but an impressively

innovative design effort by Gary Baker, the Apple
engineer who designed the Eurocolor card. Rather
than cause confusion by insisting that the TCA650 is

a demodulator, I will refer to it as a modulator with
modulating inputs at pins 6 and 7 and subcarrier
inputs at pins 11 and 9.

The color subcarrier comes from a 4.43619 MHz
oscillator and is applied to pin 1 of the TCA650. It is

*The 4.44 MHz signal should be referred to as a carrier to be

technically correct, It becomes a subcarrier if the VIDEO signal

tnodulates a television RF carrier. However, referring to this

signal as the subcarrier helps to disting-uish it from the RF
carrier, and so shall it be here.

**^^!i:i.
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output at pins 13 and 15 at equal amplitude. The
constant phase pin 13 output is routed through 90
degree phase shifting circuitry to pin 9, the subcar-

rier input to the B-Y modulator. The pin 15 output

alternates its phase as controlled by the pin 16

switching input. This input toggles when CLRGATE'
falls, so the pin 15 signal alternates in phase every

horizontal scan. The phase alternating output from
pin 15 is coupled to pin 11, the subearrier input to

the R—Y modulator.

The 90 degree shifted, B-Y modulated subear-

rier and the phase alternated, R—Y modulated sub-

carrier are combined together at pins 10 and 12 of

the TCA650. This signal is a combined CHROMI-
NANCE/BURST signal. The BURST is generated

by level shifting the B~Y and R-Y signals in oppo-

site polarity during CLRGATE' low. The modula-
tion balance controls are ad.justed so there is no
chrominance signal out of the TCA650 when the

4-bit color word is 1111 and CLRGATE' is high.

When CLRGATE' drops low, B-Y raises and R-Y
lowers to cause a 4-microsecond sample of the 4.4

MHz subearrier to appear at pins 10 and 12 of the

TCA650. Combining the 180 degree phase alter-

nated subearrier and the 90 degree shifted subear-

rier together in equal amplitude results in aCOLOR
BURST that alternates 90 degrees in phase every
horizontal scan.

The serial dot pattern on PICTURE', delayed by
the LS164 shift register, is inverted to form the

LUMINANCE signal which is summed with the
SYNC and CHROMINANCE/BURST signals to

produce the PAL VIDEO output signal. There is a

gated trap which removes 3.56 MHz variations from
the LUMINANCE signal during GRAPHICS time
when theCOLOUR/MONO switch is set to COLOUR.
This is necessary to prevent 3.56 MHz LUMI-
NANCE patterns from causing color interference
since 3.56 MHz is within the bandwidth of the

chrominance amplifier ofa PAL monitor or television.

Trapping3.56 MHz from the LUMINANCE sig-

nal causes 3.56 M Hz dot patterns to be blurred. This
-enhances colored solids on the screen but prevents
. clear displayof high resolution monochrome graph-
ics. The COLOUR/MONO switch should, therefore,
be set to MONO when the Apple He is used with a
-monochrome monitor. In addition to disabling the
3.56 MHz trap, thisdisablestheCHROMINANCE/
BURST signal from the TCA650.

\

Besides the PAL circuitry, there are differences
i n the keyboard and video ROMs of the PAL moth-
erboard of which Americans can be justifiably
invious. The video ROM is an 8 kilobyte, 28-pin 2764
;ompatible ROM instead of the 4 kilobyte, 24-pin

2732 compatible ROM of American Apples. A sim-
ple switch line (ALTCHR) connected to address
inputs of the keyboard and video ROMs switches
between American and foreign language text char-
acters. With the big video ROM, there truly are
complete alternate text character sets to choose
from in the PAL Apple He.

There are some countries (Canada for example)
which use the NTSC standard television system but
still have foreign language requirements. To sup-
port the bilingual needs of these countries, Apple
developed a 24- to 28-pin socket adaptor for the video
ROM socket of the NTSC motherboard. When Apple
begins to support a bilingual NTSC market like

this, they use the adaptor to enable installation of

28-pin 2764 bijigual video EPROMs. However, if

the market gets big enough to .justify it, they mask
the bilingual patterns intoa24-pin, 8 kilobyte ROM.
I am not certain how to obtain oneof the adaptors in

the U.S., but it would not be particularly difficult to

build an adaptor like this if you desire to switch
between displayed text character sets in an NTSC
Apple He (see Figure 8.18).

DISPLAY MODE SOR SWITCHES

The display mode of the Apple is set up by pro-

grammable soft switches in the lOU. The lOU soft

switches are illustrated in Figure 7.1, and the func-

tions of those soft switches related to the video dis-

play are summarized in Table 8.6.

There are three basic disi)lay modes, TEXT,
LORESgraphics, and HIRES graphics selected via

the TEXT (GRAPHICS') and HIRES (LORES')
soft switches. Additionally, MIXF]D displays of

HIRES or LORES with four lines of text at the

bottom of the screen mav be selected bv resetting

TEXT and setting MIXED.
PAGE2 selects between the PA(5E1 ($400-$7FF

and $2000-.?3FFF)and PAGE2 {.$800—$BFF and
$4000—$5FFF).scanned display areas if 80STORE
is reset. If 8()ST0RE is .set, PA(;E2 performs the

motherboard/auxiliary RAM access management
functions described in Chapter 5.

The 80COL soft switch performs only one func-

tion. It is inverted to SOC'OL' and output from the

lOU to the timing HAL where it selects DOUBLE-
RES timing if GR+2 is low in Revision A or gated

GR+2' is high in Revision B. In other words, DOU-
BLE-RES timing is enabled when 80COL' is low

during TEXT time or forced (by FRCTXT') TEXT
time. On Revision B motherboards with a64K RAM
card with DOUBLE-RES GRAPHICS jumper in-

stalled, FRCTXT' is brought low to force gated
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Table flj6 Functions of the Display Mode Soft Switches.

SOFT
SWITCH

OFF
ADDRESS

ON
ADDRESS

READ
ADDRESS FUNCTION

80STORE*
80COL
ALTCHRSET
TEXT***
MIXED***
PAGE2*
HIRES*
AN3**

w$cooo
w$cooc
W$COOE
$C050
$C052

$0054
$0056
$C05E

wscooi
W$COOD
W$COOF
$0051
$0053

$C055
$C057
$C05F

R$C018
R$C01F
R$C01E
R$001A
R$001B
R$C01C
R$C01D
NA

Disable PAGE2 display area switching

DOUBLE-RES timing if TEXT time or AN3' '

Display full INVERSE ASCII text set

TEXT display

MIXED GRAPHICS/TEXT display if TEXT'
Scan secondary RAM display area

HIRES display if GRAPHICS time

DOUBLE-RES GRAPHICS timing when AN3'

NOTES- * PAGE2, HIRES, and 80STORE are mechanized identically in the MMU and

lOU. The MMU passes the state of 80STORE to MD7 when $C018 is read,

and the lOU passes the state of PAGE2 or HIRES to MD7 when $0010 or

$C01D is read.
** AN3 is jumpered to the FRCTXT' (ENFIRM in Rev A) line on 64K auxiliary

RAM cards. When AN3 is low, this forces gated GR+2' high at the timing

HAL. enabling DOUBLE-RES timing if 80COL' is low.

*** All Tkble 8.6 soft switches except TEXT and MIXED are reset when

RESET' falls.

GR+2' high by resetting AN3. On Revision A moth-

erboards, there is no FRCTXT' line and no way to

display DOUBLE-RES GRAPHICS.
Now that the video generator hardware has been

introduced, there is a basis for understanding how
soft switches control the display modes of the Apple

He. First, they affect RAM addressing so that they

control the area of RAM which is being scanned

during PHASE 1. Second, they affect video ROM
addressing so that they control the translation of

video data to dot patterns. Third, they affect timing

generation so that the PICTURE signal is loaded

and shifted at SINGLE-RES or DOUBLE-RES
rates. Table 8.7 shows the various display mode con-

trol soft switches and how they accomplish their

functions.

The following programming examples should

serve to illustrate the principles of display mode
selection in the Apple He.

TEXT40, PAGEl
IDA $C051 TEXT
LDA $C054 PAGE2 OFF
STA $C00C SBGOL OFF (1«J0 DOUBLE-RES)

TEDCTBO, PPGE2
I£A $C051
IDA $C055
STA $C00iD

STA $C000

TEXT
PAGE2
80C!QL (DOUHLE-BES)
80SrORE OFF (EM^BU:
PAGE2 SCAM)

HIRES40 MIXED WITH TEXT40, PAGEl

LDA $C050 TEXT OFF (GRAPHICS)

LDA $0053 MDCED
IDA $0054 PAGE2 OFF
LDA SC057 HIRES
IDA $C05F AN3 CM {ENABLE HIRES

EELAYED)
STA $C00C 80COL OFF (NO DOUBLE-RES)

HIRES80 GRAPHICS, bKMIX, PW3E1

IDA $C050 TEXT OFF (GRAPHICS)

MIXED OFF
HIRES
AN3 OFF (DOUBLE-RES

GRAPHICS TIMING)

aaSTORE (DISABI£ PAGE2

SCAN)
80OaL (DOUBLE-RES)

IDA $C052
IDA $C057
IDA $C05E

STA $Q301

STA $C00D

IORES40 MIXED WI1H TEXT80, PAGE2

IDA $0050 TEXT OFF (GRAPHICS)

MIXED
PAGE2
HIRES OFF (DORES)

AN3 CN (SIN3LE-RES

GRAPHICS TIMING)
80STQRE OFF (Q»ABI£ PBGE2

SCAN)

STA $C00D 80CaL (DOUBLE-RES)
i

IDA $C053
IDA $C055
IDA $C056
IDA $C05F

STA $C000

s
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Table 8.7 Mechanization of Display Mode Soft Switcties.

SOFT
SWITCH

RESET
FUNCTION SET MECHANIZATION

TEXT GRAPHICS Scanning of $400-$BFF (Fig 5.3)

Segmented addressing of text patterns at video ROM (Fig 8.5)
INVERSE, NORMAL, FLASH interpretation of VID6, VID7 (Fig- 8.5)
Disable COLOR BURST via CLRGATE' (Fig 8.5)

Enable DOUBLE-RES timing (Fig 3.9)

MIXED NOMIX Scanned address switched to TEXT at screen bottom (Fig 5.3)
Video ROM address switched to TEXT at screen bottom (Fig 8.5)

Enable DOUBLE-RES timing at screen bottom (Fig 3.9)

PAGE2 PAGEl Scanning of $800-$BFF if TEXT/LORES, 80STORE' (Fig 5.3)

Scanning of $4000—$5FFF if HIRES, 80STORE' (Fig 5.3)

Aux RAM access at $400-$7FF if 80STORE (Fig 5.13b)
Aux RAM access at $2000-$3FFF if 80STORE. HIRES (Fig 5.13b)

HIRES LORES Scanning of $2000—$5FFF if GR+1 time (Fig 5.3)

HIRES video ROM address if GR+1 time (Fig 8.5)

Monitor VID7 for delayed timing if SINGLE-RES, GR+2 (Fig 3.9)

PAGE2 selects $2000-?3FFF main/aux RAM if 80STORE (Fig 5.13b)

FRCTXT' FRCTXT DOUBLE- RES GRAPHICS timing if 80COL (Fig 3.9>

SINGLE-RES, 7MHz. undelayed timing if 80COL' (Figure 3.9)

80STORE 80STORE' Disable PAGE2 dispia.v management functions (Fig 5.3)

Enable PAGE2/HIRES memor.v management functions (Fig 5.1.3b)

80COL 40COL Enable DOUBLE-RES TEXT or forced TEXT timing (Fig 3.9)

ALTCHR NRMCHR Enable lower case INVERSE video ROM addressing (Fig 8.5)

VIDEO GENERATION TIMING SIGNALS
The video generation timing signals are LDPS'

(LoaD Parallel in, Serial out register) and VID7M
(VIDeo7 MHz). They areoutputsof the timingHAL
and were covered superficially in Chapter 3, but
they are covered in detail here because they are
related solely to the loading and shifting of video
patterns.

As mentioned previously, LDPS' is the load/shift
control signal for video output and VID7M is the
load/shift clock ENABLE' signal. The video load/
shift register loads or shifts when 14M rises while
VID7M is low. If 14M rises while VID7M and
LDPS' are low, the video pattern at the output of the
video ROM is loaded into the load/shift register. If

14M rises while VID7M is low and LDPS' is high,
the pattern currently residing in the load/shift reg-
ister is rotated QH > QA, QA > QB, QB > QC, etc.
A number of the features of Apple He display

modes are realized through variations of LDPS' and
VID7M as shown in Table 8.8. These variations will
be made more clear as the specific examples of Fig-
ires 8.7, 8.9, and 8.13 are discussed.

The logic equations of the timing H AL outputs are
given in Table 3.4. The LDPS' and VID7M entries

from Table 3.4 are repeated here in Table 8.9 for ease

of reference. These equations are valid for HALs
meant for use in Revision B motherboards. The
Revision A HAL supports GR+2 input instead of

GR+2', and there some differences in timing signal

phase. Some important aspects of the Revision B
VID7M and LDPS' equations follow here. Refcr-

e nces in parentheses such as (S 1) refer to logic eq ua-

tions in Ikble 8.9.

1. Gated GR+2' is used to differentiate between

TEXT time and GRAPHICS time. This signal

is represented by GR' in the logic equations, and

it is lowduringGRAPHICS time ifFRCTXT is

high. GR' in the equations is true during TEXT
or forced TEXT time, GR" is true during

GRAPHICS time when FRCTXT' is high.

2. SEGB is equivalent to LORES (HIRES soft

switch reset) during GRAPHICS time, and it is

used in the timing HAL to distinguish between

LORES and HIRES GRAPHICS.
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Table »5 Display Mode Variations o« VID7M and LDPS'.

MODE VARIATION RESULT

TEXT40 VID7M = 7M
LDPS' durinff PHASE 1

7 MHz load/shift

One video cycle per MPU cycle

H1RES40* VID7M = 7MifVID7'
VID7M = 7M' if VID7
LDPS' during PHASE 1

LDPS' delayed if VID7

7 MHz load/shift

Delayed 7 MHz load/shift

One video cycle per MPU cycle

Video cycle delayed if VID7

LORES40* VID7M constant low

LDPS' during PHASE 1

14 MHz load/shift

One video cycle per MPU cycle

DOUBLE-RES MODES VID7M constant low

PHASE h PHASE LDPS'
14 MHz load/shift

Two video cycles per MPU cycle

Forced undelayed 7 MHz processinp- if FRCTXT is low.

3. VID7M is constantly low during LORES
GRAPHICS (SI). This causes 14M LORES pro-

cessing at the load/shift register. An abnormal

undelayed 7M LORES mode can be selected by

resetting 80COL and bringing FRCTXT' low.

VID7M i.s identical to 7M in this mode.

4. VID7M is constantly low during DOUBLE-
RES (80COL, TEXT or forced TEXT) time

(S2).

5. If 80COL is reset, VID7M is identical to 7M
during TEXT or forced TEXT time (S3). This

forces VID7M to be identical to 7M in TEXT40
mode. Incidental side effects are that FRCTXT'
low forces undelayed processing of HIRES40.
and the abnormal 7M LORES processing de-

scribed in item 3.

6. Equations SI—S3 cover all VID7M processing

except HIRES40, and equations S4—S5 and
T1-T3 cover only HIRES40. At the end of

PHASE 1 • Q3' • AX' (marked by dots in Fig-

ures 3.2 and 8.13) in HIRES40 processing,

VID7M falls if VID7 is low and does not fall if

VID7 is high (S4). VID7M toggles at all other

points in HIRES40 processing(Tl, T2, and T3).

The fact thatVID7M does not fall after PHASE
1 • Q3' • AX' when VID7 is high creates a 14M
period delay in processing for the 7-dot HIRES
pattern present on VID6—VIDO. This is why
setting bit 7 of a stored HIRES pattern results

in blue or orange coloring instead of violet or
green in SINGLE-RES processing.

7. VID7M is forced to fall after PHASE 1 • AX' •

Q3' when processing the first blanked video
cycle at the right side of the screen (S5). This,
along with undelayed LDPS', cuts off the far

right delayed dot on the HIRES40 screen.

8. LDPS' falls only during PHASE 1 of SINGLE-
RES processing. In DOUBLE-RES processing,

LDPS' falls after AX' • Q3' of both PHASE
and PHASE 1 (SI). In other words, in DOU-
BLE-RES processing, the auxiliary card RAM
pattern is loaded, in addition to the mother-

board RAM pattern,

9. During TEXT time (S2), forced TEXT time

(S2), LORES time (S3), undelayed HIRES (S4),

and at the right edge of the display screen (85),

LDPS' falls after PHASE 1 • AX'« Q3'. During

a HIRES delayed cycle (S6), LDPS' falls one

14M period later causing a delayed load of the

HIRES pattern.

The abnormal 7M LORES mode mentioned in

items 3 and 5 is largely useless, and knowledge of its

existence is not widespread. 7M LORES processing

is basically the processing of LORES patterns at

HIRES40 speed. It results in fragmented blocksfor

al 1 patterns except 0000, 0101, 1010, and 1111 which

result in blocks the same colors as the undelayed

HIRES40 colors, 0101 patterns are violet in even

locations and green in odd locations, 1010 patterns

are green in even locations and violet in odd loca-

tions, and 1111 patterns are white.

To select the 7 MHz LORES mode, selectLORES-
40 GRAPHICS and bring AN3 low (assumes 64K

RAM card installed). This mode will also be selected

if you bring up a LORES40 display and press and

hold CONTROL-RESET. This brings RESET' low

which brings AN3 low to force 7 MHz processing of

LORES patterns.

It is very interesting thatyou can inhibit HIRES-

40 delay processing by bringing AN3 low. This pro-

vides a means of changing the color of the entire
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Table 8.9 VID7M and LDPS' Timing HAL Logic Equations.

SIGNAL

VID7M

LDPS'

EQUATIONS

S1-GR"»SEGB
52 = GR'.80COL"
53 = GR'.7M

54 = VID7'»*1»Q;^'

55 = H0'-CLRREF
Tl- VID7M»AX
T2 = VID7M«*0
T8 = VID7M-Q3

.AX'
<I>1 • Q3' AX'

S1=QS'.AX'.80C()L".GR'
S2 = Q;V . AX' • *1 • GR'

R3 = Q3' . AX' • •I'l • SEGB
54 = Q3'«AX'«*1»VID7'
55 = Q;r . AX' • *1 • CLR REF • HO'

56 = Q:}' • AX • RAS" • 'CI • VID7 •

SE(;B' . GR"

NOTES

LORES GRAPHICS IS HIGH SPEED
DOUBLE RES IS HIGH SPEED
SAME AS 7M IF NOT HIRES
FRCTXT" • 80COL 7M. UNDELAYED
HIRES DELAY CHECK AT *1 • Q3' • AX'

NO DELAY AT RIGHT DISPLAY EDGE
TOGGLE THROUGH AX
KEEP TOGGLING THROUGH *0

KEEP TOGGLING THROUGH Q3

DOUBLE RES CAUSES DOUBLE LDPS'
TEXT MODE
LORES
NOT DELAYED HIRES
RIGHT DISPLAY EDGE CUTOFF

HIRES DELAYED LDPS'

HIRES4() screen instantaneously, no small feat

when you f()tisider thai you normally would have to

look up addresses and change 7-dot patterns one by

one to elianj^re the color of a HIRES objeet. To utilize

this capability, store all HIRES patterns with D7

set. Then with 8()C0L reset and a 64K auxiliary

RAM card installed (or a.jumper between pins 50

and 550(1 the auxiliary slot), you can switch between

}freen/violet and orange/blue coloring via AN3. As a

corollary, you can instantly shift the position of a

H1RES4() display left or right 1/560 the width of the

Apple display via AN3.
Instantaneous switching of HIRES colors sug-

gests a use for the 7M LORES mode. You can create

a display of LORES $5 and LORES $A blocks and

instantaneously switch the entire LORES screen

between gray/gray and green/violet coloring. I

know you're racing to your desk to write home to

Mom about this one.

The right side cutoff of HIRES40 delayed pat-

terns referred to in item 7 above represents an

improvement over the Apple II in which the right-

most dot is cut off or not, depending on the MSB of

the first byte scanned during the following HBL. It

would be preferable if delayed patterns were not cut

off at the right side, but that would not have been
particularly convenient to do in the Apple lie timing

hardware structure (they would have had to add a
chip).

Figure 3.2 illustrates the right side cutoff of a

HIRES40 delayed pattern along with other HIRES-

40 variations of 'VID7M and LDPS'. Note the unde-

layed timing on the last video cycle in Figure 3.2,

even though VID7 is high. Note also the double

width LDPS' pulse, which occursonlyatthis forced

cutoff point.

TEXT OUTPUT

Apple He TEXT output timing is very straight-

forward. The video scanner drives character code

from RAM to the video data bus where it address^

the video ROM. SEGA, SEGB, and SEGC are equiv-

alent to VA, VB, and VC, and these three address

inputs to the video ROM selectamong the eight 7-dot

segments of the character indicated by the code on

the video data bus. One segment of a character pat-

tern is thus output for each of the eight times a

character code is driven out of RAM. The video

ROM text patterns are illustrated in Figure 8.8.

Figure 8.7 shows the output of the seventh (out of

eight) dot patterns of a NORMAL ampersand and

an INVERSE ampersand to the first two character

positions at the left of the screen. At the far left side

of Figure 8.7, H5 through HO of the video scanner

are at 11000 meaning HBL has just gone low and

WNDW will go low on the next scanner clock(RAS

rising during PHASE 1). The video data bus con-

tains inconsequential data from HBL scanned

memory, and the PICTURE signal is blanked be-

cause WNDW is high, causing a high level to be

shifted continuously to PICTURE'.
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BASE]
ASCIll

SB SC SD SE $F

SCO

S10

S20

S30

$40

! 1^1 ^ .^

I ! !"• !"• [ ..
nan »

r K
B

i eABCDEFGHIJKLNHO
i PQRSTJviWXYZCM^_

P 8123456789= j< = >?
i i:?ABCDEFGHIJKLMNn
P PQRSTUUNXYZCM'-^_
i "'abcdef ghi jklmno
B pqrstuMuixyzC i

I's^
4t-^|^

NOTES: Q] "Mouse text" replaces letters and charactersat ASCII = S4f)-$5F in the enhanced firmware video ROM

(see Chapter 6, The Apple lie F'imiware Upfcrade).

Figure 6 A Apple He Video ROM Text Patterns.
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The first time LDPS' falls at the left side of Figure

8.7,WNDW is still high, and the video ROM output

is still held high by the pull-up resistors. Conse-

quently, ONES are loaded into the load/shift regis-

ter and the PICTURE signal remains blank until

LDPS' falls again.

At about the same time that WNDW falls, data

from the H5—HO = 1 1000 access to RAM is latched

in the auxiliary card and motherboard video latches.

The auxiliary video data then becomes valid on the

video data bus about 20 nanoseconds after PHASE
rises. This data is not used unless 80COL is set,

causing LDPS' to fall near the end of PHASE 0.

Assume for now that 80COL is set and that the

Apple is in TEXT80 mode. This is the timing shown

at the bottom of Figure 8.7.

The video bus now contains $A6, ASCII for a

NORMAL ampersand. The lOU translates VID7-
6 = 10 to RAIO—9 = 10. so the processed video data

bus input to the video ROM is also $A6. SEGC-
SEGB-SEGA = 110 because this is the seventh of

eight segments, and GR+2 is low because TEXT
mode is selected. The video ROM address is there-

fore GR-^2. RAlO-9, VID5-0. SEGC-A = 0,10,

1001 10.1 10. At this address, the video ROM contains

11010011, the inverted pattern of the seventh seg-

ment of a NORMAL ampersand.*

About 390 nanoseconds after the auxiliary video

data becomes valid on the video data bus, 14M rises

with LDPS' and VID7M low, loading the dot pat-

tern to the load/shift register. The access time of the

video ROM in the Apple He must therefore be under
390 nanoseconds. One would think that this would
dictate the use of a 350-nanosecond video ROM, but
don't bet on it. The Apple II requires the same 390-

nanosecond access time for its text ROM, and 450-

nanosecond text ROMs are used in the Apple II. I

don't know if they decided to use a 350 nanosecond
video ROM in the Apple lie because the ROM is only

labeled with Apple's part number, not the more
descriptive manufacturer's part number. In any
case I recommend using a 350-nanosecond part if

you decide to install a custom video EPROM in your
Apple lie.

The 11010011 pattern represents only seven dot
positions because only six shifts will take place
before the next pattern is loaded. Only 1010011 will

be shifted out, LSB first. The leading and trailing
ONEs are present on all of the NORMAL text pat-

*The pattern is inverted here because the QH outputof the load/
shift register is connected to the PICTURE' line which is

inverted and ORed with ALTVID' to produce the PICTURE
sigrnal. Therefore, all patterns in the video ROM are inverted
(ONE = black; ZERO = white).

terns in the video ROM and provide the necessary
horizontal spacing between characters.

The first time LDPS' falls after WNDW drops
low marks the beginning of the display on the
screen. This is also true of left side video output of
LORES, HIRES undelayed, and HIRES delayed
timing. Whatever the display mode, the left side
blanking is extended until the first display pattern

is loaded.

The 1010011 pattern is shifted to PICTURE',
with one shift every 14M rising since VID7M is held

low during TEXT time with 80COL set. Mother-
board video data becomes valid about 20 nano-

seconds after PHASE falls, while the auxiliary

pattern is being shifted out. The video ROM then has

about 390 nanoseconds to respond by making the

new pattern available for loading.

In the Figure 8.7 example, the auxiliary data on

the video data bus is now $26, code for an INVERSE
ampersand. VID7—VID6 = 00 is translated in the

lOU to RAIO—RA9 = 00, so the GR-i-2, RAlO-9,
VID5-0, SEGC-A video ROM address is 0,00,

100110.110. At this location, the video ROM con-

tains 00101100, the dot pattern of the seventh of

eight segments of an INVERSE ampersand, and

the complement of the pattern generated by the

NORMAL ampersand. The 00101100 pattern is

loaded when LDPS' falls near the end of PHASE 1,

and the resulting 7-dot pattern, 0101100, is shifted

to the PICTURE' line, LSB first.

The code for theNORMAL and INVERSE amper-

sand in the DOUBLE-RES example are stored at

the same address with the NORMAL code stored in

auxiliary card RAM and the INVERSE code stored

in motherboard RAM. This is an essential feature of

all Apple lie DOUBLE-RES processing—two video

cycles per video scanner state. On the other hand,

SINGLE-RES processing consistsof one video cycle

pervideoscannerstate. This is implemented simply

by loading video patterns only once per scanner

state (when motherboard data is on the video bus)

and shifting the pattern every other 14M rising(one

half as fast as DOUBLE-RES shifting).

The NORMAL and INVERSE ampersand code

in the SINGLE-RES example are stored inadjacent

locations of motherboard RAM (H5— = 011000 and

011001). LDPS' doesn't fall during PHASE 0, and

the pattern resulting from auxiliary video data is

thus ignored. The blanking period at the leftside is

extended ^ microsecond beyond that of DOUBLE-
RES processing, until the pattern resulting from

motherboard data is loaded. The patterns loaded are

identical to those of the DOUBLE-RES example, a

NORMAL ampersand followed by an INVERSE
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ampersand. Only the processing speed and conse-

quent character horizontal size are different

Notice the long delay, in Figure 8,7, between a

video scanner state and the LDPS' which loads pat-

terns resulting from code stored at a RAM location

addressed by that video scanner state. This is why
WNDW and SEGA—SEGC are delayed by one

scanner clock. Because of the delay, WNDW' stays

high long enough that blanking ONEs are loaded

and shifted until the time a displayed dot pattern is

ready to be loaded and shifted out. Also, the delay

causes SEGA—SEGC to address the video ROM
simultaneously with video data resulting from the

video scanner state which produced SEGA—SEGC.

LORES GRAPHICS OUTPUT

LORES blocks are not generated the way you

would expect from lookingat a television. You would
expect big 1-microsecond pulses on the PICTURE
signal would be required to produce those big one

microsecond wide blocks. In reality, the only pulses

that areone microsecond wide in LORES are white
blocks. The colored blocks are made up of a stri ng of

narrow pulses, too narrow for a television to paint

without blurring them into blocks, and narrow
enough that they will be passed by the television's

chrominance amplifier.

The LORES colored PICTURE signal swings
back and forth between the black and white levels at

3.58 MHz. Color variations result from variations in

the phase relationship between the PICTURE sig-

nal and COLOR REFERENCE. Also, the LORES
3.58 MHz PICTURE signal may or may not be
symmetrical, and this adds greater variety to the
available colors. All told, there are 12 LORES pat-

terns which produce colored signals: 0001, 0010,

0011,0100,0110, 0111, 1000, 1001, 1011, 1100, 1101,
and 1110.

The GR+2, RAlO-9, VID5-0, SEGC, SEGB,
SEGA address to the video ROM in LORES
GRAPHICS mode is equivalent to 1, VID7—6,
VID5-0, VC, 1, HO. GR+2 = 1 and SEGB = 1

together identify the LORES GRAPHICS area of
the video ROM. VC and HO divide the video ROM

into four areas to implement certain details of

LORES processing.

The contents of the LORES areaofthe video ROM
are inverted double patterns, generated from VID3—
VIDO or VID7—VID4 depending on VC; rotated or

not rotated two bits depending on HO. The VC varia-

tion results in VID3— being processed as the upper
block pattern and VID7—4 being processed as the

lower block pattern. The HO variation causes a

stored pattern to generate the same color whether it

is stored in an even or odd RAM location.

Table 8.10 shows the outputs of the video ROM
corresponding to the stored byte, $27, as an example
of the VC/HO variations. When VC is low, LORES
upper blocks are displayed and the lower four bits

(0111) generate the pattern to be shifted. In even

processing (as identified by HO'), the simple inver-

sion of the 01 11 pattern (1000) isoutput in the upper

four bits and lower four bits of the video ROM.
Rotating this 8-bit double pattern is the same as

rotatingthe4-bit pattern, so even processingof 0111

consists of rotating 1000.

When 0111 is driven from an odd RAM addre.ss,

0010 0010 is produced at the video ROM output.

0010 0010 is 1000 1000 rotated two bits (right or

left—the result is the same). This rotation offset

compensates for the fact that there are 3.5 cycles of

COLOR REFERENCE in a SINGLE-RES video

cycle. With a pattern pre-rotated by two dot widths,

a LORES pattern is generated in a constant phase

relationship with COLOR REFERENCE, whether

it is stored in an even or an odd RAM location.

Table 8.10 also shows the lower block processing

of the $27 example. This is identical to the upper

block processing, except that 0010 is used to produce

the even inverted pattern 1101 1101 or the odd

i nverted and rotated pattern 11 1 1 1 1 at the output

of the video ROM.
Figure 8.9 (color section) shows several timing

examples of LORES blocks—three in SINGLE-
RES and two in DOUBLE-RES, These examples

illustrate the nature ofLORE S tim ing. The examples

shown could be VC or VC processing because there

is no difference between VC' and VC once the double

pattern is loaded in the load/shift register.

Table 8.10 HO/VC Variations of LORES, ViD7-0 = $27.

STORED PATTERNS VCHO VIDEO ROM OUTPUT
$27(0010 0111)

$27(0010 0111)

$27(0010 0111)

$27(0010 0111)

1

1

1 1

$88 (1000 1000)

$22 (0010 0010)

$DD(1101 1101)

$77(0111 0111)

-•*%.
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LORES40 Output

The first three examples in Figure 8.9 show

even/odd pairs of LORES40 blocks. This mode is

selected by resetting 80COL, TEXT, and HIRES

and setting AN3 (FRCTXT')-* Gated GR+2' high

and SEGB {LORES) forces VID7M low, so all

LORES pattern circulation is at 14 MHz. LDPS'

falls only during PHASE Lsoonly the motherboard

double pattern is loaded. The double pattern is

shifted out 1.75 times (14 cycles/S bits) before the

next double pattern is loaded, so the 4-dot patterns

are effectively shifted out 3.5 times to generate the

1-microsecond LORES block width, The 4-dot pat-

terns are therefore output at 3.5 mil lion patterns per

second, not coincidentally, the frequency of COLOR
REFERENCE. As a result, all LORES patterns

except 0000, 0101, 1010, and 1111 cause the PIC-

TURE signal to alternate at the COLOR REFER-
ENCE frequency and produce colored blocks on the

television screen.

The first example of Figure 8.9 shows the output

produced by 1001 stored in an adjacent even/odd

pair of memory locations. In the even cycle, 0110

0110 is loaded to the load/shift register, rotated to

the PICTURE' line beginning with the LSB, and

inverted and applied to the PICTURE signal

(10011001100110). In the odd cycle, 1001 1001 is

loaded and rotated to the PICTURE signal with

inversion (01100110011001). In either an even or an

odd cycle, the PICTURE signal is a symmetrical

square wave with the same relationship to COLOR
REFERENCE as HIRES orange.

The coloring of the left and right edge of aLORES
block depends on the patternsof the adjacent blocks.

If adjacent blocks are the same pattern, the PIC-
TURE signal is continuous, meaning orange mates
to orange with no off color fringe between the two
blocks. Different colors mate together with a joining

pattern which is not the same as either of the joining

colors, creating a color fringe which is more or less

prominent depending on the colors and whether
theymeetatan odd-even or even-odd junction.Even
though the right and left side of the first Figure 8.9

example are colored orange, coloring here depends
on the adjacent patterns.

The second example in Figure 8.9 is even 0111,
light blue, followed by odd 1000, dark brown. These
patterns produce asymmetrical 3.58 MHz square

'If FRCTXT' is brought low and 80COL is not set, VID7M will
alternate and the abnormal LORES mode described in the
VIDEO GENERATION TIMING SIGNALS section will
result. Detailed timing descriptions of the abnormal LORES
mode are not presented in this book.

waves whose 3.58 MHz sinusoidal component is

passed by the television's chrominance amplifier to
produce different colors. The asymmetrical square
waves are produced by patterns with only one bit set
or only one bit reset. Those with only one bit set
produce dark colors, because the PICTURE signal
spends most of its time in the black. Conversely, the
patterns with only one bit reset produce bright
colors. As the example shows, the picture pattern at
the border between colors 0111 and 1000 is a combi-
nation of the two separate patterns. Even GUI fol-

lowed by odd 1000 produces a violet border.

The light blue block shows that some things are

predictable about bordering colors in LORES
blocks. Any odd pattern which ends in the white

level will combine with the left side of even 0111 to

form a white border. The bright colors are particu-

larly prone to forming white borders, because they're

only one black period away from being white

themselves.

The third example in Figure 8.9 is even 0101 fol-

lowed by odd 1010. These are the two gray LORES
patterns. They are gray, because the PICTURE
signal they produce is 7 MHz, which will not be

passed by the television's chrominance amplifier.

Now gray is really white in a dark disguise. White

lightcancomein many intensities as evidenced by a

black and white television picture, and LORES
patterns 0101 and 1010 are just less intense white.

They are equal to each other in intensity, and are

therefore identical shades of gray. This is why the

technical overview stated there were 15, not 16,

LORES colors including black and white.

Even though the two grays produce the same

medium intensity colorless blocks, they are 180

degrees out of phase with each other. Thus, when

1010 follows 0101 there is a discontinuity in the

waveform at the border between them and a result-

ing color fringe. This can be done on purpose to

separate two gray solids horizontally, or it can be

avoided by using only 0101 or 1010 in a display. A
good practice would be to choose one gray over the

other to minimize unpleasant fringe borders with

other colors.

When the LORES colors are displayed side by

side in numerical sequence, there is no apparent

color continuity between them. The fact is that they

form a circular pattern of eight color tones deter-

mined by the phase relationship to COLOR REF-

ERENCE. This is not apparent when they are in

numerical sequence, because video processingtreats

the 4-bit color data as a dot pattern, not a numerical

value. i, ,,

r.mf"-
.jm'"^
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Figure 8.10 shows tine PICTURE signals, com-
pared to COLOR REFERENCE, which are pro-

duced by the various LORES patterns. The colors

are shown in an order in which the picture pulse

shifts right as the colors progress from top to bot-

tom. A very interesting point becomes evident when
looking at this figure. There are four color tone

pairs: dark and light nnagenta, dark and light blue,

dark and light blue-green, and dark and light

brown. For example, the dark magenta pulse is sur-

rounded equally on both sides by the light magenta
pulse, and the horizontal center of both pulses is at

the same point on the COLOR REFERENCE. As a

result, they produce the same color tone, but a series

of wide pulses is brighter and whiter than the series

of narrow pulses with the same color tone.

Now color 0001 is usually referred to as magenta,

and color 1011 is usually referred to as pink. This

book has been calling pink "light magenta" to make
the point that color 1011 looks like color 0001 with a

lot of whiteness in it. Anyone who wants to is

encouraged to call pink "pink."

Figure 8.11 (color section) is a photograph of the

LORES colors based on their circular nature. This

display was generated by constructing the LORES
colors in HIRES80 mode. As is obvious from this

photo, the same colors are available in HIRES80
that are available in LORES. HIRES80 was chosen

to illustrate the circular nature of these colors

because circles look better in HIRES than in LORES.
In this display, the different color tones are in

different sectors of a circle and brightness is repre-

sented radially in the circle with dark at the center

and white at the outside. Black, gray, and white

cover ail sectors of the circle, because they have no

coloring. Black is the darkest color. Then comes
0001, 0010, 0100, and 1000. The grays, 0101 and
1010, are the same brightness as the HIRES equiv-

alents, 0011, 0110, 1100, and 1001. Next brightest

are 0111, 1110, 1101, and 1011. Brightest of all is

white. Looking at the colors in this way should give

you insights when you are trying to produce pleas-

ing LORES or HIRES80 displays.

LORESaO Output
The last two examples in Figure 8.9 show the

outputof five adjacent LORES80 blocks. This mode
is selected by resetting TEXT, HIRES, and AN3
(FRCTXT') and setting 80COL. This causes no
change in speed of pattern shifting from LORES40.
LORES40 shifting is already at 14 MHz, and nothing
happens faster than 14 MHz in an Apple He. The

only difference between LORES40 and LORES80
timing is that LDPS' falls during PHASE in

LORES80 as well as during PHASE 1, so that the

auxiliary pattern is loaded and shifted out in addi-

tion to the motherboard pattern. The LORES80
patterns cut each other off after 6 shifts so 1.75 4-dot

patterns are output per .5 microsecond video cycle.

Since patterns are shifted at the same rate in

LORES40 as they are in LORES80, the same colors

are available. In LORES80, however, the blocks are

only half as wide. Additionally, a pattern stored in

auxiliary card RAM produces a different color than

the same pattern stored in motherboard RAM. This

can be seen from the first LORES80 example of

Figure 8.9, which shows what happens when the

0010 pattern is stored continuously in auxiliary card

and motherboard display memory.
When 0010 is driven out of an even auxiliary card

RAM location (left side Figure 8.9), 1101 1101 is

loaded, shifted out LSB first, and inverted (0100

010). When this is followed by 0010 from an even

motherboard RAM location, the identical 0100 010

PICTURE signal results, but this is not a continua-

tion ofthe4-dotauxiliary PICTURE signal where it

was cut off. The result is that the color for the period

spanning these two video cycles is blurred and

unpleasant. This discontinuity exists throughout

the example.

The PICTURE signal required to continueaOlOO

010 chain is 0100 01. This chain is produced by

0100 stored in a motherboard RAM location, and the

final example of Figure 8.9 shows that 0010 stored

continuously in auxiliary card RAM combined with

0100 stored continuously in motherboard RAM pro-

duces a continuousdiaplay the same color as LORES-
40 pattern 0100. A correlation exists here that can

be extended to all the LORES patterns. To repro-

duce a motherboard color, store the motherboard

color, rotated right one bit, in auxiliary card RAM.
Table 8.11 illustrates this correlation for all the

LORES patterns.

One shortcom ing ofLORES80 graph ics is that the

horizontal block size variation is greater than that of

L0RES40. Variation occurs in the size of a single

block depending how much black space there is at

the left and right side of the block. This variation

becomes more pronounced with colors with fewer

dots set, and it becomes particularly pronounced in

LORES80 because the maximum block size is only

seven dot widths instead of 14. As an extreme ex-

ample, even 1000 or odd 0010 will cause the display

of blocks only one dot wide in LORES80 GRAPH-
ICS mode.
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Table 8.1 i AuxMtary Card/Motherboard LORES Color Equrvolents.

SINGLE RES COLOR AUXILIARY CARD MOTHERBOARD
$0 mm) $0 (ftOOO) $0 (0000)
$1 (t)OOl) $«(im)0) $1 (0001)
!52(f)OK)) $1 (00(»1) $2 (0010)
$.s(0()n> $90001) $3(0011) .

$4 (01 Oft) $2(0010) $4 (0100)
$5(0101) $A (1010) $5(0101)
$6(0110) $r^(oon) $fi(01I0)

$7(0111) $B(ion) $7(0111)
$8(1000) $4(0100) $K(1000)
$9(1001) $C(1100) $9(1001)
$A (1010) $5(0101) $A(1010)
$B(]011) $0(1101) IRdOll)
$c{noo) $fi(0110) $(;(n()0)

$D(1U)1) $E(1110) $D(1101)
$E(1110) $7(0111) $E(1110)
$F(1111) IFOlll) $F(1111)

LORES80 plotting is not supported by Apple lie

firmware. However, it is not a difficult matter to

write Applesoftor Integer BAS IC subroutines which

utilize the LORES80 mode to generate 80 x 48

LORES block displays. Figure 8.12 (color section) is

such a display, created by the Applesoft program of

Figure 8,20 in an application note at the back of this

chapter. As Figure 8.12 shows, LORES80 plotting

gives very reasonable resolution considering the

speed with which a display can be updated.

HIRES GRAPHICS OUTPUT

HIRES output has similarities to TEXT output.

Both the HIRES and TEXT PICTURE signals are
generated by shifting out 7-bit dot patterns. For this

reason, it is possible to draw text using HIRES
graphics with the same 7 x 8 dot patterns generated
by the video ROM, .The HIRES TEXT will have
coloring however, because the COLOR BURST is

enabled. Besides the COLOR BURST, important
differences are:

1. HIRES patterns are stored directly in RAM,
seven dots per byte. TEXT ASCII is stored in

RAM. one character per byte, and TEXT pat-

terns are stored in the video ROM, eight rows of

seven dots per ASCII code.
2. HIRES40 7-dot patterns are delayed by one

14M period if the MSB (VID7) of the memory
representation ofthe pattern is setand FRCTXT'
is high.

While HIRES dot generation is a simple transla-
tion of dot patterns stored in memory to dot patterns
on the screen, the coloring of the patterns is any-

thing but simple. Figure 8.13 (color section) shows a
number of color variations of the single dot pattern,

1011010. As these examples are discussed, it will be

seen that HIRES coloration varies with single or

double resolution, even or odd RAM location of the

dot pattern, auxiliary or motherboard RAM loca-

tion (HIRES80), delayed or undelayed timing of the

displayed pattern (HIRES40), and delayed or unde-

layed timing of the adjacent displayed pattern

(HIRES40).
The GR+2, RAlO-9. VID5-0, SEGC, SEGB,

SEGA address to the video ROM in HIRES GRAPH-
ICS mode is equivalent to 1,VID7~6,VID5-0,VC,
0, HO. GR+2 = 1 and SEGB = together identify the

HIRES GRAPHICS area of the video ROM. The

VID7, VC, and HO address inputs do nothing but

divide the ROM into eight identical areas. These

addressing inputs affect LORES patterns, not

HIRES patterns. In other words, the HIRES
GRAPHICS video ROM address is effectively

VID6-VID0.
The contentsof the HIRES areaof the video ROM

is an inverted mapoftheVID6—VID0 address with

the extraneous MSB set in all locations.* By this it is

meant that the contents of VID6— = 0000000 is

lllUlll, the contents of VID6-0 = 0000001 is

111 lino, etc. As a result, the net effect of the

video ROM in HIRES GRAPHICS is to invert

the dot pattern on VID6—VIDO, The display map
pattern in all of the examples of Figure 8.13 is

1011010, which produces the pattern 10100101 at

the output of the video ROM,
The MSB of ttie pattern from the videoROM is never shifted out

in HIRES GRAPHICS, so it is extraneous. Apple had to put

something in there, and chose to nnake it a ONE.

^
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HIRES40 Output

The top two examplesof Figure 8.13show the four

basic phase relationships between HrRES40 pat-

terns and COLOR REFERENCE. The result is the

same picture pattern colored four different ways.

The four different colorings are produced by storing

the pattern 1011010 at adjacent memory locations

with D7 reset and at adjacent memory locations

with D7 set.

The top HIRES pattern in Figure 8.13 is formed

by 01011010 being driven out of RAM by scanner

access to an even address followed by an odd

address. Because the MSB is reset, the inverted

(0100101) pattern will be loaded and shifted out

undelayed.

To determine whether timing is to be delayed or

undelayed for a HIRES pattern, VID7 is monitored

at PHASE 1 • AX' • Q3' (marked with a dot in

Figure 8.13) in the timing HAL. If VID7 is low at

this point, as in the first example of Figure 8.13,

LDPS' and VID7M both fall on the following 14M
rising. VID7M toggles on 14M rising at all other

times, so undelayed VID7M is identical to 7M. The
net result is that undelayed HIRES40 loading and

shifting is identical toTEXT40 loading and shifting.

As the leading 101 is shifted out in the top ex-

ample of Figure 8.13, the PICTURE signal starts

black, swings white, then swings black, creating a

square wave identical in frequency to the COLOR
REFERENCE, 3.58 MHz. The television will pass

this signal through its chrominance amplifier and
phase compare it to the COLOR REFERENCE
which it has reconstructed from the COLOR BURST.
The result of this phase comparison will be color

signals resulting in a HIRES green coloring of the

dot on the screen. Compare the green dot position to

the COLOR REFERENCE. Any PICTURE signal

which goes white then black in this relationship

with the COLOR REFERENCE will produce green
coloring on the television.

Shifting along, we come to the two adjacent white
dots. These dots are produced by a signal that goes
white then black at 1.79 MHz, one half of the fre-

quency of the COLOR REFERENCE. Very little of

this signal can get through the television chromi-
nance amplifier. The result is absence of color sig-

nals and subsequent white illumination. Anywhere
on the screen, COLOR BURST or no COLOR
BURST, bringing the PICTURE signal to the white
level for a full period ofCOLOR REFERENCE will
result in a white picture.

The white pulse is followed by a violet pulse, iden-
tical in pulse width to the green pulse but occurring
in opposite phase relationship when compared to

COLOR REFERENCE. HIRES green and HIRES
violet complement each other; that is, they are 180
degrees out of phase.

When the identical 1011010 pattern is driven
from an odd address to cause loadingand shiftintrof

0100101
.

the PICTURE signal swings from white to
black and back just as it did when the pattern was
loaded from an even address. The COLOR REF-
ERENCE, however, is 180 degrees out of phase
from the way itwasduring the adjacentvideo cycle.

The coloring of the screen dots is therefore the com-
plement of the color of the pattern output in the

adjacent video cycle. Green becomes violet, violet

becomes green, and white remains white.

The nature of HIRES40 green and violet video

should now be fairly clear. The HIRES40 dot is

exactly the width of half of a COLOR REFER-
ENCE period. Visualize theCOLOR REFERENCE
alternating up and down as the beam crosses the

screen, starti ng with COLORREFERENCE low as

the display begins. If even position dots are turned

on, they coincide with a quarter cycle of COLOR
REFERENCE low followed by a quarter cycle of

COLOR REFERENCE high, and are violet. Odd
dots are in the opposite phase relationship with

COLOR REFERENCE and are green, and two or

more adjacent dots are white.

Manyof the HIRES displays yousee on theApple
lie are made up of SINGLE-RES undelayed pat-

terns. In fact, these were the only HIRES patterns

that were available in the original Revision Apple

II. The undelayed HIRES40 mode gives you 280

programmable dots per scan with violet, green, or

white coloring. If color is ignored, its resolution is

280 X 192 points, but if green or violet coloring is

desired, only half of the horizontal dot positions can

be used and the overall resolution is 140 x 192 points.

The output of the same 1011010 dot pattern,

stored at adjacent memory locations with D7 set is

shown in the second example of Figure 8.13. The

picture pattern is the same, but it is delayed by one

14M period since VID7 is sampled high at PHASE 1

• AX' • Q3'. With continuous delayed patterns as

illustrated in this example, LDPS' is low during the

last 14M period of PHASE 1 and VID7M is equiva-

lent to 7M' {as opposed to equivalence with 7M).

Since the identical pattern is delayed by one 14M

period from the previous example, a new pair of

complementary colors, orange and blue, are pro-

duced. The new colors are a result of the fact that

delayed dots have a different phase relationship

with COLOR REFERENCE than undelayed dots.

Along with the color change, the delayed pattern is

shifted to the rightone half of a HIRES40 dot width.

;*-a
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Delaying the 7-dot patterns is a tricky way of

sprucing up the HIRES40 display (violet and green

get a little old). Programming HIRES40 video

becomes even more of an abstract art, however, with

each group of seven dots having a color and position

characteristic. Add this to the facts that alternating

dot positions produce different colors, screen memory
addresses are difficult to compute, and delayed

HIRES patterns interfere with adjacent undelayed

HIRES patterns; and you've got real programming
complexity.

Delayed and undelayed HIRES patterns inter-

fere with each other? They sure do, but before we' get

into that, let's summarize the characteristics of

HIRES40 video based on the discussion to this point.

First, there are 192 horizontal rows of dots. In each

row, 280 dots (40 x 7) may be turned on or off, but

since each group of seven dots may be shifted right

half of a dot width, there are 560 dot positions in a

row. Color depends on position, and there are 140

violet positions, 140 green positions, 140 blue posi-

tions, and 140 orange positions. Any two adjacent

dotsturnedon will be white. We will see shortly that

there are really only 139 orange positions. This is

because an orange dot on the far right of the screen

will be cut off by WNDW to make it dark brown.

Also, two adjacent delayed dots at the far right will

be light blue-green, not white.

If color isof no concern, there is uninhibited pro-

gramming of a 192 X 280 matrix of dots. With re-

strictions, this becomes 192 x 560. The main restric-

tion is that a delayed dot cannot be in the same 7-bit

group as an undelayed dot. For example, you can
draw aslanted straight line close to the vertical with
192 X 560 resolution. You can also draw a very nice

vertically oriented parabola with 560-dot horizontal

resolution at the portions where the slope is more
vertical. The other restriction on 560-dot resolution

is the interference at the boundary between adja-

cent delayed and undelayed patterns which will be
detailed shortly.

For coherent violet, green, blue, and orange
colored displays, there is 192 x 140 dot resolution as
long as certain pairs of colors don't get too close to

each other. Anytime you plot agreen dot in thesame
7-dot pattern as an orange dot, that orange dot turns
to green, because D7 had to be reset in that memory
location to plot the green dot. Similar considerations
exist for mixing blue and violet. Any two adjacent
dots will always be white,

;
Aswasmentioned in the VIDEO GENERATION

TIMINGSIGNALS section, delayed timing is inhib-
' ited when FRCTXT' is low. The effect of pulling
:
FRCTXT' low ($C05E) in Figure 8.13 would be to

remove the delay from the PICTURE signal of the

second example so that it is identical to the PIC-
TURE signal of the first example. Orange is thus

instantly changed to green, blue is changed to violet,

and all delayed dots are shifted left 1/560 the width
of the screen display.

Why do colored HIRES40 objects appear solid if

every other dot is turned off? Shouldn't a violet

object appear to be numerous horizontal rowsof dots
rather than solid lines? The object appears solid

vertically because the horizontal scans are so close

together. If you look at the violetobjeetup close, you
will see that it appears to be numerous horizontal

lines. The reason that the object appears solid hori-

zontally is that a multichannel color television is not

capable of turning its beam intensity on and off

cleanly at 3.58 MHz. Instead, the dots are blurred

into continuous horizontal lines. For the same rea-

son, Apple text issomewhat blurred when displayed

on a television set.

Now if you inject the same VIDEO signal into a

high frequency response video monitor, you will

clearly see the black spots between the dots in the

lines that were violet on the television. It is very

educational to compare all forms of Apple video to

simultaneous displays on a television and high fre-

quency monitor. HIRES and LORES graphics

modes use the "slowness" of a television to display

colored solids, but the monitor shows the dot pat-

terns which produce the solids. The "slowness" of a

television is why computers that are designed to

output TEXT to a television have a display of 40

TEXT characters or less. It is also for this reason

that when you use the 80-column text display capa-

bility of the Apple lie, you must support it with a

high frequency response video monitor.

Interference Between Adjacent Delayed

and Undelayed HIRES40 Patterns

The 7-dot, HIRES40 patterns fit snugly together

if the adjacent patterns are all delayed or unde-

layed, but problems can be caused when they are

mixed together. This can be seen from the third

example of Figure 8.13 which shows the processing

of the same 1011010 pattern stored in adjacent loca-

tions with D7 set in the even locations and reset in

the odd locations.

An undelayed video shift-cycle is just being com-

pleted at the far left of example 3, so VID7M is

initially in phase with 7M. Then a delayed cycle is

initiated by the fact that VID7 is high at PHASE 1 •

AX' • Q3'. This delays LDPS' and VID7M so that the

next pattern is delayed—but think what it does to

the present pattern. Since the loading of the new
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pattern is delayed, the last dot of the previous cycle

is extended by half of a dot width. In other words, a

delayed HIRES40 pattern extends the trailing

dot or black space of a preceding u ndelayed pat-

tern by half of a dot width.

Note that VID7 is sampled for delayed timing

only during PHASE 1, not during PHASE 0. This is

because the HIRES delay only can occur in HIRES-
40, not HIRES80 mode. The auxiliary card data is

on the video data bus during PHASE 0, and this is

not used in SINGLE-RES modes. Only the mother-

board data on VID7 of the video data bus during

PHASE 1 is sampled to determine delayed or unde-

layed timing.

The delayed pattern is shifted out until the deci-

sion point for delayed or undelayed timing on the

folloviring cycle is reached. VID7 is reset novi', indi-

cating that the following pattern is undelayed. Con-

sequently, the timing HAL holds VID7M low and

drops LDPS' on the next cycle to cause undelayed

timing. The new pattern, however, is loaded when
the last dot of the delayed pattern has only con-

trolled the PICTURE' line for half of the normal
period. In other words, an undelayed HIRES pat-

tern cuts off the trailing dot or black space of a
precedingdelayed pattern to half of adot width.
The point of all this is that continuous undelayed

or delayed patterns fit snugly together, but there is

discontinuity between adjacent undelayed and de-

layed patterns. Cutting off or extending a dot has

the effect of slightly changing the dot pattern and,

more noticeably, changingthecoloringof the border
dots. As a result, the HIRES programmer has one

more thing that affects color to educate himself
about and take into account. On the plus side, the

programmer can draw vertical lines at pattern

borders in eight colors that are not otherwise avail-

able in HIRES40 mode. He does this simply by turn-

ing on a right hand dot then extending or cutting it

off via D7 of the following pattern. In some in-

stances, no dots need be turned on in the following
pattern.

Figure 8.14 (color section) is a photograph illus-

trating the generation of LORES colors at borders
between delayed and undelayed 7-dot HIRES pat-
terns. The program which generated this display is

listed in Figure 3.11. The mixed LORES/HIRES
display is created by switching screen modes in a
8515-cycle loop as is discussed in an application note
in Chapter 3. As the photo shows, any LORES color
exceptdark blue-green (4) and dark magenta (1) can
be produced at a limited number of screen positions.
LORES colors 3, 6, C, and 9 are natural equivalents
of the HIRE S40 colors. LORE S colors 7 and 2 can be

produced at even/odd memory addressing borders
ColorsD and 8 can be produced at odd/even borders
Colors B and E can be produced at odd/even or
even/odd borders. LORES color E can also be pro-
duced at the far rightof the HIRES screen. Finally
orange HIRES dots at the right side of the screen
are LORES dark brown (8).*

Figure 8.15 shows some patterns created by mix-
ing delayed and undelayed dot patterns. Compari-
son to Figure 8.10 in the preceding LORES section
will show that these patterns have the same phase
relationship with COLOR REFERENCE as var-
ious LORES colors. The exception is the case where
a trailing 1-0 delayed pattern is cut off by an unde-
layed 1-0 pattern

. This creates green or violet with a
different shade than any HIRES40or LORES color.

The general rule of all of these HIRES40 interfer-

ence patterns is that delayed extends undelayed,
and undelayed cuts off delayed.

Interference borders can be used to display iso-

lated dots or vertical line segments in HIRES40
mode that are not one of the four HIRES40 colors.

Mostly, though, interference borders are a nuisance.

Anytime two different colors get close to each other

horizontally, the video pattern at their border is

different than either of the solid colors when com-
pared to COLOR REFERENCE. Awareness of the

causes of off color fringes should help you experi-

ment with color combinations that produce eye

pleasing displays.

The extreme left and right dot positions are spe-

cial cases for delayed patterns. An undelayed pat-

tern at the far left may extend the previous undelayed
pattern, but this extended pattern will be the final

blanked pattern of HBL. The result is that the

delayed pattern at the far left pulls the black mar-

gin to itself.

A delayed pattern at the far right always has its

final dot position cut in half. This is because of the

special logic in the timing HAL that always forces

the first HBL pattern to undelayed, regardless of

VID7. On the right side of the screen, the last

delayed dot is in an orange dot position. This dot is

cut off by HBL so the dot is dark brown rather than

orange, Similarly, a delayed white pair at the far

right is cut off to make it light blue-green.

The handling of right and left side delayed pat-

terns represents an improvement of the Apple He
over the Apple II, In the Apple II, delayed patterns

on the left side can inadvertantly extend undis-

played dots into the display, and the far right

"The references to LORES color numbers here are valid for

LORES40 or LORES80 motherboard resident patterns- Auxil-

iary card resident LORES80 patterns result in different colow;
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EVEN

COLOR REF

EXTEND VIOLET INTO
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CUT OFF BLUE WITH BLACK TO
PflODUCE LORES DARK BLUE (2)
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PRODUCE LORES LIGHT BLUE-GREEN (E)
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CUT OFF WHITE WITH
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LIGHT MAGENTA (B)

BLAC_K TO_PRO_OUCE LORES F
1110000O
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WITH GREEN TO PRODUCE
BRIGHT GREEN

10100000

LT

ODD ODD

lOOQOOOO

COLOR REF

EXTEND GREEN INTO
LORES LIGHT BROWN (D)_

01000000

OOOOOOOO

CUT OFF ORANGE WITH BLACK TO
PRODUCE LORES DARK BROWN (81'

11000000

00000001

EVEN

lOOOOOOO

OOOOOOOO

L CUT OFF ORANGE WITH VIOLET TO
PRODUCE LORES LIGHT MAGEMTA (Bl

11000000

OOOOOOOO
CUT OFF WHITE WITH
BLACK TO PRODUCE LC
LIGHT BLUE GREEN (El

11100000

0OOO0O01

L
CUTOFFBLUE:BLACK
WITH VIOLET TO PRODUCE
BRIGHT VIOLET

10100000

tJ

00000001

L
OOOOOOOO

000O0001

L

This is identical to Itie cut off of a defayed paltern by WNDW at the rigtil side o1 the screen

Figure 8.15 Timing Diagram: HIRES40 Interference at Delayed/Undelayed Pattern Borders.

delayed dot may or may not be cut off by undis-
played patterns. The Apple lie is far more predict-

able, although it would have been nice if they had
figured out a way to eliminate the right side cutoff of

delayed patterns without extending right side unde-
layed patterns.

HIRES60 Output

The final example of Figure 8.13 shows our weli

used 1011010 pattern stored consecutively in auxil-

iary and motherboard RAM with the Apple lie in

HIRES80 mode. This mode is selected by resetting

TEXT and AN3 (FRCTXT') and setting HIRES
and 80COL. Like double resolution TEXT, double
resolution HIRES is achieved by simply doubling
the speed of the load/shift cycle so that the aux il iary

video data is loaded and shifted out, alternating
with motherboard video data. The delayed timing is

inhibited when FRCTXT' is low, so HIRES80LDPS'
and VID7M timing is identical to that of TEXT80.
The PICTURE signal resulting from HIRES80

processing of the 1011010 pattern is identical to that
resulting from HIRES40 processing, except it is

compressed so that the dot position s are hal f as w ide.
On a high resolution monochrome monitor, this has
the effect of displaying the same patterns com-
pressed horizontally. On a television set or NTSC

color video monitor, this has the effect of blurring

the pattern and creating some washed out unattrac-

tive coloring. The 101 1010 pattern is blurred because

it is too fine to display on a television. The colors

aren't any good because there is no coherent rela-

tionship with COLOR REFERENCE.
The fact that the picture is compressed and still

clearly visible on a high resolution monitor repre-

sents the primary advantageofHIRESSO graphics.

Instead of the 280 x 192 resolution of HIRES40
mode, the programmer has complete on/off control

ofa560x 192 matrix of dots. The improvement here

is obvious, and not many words will be wasted here

on the advantages of 560-point monochrome resolu-

tion over 280-point monochrome resolution. Rather,

many words will be wasted describing the less

obvious color features of the HIRES80 displays.

A complete cycle of COLOR REFERENCE lasts

for two HIRES40 dot widths or four HIRES80 dot

widths. As a result, alternating HIRES40 dots

exactly match theCOLOR REFERENCE frequency

and consequently produce coherent colors. To ach ieve

coherent colors in HIRES80 processing, the dot pat-

terns must be set up so that they recur at 3.58 MHz.
Storing the identical 7-dot pattern continuously as

in Figure 8.13 cannot achieve this because the

period of a seven dot video-cycle is not an integer

multiple of the 3.58 MHz period.
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Notice, in Figure 8.13, that a complete cycle of

COLOR REFERENCE lasts exactly four HIRES80

dot widths. This is the key to producing coherent

color in HIRES80 displays. If any 4-dot pattern

other than 1 1 1 1 or 0000 is shifted continuously to the

PICTURE' line, the PICTURE signal will alternate

up and down at 3.58 MHz and produce coherent

color on the CRT. This is a burdensome program-

ming task to be sure, but the resulting high resolu-

tion color displays can be very impressive.

The colors available via continuous 4-dot HIRES
80 patterns are the same colors that are available in

LORES graphics (see Figures 8.10 and 8.11). In fact

you can emulate LORES graphics from HIRES80
mode by causing 4-dot patterns to be continuously

shifted out for 14 dot widths (3.5 COLOR REFER-
ENCE periods) in four adjacent horizontal scans.

The LORES emulation mode would have the advan-

tages that you could shift blocks vertically by V4 a

block height or horizontally by 1/14 a block width,

and that you could freely intermix emulated LORES
blocks with HIRES points and lines. The disadvan-

tage would be that considerably more computation

time and memory space would be required to main-

tain the emulated LORES display.

With LORES graphics, you can shift any 4-dot

pattern to the PICTURE signal for 14 dot widths.

With HIRES80 graphics, you can shift any 4-dot

pattern for any number of dot widths you desire. If

you want to produce color blocks 8 dot widths by 2

horizontal scans, you can do it. Even if only one dot is

shifted out, it will have coloration, although the
color of a single dot isolated in a field of black is hard
to discern,

A repeating 4-dot pattern is shifted L75 times in«
HIRES80 video cycle. To continue shifting the same
colored pattern in the next video cycle, the contents
of the next scanned location of RAM must be the
same as the current byte rotated left once. For
example, if 0010 0010 is stored at an even auxiliary
card location, its color can be matched by storing
0100 0100 in an even motherboard location, 1000
1000 in an odd auxiliary card location, or 0001 OflOl

in an odd motherboard location. Note that having
the MSB set in the 1000 1000 stored byte has no
effect on the display. It is set here only because it

makes it easy to visualize and compute the rotation

of 4-dot patterns.

The 4-dot patterns result in different colors

depending on whether they are driven out ofeven or
odd auxiliary card or motherboard RAM locations,

When driven out of an even motherboard location,

the pattern will result in the same color as it would
in LORE S40 mode. The HIRES80 patterns required

to produce the various LORES colors are shown in

Table 8.12.

There are any number of HIRES80 color plotting

methods that can be used by Apple He programs.

One method would be to utilize 560 x 192 plotting

routines to selectively construct colored objects at

various points on the screen. Another method would

be to utilize super LORES routines which would

Table 8 .1 2 HIRES80/LORES Color Equivalents.

LORES COLOR
EQUIVALENT HIRES80 PATTERNS

AUX/EVEN MBD/EVEN AUX/ODD MBD/ODD
$0 (0000)

$1 (0001)

$2 (0010)

$3(0011)

$4 (0100)

$5(0101)

$6 (0110)

$7(0111)

$8 (1000)

$9(1001)
$A(1010)
$B(1011)

$C(1100)

$D(1101)
$E(1110)

$F(11U)

$00 (0000 0000)

$88 (1000 0000)

$11 (0001 0001)

$99 (1001 1001)

$22 (0010 0010)

$AA (1010 1010)

$33(00110011)
$BB (1011 1011)

$44 (0100 0100)

$CC (1100 1100)

$55(01010101)
$DD (1101 1101)

$66(0110 0110)

$EE (1110 1110)

$77(01110111)
$FF (1111 1111)

$00 (0000 0000)

$11 (0001 0001)

$22(0010 0010)

$33(00110011)
$44 (0100 0100)

$55 (0101 0101)

$66(0110 0110)

$77(01110111)
$88 (1000 1000)

$99 (1001 1001)

SAA (1010 1010)

$BB (1011 1011)

$CC (1100 1100)

$DD (1101 1101)

$EE (1110 1110)

$FF (1111 nil)

$00 (0000 0000)

$22 (0010 0010)

$44(0100 0100)

$66(0110 0110)

$88 (1000 1000)

$AA (1010 1010)

$CC (1100 1100)

$EE (1110 1110)

$11 (0001 0001)

$33(00110011)
$55(01010101)
$77(01110111)
$99(10011001)
$BB (1011 1011)

$DD (1101 1101)

$FF (11111111)

$00 (0000 0000)

$44 (0100 0100)

$88 (1000 1000)

$CC (1100 1100)

$11 (0001 0001)

$55 (0101 0101)

$99 (1001 1001)

$DD (1101 1101)

$22 (0010 0010)

$66(0110 0110)

$AA (1010 1010)

$EE (1110 1110)

$33 (0011 0011)

$77 (0111 0111)

$BB (1011 1011)

$FF (1111 nil)
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plot a block of any height {1—192) and any width
(1—560) of any color (0—15) at any location (X,Y =
0-659,0-191).

A third method would be to utilize a 140 x 192
colored HIRES mode with each 1/140 position con-

sisting of a blue (560 MOD 4 = 0), blue-green (560
MOD 4 = 1), brown (560 MOD 4 - 2), and magenta
(560 MOD 4 = 3) dot. The color of each position is

determined by which of its four dots is turned on.

The left side of Figure 8.16 (color section) shows
some sinewaves plotted in this format.* This method
provides true 140 x 192 resolution in 16 colors

(including black, white, 0101 gray and 1010 gray).

Notice the jagged slopes of the sinewaves on the

leftside of Figure 8. 16. These can be smoothed out to

some extent on all colors except the 1-dot colors

(equivalents of LORES 1, 2, 4, and 8). The method
involves plotting 557 x 192 4-dot HIRES positions.

This takes more time and programming overhead
than simple 140 x 192 plotting, but line smoothness
approaches that of 560 x 192 resolution for the 3-dot
colors and white (see the sinewaves on the right side

of Figure 8.16), The smoothness of gray lines can be
further improved if use of 0101 gray and 1010 gray
is alternated every horizontal scan. The effective

resolution of the 1-dot colors cannot be improved
because only 140 dots per horizontal scan can be
displayed.

The HIRES80 color programming methods de-

scribed here are only ideas which seem very basic to

me. These ideas could be expanded and mixed with
other ideas to provide some general purpose machine
language HIRES plotting routines which support
all the graphics features of the Apple lie. This is

something that is very badly needed because only
the HIRES40 features are supported by Apple He
firmware.**

MIXED MODE SWITCHING
A final topic to consider in video generation is

MIXED mode switching. This is the reason we have
to live with those delayed GRAPHICS time terms
(GR+1 and GR-i-2), so we'll have a closer look.

,
P'Kure8.17isatimingdiagramofthelastdispiay

cycle of line 159 in MIXED mode. At the left side of
this figure, HPE and H5—HO of the video scanner

Figure 8.16 was produced by an Applesoft program {Figure
H.21). An application note at the back of this chapter describes
some Applesoft techniques for programm ingHIRE S80 displays.

:**For alternate perspectives of HIRES80 operation and an
^assembly language listing of some HIRES80 plotting routines,
5ee TVue Sixteen-Color Hi-Res" by Allen Watson III, Apple
(Unkard. January, 1984.

switch from 1111111 to 0000000, marking the
beginning of HBL. At the same time the horizontal
section of the scanner goes to zeroes, the vertical
section goes to 110100000 making the term V4 • V2
true. This identifies TEXT time, but you can't
immediately switch to TEXT processing because
the final displayed GRAPHICS pattern is not yet
loaded in the load/shift register. For that matter,
you can't start blanking yet either.

What happens is that all GRAPHICS time switch-
ing is delayed by two scanner clocks (see GR, GR-H,
and GR-H2 in Figure 8.5). lOU outputs affected by
this delay include SEGA, SEGB, RA9, RAIO, and
GRh-2. Because of the 2-clock delay, the timing HAL
and video ROM are configured for GRAPHICS
until the last video cycle on the right side of the
screen is complete and blankingONEs are loaded in

the load/shift register. Here is the order ofevents for
Figure 8.17.

1. RAS'risesduring PHASE 1, bringing the video
scanner to 110100000/0000000 after propaga-
tion delay. V4 • V2 identifies TEXT time.

2. At about the same time the video scanner
changes states, PHASE rises, latching the
final GRAPHICS data in the motherboard video
latch.

3. LDPS' falls during PHASE of DOUBLE-
RES modes, and the final auxiliary pattern is

loaded and shifted out.

4. LDPS' falls during PHASE 1, loading the final

motherboard pattern. In DOUBLE-RES or
SINGLE-RES modes, this pattern will be the

last one displayed before the right blanking
margin.

5. RAS' rises during PHASE 1, followed by GR+1
fall ing and WNDW rising. GR-H selectsTEXT
related terms for SEGA-SEGC (VA, VB, and
VC), but this change will not be felt at the

SEGA-SEGC lines until RAS' rises during
PHASE 1 again. GRAPHICS time switching on
SEGA-SEGC is thus delayed by two scanner
clocks. GR+1 also disables HIRES time at the

lOU RAM addressing circuitry so the TEXT/
LORES area of scanned memory will now be
addressed.

6. At about the same time GR+1 falls, PHASE
rises to latch the first undisplayed video data.

This data will come from HIRES memory if

HIRES is set since HIRES TIME is just now
falling.

7. The final pattern is shifted out until LDPS' falls

again, loading the blanking ONEs resulting

from WNDW high.
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8. RAS' rises duringPHASE 1, followed by GR+2.
SEGA-SEGC, RA9—RAIO, and GR+2 are now
completely in TEXT configuration. Note that

this does not occur until the last display pattern

is completely shifted out.

9. At about the same time GR+2 falls, PHASE
rises to latch the second undisplayed video data.

Even if HIRES is set, this data will come from
TEXT/LORES memory since HIRES TIME
has been low for about one microsecond.

As far as video ROM addressing is concerned, it

would suffice to delayTEXT configuration only one

scanner clock because the final pattern is loaded in

the load/shift register after one clock. This would
not suffice, however, for timingHAL inputs because

LDPS' and VID7M must support GRAPHICS shift-

ing until the last pattern is shifted and the blanking

ONEs are loaded. Therefore, the 2-clock delay is

necessary on SEGB and GR+2.

Idea] SINGLE-RES GRAPHICS/TEXT timing

would have video ROM addressing inputs switching

on GR+1 and timing HAL inputs switching on

GR+2. This could be done in the Apple He if separate
HIRES and GRAPHICS identifying terms were
developed for the timing HAL. As it is, separate
terms are not developed and all terms are switched
on GR+2.* This creates a glitch in the screen when
programs switch between GRAPHICS and TEXT
during display time using the $C050/$C051 TEXT
soft switch.

The switch back to GRAPHICS in MIXED mode
occurs at the beginning of HBL before the first dis-

played horizontal scan, and the timing is similar to

that of Figure 8.17. This timing is not particularly

critical because the WNDW is high during the

entire transition period. Also, as was mentioned in

Chapter 5, the display mode is switched to GRAPH-
ICS and back to TEXT during VBL, but this is

inconsequential because it happens during blank-

ing time.

*HIRESTIME in the RAM add ressinp: circuitry is switched at

GR+1, and, because of RAM access delay, this switches the video

data bus between HIRES and TEXT/I.ORES data in lime

alignment with the video ROM addres.s inputs that arc .switched

on GR+2.
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PROGRAMMING SCREEN CHARACTER SETS IN EPROM

The video ROM of the American Apple lie is pin

compatible with 2732 4K EPROM. If you know

someone with a PROM burner and understand the

layout of the video ROM, you, can customize the

screen display of your Apple He by burning a cus-

tom video EPROM and installing it in place of the

video ROM.
There are a number of aspects of the video display

that it is possible tocustomize. You could change the

HIRES patterns so the dots appear on the screen in

the same order as they are represented in memory.

You could change the LORES layout so that, as

numerical color representations increase, the screen

colors will sequence smoothly through the Apple

spectrum (see Figure 8.11). Of course very few peo-

ple would want to change their Apple this way, even

if they preferred the resulting operational features,

because most Apple graphics oriented programs
would not work correctly.

One change you can make to the video ROM that

has no undesirable side effects is to change the

screen text character patterns. You may design your

own upper case/lower case set or use an existing

upper case/lower case set in place of the NORMAL
set that resides in the video ROM. You may also

design your own INVERSE set or FLASHING set

which will be displayed anytime a program outputs

inverse or flashing text, but they don't have to be

inverted or flashing characters. This application

note contains some suggestions for burning video

EPROMS with custom text character sets. Please

refer to Figure 8.8 and Tables 8.3 and 8.4 during
these discussions.

The TEXT patterns are in the lower half of the

video ROM ($000—$7FF). They are laid out identi-

cally to the ALTCHRSET ASCII (see bottom half of

Table 8.4). In fact, you can compute the base ad-

dresses in the video ROM of any character by multi-

plying its ALTCHRSET ASCII representation by
eight. For example, the ASCII for a NORMAL
upper case "B" is $02. Multiplying $C2 x 8 yields

$610, and the eight segments of the NORMAL
upper case "B" can be found in the video ROM at
$610—$617.
The precise contents of $610—$617 in the video

ROM are $E1 $DD $DD $E1 $DD $DD $El $FF.
This makes much more sense if you look at the
numbers in binary, stacked over each other as
shown below. It becomes clear that the ZEROes in

the numbers represent the dots in a matrix that
form the letter "B". When you see a NORMAL "B"
on the TEXT screen of the Apple lie, it is a direct

consequence of the fact that these numbers (patt-

erns) are stored at $610—$617 of the video ROM.

111630001

11011101
11011101
11100001
11011101
11011101
11100001
11111111

0000

0000

0000

By looking at the "B" pattern, you can learn every-

thing there is to know about the format of stored

patterns in the video ROM. Without mincing words,

they are reversed (mirror image), inverted(ZERO=

dot) patterns stored in the seven LSBs. The extrane-

ous MSB is set, but this bit is never shifted out so it

doesn't matter whether it is set or reset. The pat-

terns are bordered by blank spots on the left, right,

and bottom to create spaces between characters on

the screen, but you can vary this to implement the

features of a character set.

One very simple way of personalizing your TEXT
display is to change the pattern at $7F8—$7FF,
This area corresponds to ASCII = $FF, and it con-

tains a little checkerboard pattern in the video

ROM. Apple He 40-column firmware generates a

flashing cursor by periodically storing $FF at the

memory location corresponding to the cursor posi-

tion, so you can personalize the cursor by changing

the pattern at $7F8—$7FF. For example, program

an EPROM identical to the video ROM at all loca-

tions except $7F8—$7rF. At these addresses, re-

place $FF $D5 $EB $D5 $EB $D5 %Y¥ $FF with

$FF $C1 $DD $DD $DD $C1 $FF $FF and your

cursor will be a little square instead of a checker-

board.

The TEXT area of the video ROM is divided up as

shown in Table 8.13. The NORMAL special, upper,

and lower area ($500—$7FF) contains the primary

displayed character set of the Apple He. If you like,

you can install a different character set here. Of

course, this set should be very readable, especially if

you do much text processing with your Apple. The

idea is to personalize and possibly improve the text

display, not to become an eye drop junkie.

.jj.(-SM'hi*"
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Table 8.13

l«a Pattern Addressing in ttie Video ROM.

ADDRESS

$000—$OFF
$100-$1FF
$200-$2FF
$300—$3FF
$400-$4FF
$500-$5FF
$600-$6FF
$700-$7FF

CHARACTER GROUP

INVERSE control (upper)

INVERSE special

INVERSE upper*
INVERSE lower

NORMAL control (upper)
NORMAL special

NORMAL upper
NORMAL lower

The $200-$2FF INVERSE character patterns are
replaced by mouse icon patterns in the enhanced
firmware video ROM (see Figure 8.8).

Where can you g-et a full ASCII set of text pat-
erns? There are numerous sources for character set
mtterns. One source is the DOS TOOLKIT d'lstnh-
ited by Apple. Among other things, this valuable
lisk contains 21 character sets and ANMATRIX, a
irogram which implements computer aided design
f other character sets. These HRCG(HIRES Char-
.cter Generator) sets are meant to draw text on the
IIRES screen, but they are identical in format
except for inversion) to the character sets in the
ideo ROM. You can program the inversion of an
IRCG set into a $500—$7FF video EPROM, and
he HRCG set will become the primary displayed
'EXT character set of your Apple He.
A second adaptation that must be made to HRCG
haracter sets is to offset the different effect of bit 7
1 the video ROM and in a HIRES40 pattern. While
it 7 in video ROM text patterns does nothing, bit 7
et in a HIRES40 pattern causes the pattern to be
elayed half of a dot position. In the DOS TOOLKIT
9ts, D7 is occasionally set to improve the smooth-
ess of a character. These characters would look a
ttle cockeyed without the delay, so they need to be
lodified before using them in your video EPROM.
ne way to do this would be to load the set into
Af/MATTJ/X where the few delayed patterns can
e easily spotted and the character modified for
/mmetry with no pattern delays. Needless to say, if
ou use ANIMATRIX to design your EPROM text
atterns from scratch, don't use the delay feature.
You can also customize INVERSE or FLASH-

,

"JG text on the Apple He, but some thought must

\^n^^ ^ ^^^ ^^^^'^^^ »f ALTCHRSET. With
MLHRSET set, the $100-$3FF area is used as a
111 ASCII INVERSE set, but with ALTCHRSET
-nrr-l^^^~^^^^ '® ^^^^ ^s an upper case only
?^ vjlRSE set, and FLASHING text is created by

switching between the $000-$lFF and $400-
35FP areas. This creates several options for inter-
estmg character sets.

One option is to change the entire INVERSE area
($000—$3FF) to an alternate set. This would not
necessarily have to be an inverted set. Anything
other than the NORMAL patterns (Italics for in-
stance) would serve to highlight the display.
FLASHING text would still flash, except flashing
would be between standard and alternate character
sets instead of between inverted and not-inverted
sets.

Another option is to leave $100-$3FF alone but
make the characters at $000--$OFF some alternate
mverted set. This would signal the operator whether
a program was using ALTCHRSET' or ALT-
CHRSET inverted upper ease letters. The differ-
ence between the $000—$0FF and $200—$2FF
characters need only be very slight if your intention
is just to differentiate between ALTCHRSET' and
ALTCHRSET upper case letters. A dot in a lower
corner of the patterns would suffice.

Still another option is to place a graphics set or
alternate alphabetic set at $400—S4FF, FLASH-
ING text would still flash, but it would flash
between the $000—$1FF characters and whatever
you stored at $400—$4FF. Additionally, you would
know anytime some control ASCII got into display
memory, and. if you made this area a graphics set,

you could program some pretty fancy text displays.

Note that you would have to find another means
than COUTl to get the graphics code into display
memory since COUTl treats control code as control

code, not display output.

If your Apple He has the firmware upgrade
installed, some of the ground rules for modifying the
video EPROM are different. The $200—$2FF
INVERSE text patterns are replaced with mouse
icon patterns in the new video ROM. and the 80-

column firmware videooutput routine is changed so

that ALTCHRSET INVERSE upper ease output
results in storage of $0—$1F in the display map
instead of $40—$5F. With the "mouse text" video

ROM, such options as deleting, modifying, and
replacing icons are open to chronic Apple modifiers.

The video ROMs in Apple He's with PAL mother-
boards (European Apples) are equivalents of 2764s
instead of 2732s. These video ROMs have a foreign

language INVERSE/NORMAL screen character

set in addition to the American characters. If the

owner of a PAL-based Apple He does not need one of

the video ROM sets, he can replace it with any
INVERSE/NORMAL set he desires in a custom
2764 EPROM. Owners of NTSC based Apples can
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obtain the same capability by building the adaptor

shown in Fig^ure 8.18. This adaptor allows installa-

tion of a 2764 video EPROM in the NTSC mother-

board with mechanical switch selection between

character sets.

The 2764 video EPROM adaptor could become

very useful if the firmware upgrade is installed in

your Apple lie. Some of your software may not use

firmware routines for video output and might not

correctly output INVERSE video with the new

video ROM. The solution to this problem is to adapt

the video ROM socket to 2764, then program the

contents of the old video ROM into one half and the

new video ROM into the other half of a 2764. With

this 2764 installed in the video ROM socket through

the Figure 8. 18 adaptor, you can switch between the

icon .set and the INVERSE set at will.

The best way to build your EPROM source file is

to start with the video ROM, and just change the

parts you wish to modify, leaving the GRAPHICS
area intact. Assuming you only have one Apple with

PROM burner available, the way to make a copy of

the video ROM is to turn off the Apple, remove the
video ROM, and install it in your PROM burner
Then turn the Apple on and enter PR#l to enable
your printer. With no video ROM, the screen will be
blank, but you should be able to manipulate the
Apple using the printer as a replacement for video
output. Activate your PROM burner program, read
the video ROM to RAM, and save it to a disk file.

Then turn off the Apple and reinstall the video
ROM.

If, for some reason, you cannot generate a disk file

of the video ROM contents as described above, you
can run the Applesoft program in Figure 8.19. This

program generates the GRAPHICS portion of the

video ROM and stores it in a disk file named
VIDROM/2. Merge this file with some selected text

character sets to complete your video EPROM
source file. Ifyou want to experiment, rearrange the

DATA statement of line 150. This DATA statement

contains the decimal equivalents of the LORES
double patterns ($00, $11, $22, etc.) for HO'. Rear-

ranging them will rearrange the LORES colors

Part o( sockel/adapter overhangs motherboard video ROM socket.

Bend pins 1, 2. 27. and 28 over to avoid contact with motherttoard
components.

Jumper pins 1, 26. 27. and 28 to one pin of SPOT
toggle or slide switch.

NOTES: Q] Solder wires at base of pins 14

and 26 so they will still make
contact with pins 12 and 24 of

the motherboard video ROM
socket.

H] Mount 2764 video EPROM in

socket/adaptor, and install them
together in motherboard video
ROM socket.

BOTTOM VIEW
OF SOCKET/ADAPTOR

Mount SPOT toggle or

slide switch on back

of A^iplellecase.

Figure 8.18 A 64K Video EPROM Adaptor.
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when the resulting video EPROM is installed in the

Apple lie.

What's wrong with the displayed text characters

the way they are? Nothing— it's just that custom-

;izing your Apple is fun and rewarding. Burning

your special video EPROM is an easy way to do this,

and the capability is a nice feature of the Apple He.

A final word of advice is to use 350-nanosecond

EPROM for your video EPROM rather than the

more commonly available 450-nanosecond variety.

The Apple lie design only gives a 390-nanosecond
address setup time before the ROM data must be
valid. 450-nanoseeond EPROM will probably work,
but if your screen display starts looking odd on a hot

summer day, you'll know what's causing it.

10
30

40

50

70

100
110
120

130

140
150

160

200

210

230

240

250

260
400

410

420

REM
REM
FEM
REM
REM
R^
REM
REM
REM
REM
DATA

PREPARE GRAPHICS AREA OF HE VIDEO PROM

BY JIM SATHER 6/24/83

CHANGE H0 'TABLE TABLE TO REASSIGN THE
LORES COLORS TO DIFFERENT NUMBERS.

H0* TABLE

0,17,34,51,68,85,102,119,136,153,170,187,204,221,238,255
DIM L0TABLE(15): FOR A = TO 15: READ LOTABLE(A) : NEXT
REM
REM H0TABLE:
REM THIS TABLE CONTAINS THE LORES PATTERNS (ROTATED TWO BITS)

.

REM
DATA 0,68,136,204,17,85,153,221,34,102,170,238,51,119,187,255
DIM H0TABLE(15) : FOR A = TO 15: READ H0TABLE{A) : NEXT
REM
REM THESE LOOPS GENERATE THE GRAPHICS AREA OF THE VIDEO ROM.

REM
430 HIRES = 256 :VC = 16: TEXT : HOME
440 FOR A = 10240 TO 12160 STEP 128: REM BUILD AT ?2800
450 VC = VC - 1:N0VC = 16

460 FOR B = A TO A + 120 STEP 8

470 VTAB 12: PRINT B - 10240
480 HIRES = HIRES - 1: IF HIRES < 128 THEN HIRES
490 POKE B,HIRES: POKE B + 1, HIRES: POKE B
500 NOVC = NOVC - 1:WRK = LOTABLE(NOVC)
510 POKE B + 2,WRK: POKE B + 3 , H0TABLE (WRK / 17)

520 WRK = LOTABLE(VC) : POKE B + 6,WRK: POKE B + 7,H0TABLE{WRK / 17)

530 NEXT B: NEXT A
600 REM
610 REM THE GRAPHICS AREA IS PREPARED BSAVE "VIDRO^V'2,A$2800,L$800"
620 REM
630 PRINT CHR$ (4)

; "UNLOCK VIDROM/2"
640 PRINT CHR$ (4); "DELETE VIDROM/2"
650 PRINT CHR$ (4);"BSAVE VIDRDIV2,A$2800,L$800"
660 PRINT CHRS (4);"L0CK VIDROM/2"
670 PRINT : PRINT
680 PRINT "TOE TOP HALF OF THE VIDEO ROM NOW"
690 PRINT "RESIDES IN DISK FILE, VIDR0^V'2•"
700 QjOi

Rgure 8.19 BASIC Listing: Prepare GliAPHICS Area of Apple lie Video PROM.

HIRES + 128

+ 4,HIRES: POKE B + 5,HIRES
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SOFTWARE APPLICATION

PROGRAMMING DOUBLE-RES GRAPHICS DISPLAYS IN BASIC

The DOUBLE-RES GRAPHICS modes offer im-

proved resolution over SINGLE-RES GRAPHICS

at a cost of greater memory usage and slower dis-

fday update. This superiorcapability doesn't exist in

the Apple II, and it appears to have been an after-

thoii^fht in the Apple He, missinfr as it was from

from Revision A and lacking as it is in firmware

support The Applesoft HPLOT command and

Applesoft and Integer PLOT, HLINE, and VLINE
commands support only the GRAPHICS modes that

arc present in both the Apple II and Apple He, not

the I)OUnLP:-RKS capabilities of the Apple He.

I)evel(»t>menl and presentation of comprehensive

machine language plotting utilities would be a size-

able task, beyond the scope of UnderntiUKiing the

A itpir llr. However, it is possible to write some very

simple Applesoft subroutines to plot .%() x 192

1 1 1 RIOS tMiints and 80 x 48 LORES blocks. Plotting

this way is slow, as you have probably guessed, but it

is a fairly painless way of producing DOUBLE-RES
( ;RA I'll I<:S displays from Applesoft.

The basic technique is for a program to compute

the r>(;(l X 192 or 80 x 48 H,V coordinates, then call

the plotting subroutine which develops the correct

hori/.ontal coordinate and plots the pointer block in

auxiliary card or motherboard memory using

III'LOT or F'LOT. It is ea.sy for the subroutine to

choo.se motherboard or auxiliary card memory for

plotting via I'A(iR2 with 80STORE set.

I''igure 8.20 is an example program which pro-

duced the LORES80 concentric circles of Figure

8.12. Initialization begins at line 100 and consists of

setting up LORES80 NOMIX mode and clearing

the screen. Routines beginning at line 200 compute
colors and 80 x 48 H,V coordinates of concentric

circles and call the plot subroutine. The computa-
tions are sin/cos manipulations with the H-coordi-

nate scaled by a factor of 1.36 to compensate for

Apple aspect ratio. The plot subroutine itself begins

at line UXK).

80STORE is set at the beginning of this program,
and it remains set throughout the program. Auxil-

iary memory plotting can then be selected via

PAGE2 (POKE AUX.O), and motherboard memory
plotting can be selected by PAGE2' (POKE MBD.O).
The screen is cleared by calling the monitor
CLRSCR routine ($F832) after POKE AUX.O, then
again after POKE MBD.O.
Odd horizontal blocks are plotted in motherboard

memory at H/2 in whatever color is selected by the

LORES COLOR= command. Even horizontal blocks

are plotted in auxiliary card memory at H/2 in a

transformed color equ ivalent to the color selected by

COLOR. The transformation consists of getting the

current color from $30 and rotating it right one bit.

The auxiliary block color transformation occurs in

lines 1050 and 1060. After the plotting is accomp-

lished, $30 is restored to the color selected by

COLOR=.
The LORES80 plotting is based on the fact thaton

a scale of to 79, even blocks are plotted in auxiliary

card memory and odd blocks are plotted in mother-

board memory. Hires plotting is a little more diffi-

cult because on a scale of to 559, pointsat 560 MOD
14 = to 6 are plotted in auxiliary card memory, and

points at 560 MOD 14 = 7 to 13 are plotted in mother-

board memory (curse Apple for not including a

MOD statement in Applesoft). Still, the 560 x 192

HIRES plot subroutine (see lines 1000—1060 of

Figure 8.21) is no big deal.

Figure 8.21 is the program that produced the

HIRES colored sine wavesof Figure 8.16. It is more

involved than the LORES example, but not because

560 X 192 plotting is more complex. To the contrary,

560 x 192 plotting is simpler than LORES 80 x 48

plotting because it is monochrome. The reason the

HIRES program is more involved than the LORES

program is that it demonstrates two differentmeth-

ods of constructing 4-dot HIRES colors from the

560-point monochrome subroutine.

The HIRES program plots sine waves at color, C,

equivalent to LORES colors 0-15. The subroutine

at line 2000 converts C to its binary equivalent in

C(3)-C(0). HIRES80 to LORES color equivalency

issuch that 560MOD 4 = 0, 560 M0D4 = 1, 560MOD
4 = 2, and 560 MOD 4 = 3 points are equivalent to

C(l), C(2), C(3), and C(0) respectively of the binary

color word. For example, if HIRES80 points 0, 2,

and 3 are turned on the resulting color will be equiv-

alent to LORES color C(l), C(2)', 0(3). C(0) = 1011 =

$B.

In the first color construction method (see leftside

of Figure 8,16), there are 140 plotted horizontal

positions. The first position consists of dots
J),

1. A

and 3; the second position consists of dots 4, 5, 6, ano

7: and so forth. At each plotted position, the combi-

nation of dots determined by 0(1), 0(2), 0(3), ana

0(0) is turned on to produce a color equivalent w

LORES color C. For a given coordinate H,v, tne

program steps that plot these 4-dot positions are at
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10

20

30
40

50

60

70
100

110

150

200

210
220

WRES80 CONCENTRIC CIRCLES

BY JIM SATHER 6/21/84

REM
REM
REM
REM
REM
RE71

REM
REM INITIALIZE
REM

120 STR80 = - 16383:COL80 = - 16371:NOMIX » - 16302:MBD = - 16300
130 AUX = - 16299 :FRCTXT = - 16290 ilXLEER = - 1998 :CLR » 48

140 GR : POKE STR80,0: POKE NOMIX,0: POKE COL80,0: POKE FHCTXT,0
POKE AnX,0: CALL LCLEER: POKE MBD,0: CALL LCLEER: REM CLEAR SCREEN

REM
REM COLOR / CIRCLE COMPUTATIONS
REM

230 PTS =208: REM NUMBEE OF ANGLES SAMPLED

240 FOR ANGLE = TO PTS - 1

250 Al = 6.2831852 * ANGLE / PTS:SI = SIN (Al) :C0 = COS (Al)

260
270

280
290
300
1000

FOR C = TO 7: COLOR= C:

IF C = THEN CCIX)R= 15

R = 24 - C * 3:V = 24 - SI

NEXT C; NEXT ANGLE
GOTO 300
REM

PLOT H,V1010 REM
1020 REM
1030 H2 = INT (H) / 2

1040 IF H2 - INT {H2) THEN

POKE AOX,0:CSAV = PEEK

IF C2 - C2% THEN C2% = C2% + 128

POKE CLR,C2%: PLOT H2,V: POKE CLR,CSAV

RETURN

IF ANGLE > PTS / 2 THEN COLOR= C + 8

* R:H = 40 + CO * R * 1.36: GOSUB 1010

(H = 0-79, V = 0-47)

1050

1060
1070

1080

POKE HBD,0: PLOT H2,V: GOTO 1030

(CLR) :C2 = CSAV / 2:C21 = C2

Figure 8^0 BASIC Listing: LORESfiO Concentric Circles.

lines 370—400.
The second color construction method (see right

side of Figure 8.16) supports 557 dot positions, each

four dot-widths wide. For color coherency, it must
be determined where the position starts in relation

to COLOR REFERENCE. This is easy since we
begin with the information that position starts

with a C(l) dot. For example, 379 MOD 4 = 3. so

position 379 starts with a C(3) dot and consists of

C(3),C(0),C(1), and C(2) dots in order. Plotting color

$B at position 379 therefore consists of turning on
dots 379, 380, and 381 ($B = 1011 = C(3), C(2)', C(l),

C(0)), For a given coordinate H,V, the program
steps that plot these 4-dot positions are at lines

550-590.

Lines 100-180 of Figure 8.21 initialize the Apple
He HIRES80 display mode. Note that a short
machine language routine is poked into memory
Miat loads $20 to the accumulator and jumps to

P3EA (lines 150—170). Calling this short routine

will result in clearing of the $2000-$3FFF area

withoutsettingor resetting PAGE2. This provides a

fast way of clearing the HIRES80 display (POKE

AUX.O : CALL HCLEER : POKE MBD.O : CALL
HCLEER).
Of the two color construction methods, the 140 x

192 method is generally faster, but the 557 x 192

method yields higher resolution pictures with colors

having more than one dot in the pattern. Either

method can be utilized to produce HIRES pictures

in any LORES color. These routines, however, are

useful only for experimentation, education, and

plotting where Applesoft speed is sufficient. Faster

DOUBLE-RES plotting requires machine language

computation and plotting.*

*See "True Sixt«en-Color Hi-Res" by Allen Watson III, Appli-

Orchard January 1984,foranassembly languafrelistmgof some

HIRES80 plotting routines. The source code and some demon-

stration programs are available on diskette by sending $15 to

Apple Orchard, PO Box 6502, Cupertino, CA 95015.
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10 REM
20 REM
30 REM HIRES80 SINEWRVES

40 REM
50 REM BY JIM SATHER 6/21/84

60 REM
70 REM
100 REM INITIALIZE

110 REM
120 STR80 = - 163a3:COL80 = - 16371:NOMIX = - 16302:MBD = - 16300

130 AOX = - 16299:FRCTXT = - 16290:HCLEEH = 768

140 HGR : POKE STR80,0: POKE NOMIX,0: POKE COL80,B

145 POKE FSCTXT,0: fCO[iOR= 3

150 REM MOVE "LDA #$20, JMP SF3EA" TO fCLEER

160 POKE HCLEER,169: POKE HCLEER + 1,32: POKE HCLEER + 2,76

170 POKE HCLEER + 3,234: POKE HCLEER + 4,243

180 POKE A[JX,0: CALL HCLEER: REM CLEAR AUX

190 HPLOT 140,0 TO 140,26: HPLOT 140,167 TO 140,191: REM DRAW VERT LINE

200 POKE MBD,0: HPLOT 139,0 TO 139,26: HPLOT 139,167 TO 139,191

300 REM
310 REM GENERATE 140 X 192 SINEWAVES
320 REM
330 FOR C = 1 TO 15:CLR = C: GOSUB 2000: REM FOR C0L0R=lTO15;GBr BINARY

340 FOR H0 = TO 276 STEP 4: REM LEFT SCREEN; 1 OF 4 POINTS

350 FOR HPART = TO 2: REM PLOT V FOR H, H+1.3, H+2.7 TO SMOOTH COT

360 V = 24.5 + C * 9 - 32 * SIN ((H0 + 1.333333 * HPART) * .0224399)

370 IF C(l) TOEN H = H0: OOSUB 1010: REM BLUE DOT

380 IF C(2} THEN H = H0
390 IF C(3) THEN H = H0

400 IF C(0) THEN H = H0

410 NEXT HPART: NEXT H0

500 REM
510 REM GEMERAT

520 REM
530 REM SIN (2*PI*H/280) ; RIGHT SIDE

540 FOR H0 = 280 TO 556:V = 24.5 + C * 9 - 32 * SIN {H0 * .0224399)

550 PRT4% = (H0 / 4 - INT {H0 / 4) ) * 4 + .5: REM PRT4% = H0 MOD 4

560 IF PRT4% = AND C(l) OR PBT4%. = 1 AND 0(2) OR PET4% = 2 AND C{3) OR

PRT4% = 3 AND C(0) THEN H = H0: GOSUB 1010: REM PLOT POSITION+0

570 IF PRT4% = AND C(2) OR PKT4% = 1 AND C(3) OR PBT4% = 2 AhD 0(0) OR

PRT4% = 3 AND C(l) THEN H = H0 + 1: GOSUB 1010: REM PLOT POSITION+1

580 IF PRT4% - AND C(3) OR PET4% = 1 AND C(0) OR PRT4% = 2 AND C(l) OR

PRT4% = 3 AND C(2) THEN H = H0 + 2: GOSUB 1010: REM PLOT POSITION+2

590 IF PRr4% = AND C(0) OR PBT4% = 1 AND C(l) OR PRT4% = 2 AND C('2) OR

PRT4% = 3 AND C(3) THEN H = H0 + 3: GOSUB 1010: REM PLOT POSITION+3

600 NEXT H0: NEXT C: END
1000 REM
1010 REM PLOT H,V (H = 0-559, V = 0-191)
1020 REM
1030 M0O14 = INT (H) / 14:MCD14% = M0D14
1035 PART14% = 14 * (M0D14 - M0D14%) + .5

1040 POKE AOX,0: IF PART14% > 6 THEN POKE MBD,0:PART14% = PABT14% - 7

1050 HPLOT M0D14% * 7 + PABT14%,V
1060 RETURN
2000 REM
2010 REM CONVEiW CLR FROM DECIMAL TO HEX
2020 REM
2030 CLR% = CLR: FOR A = TO 3

2040 C(A) = 1:CLR = CLFI / 2:CLRI = CLR% / 2
2045 IF CLR = CLR% THEN C(A) =0
2050 NEXT : RETURN

Flgui«821 BASIC Listing: HIRES80 Sine WavM.

+ 1: GOSUB 1010: REM BLUE-GREEN DOT
+ 2: GOSUB 1010: REM BROWN DOT
+ 3: QOSOB 1010: REM MAGENTA DOT

'E 560 X 192 SINEWAVES
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TECHNICAL NOTE

DETAILS OF TELEVISION PROCESSING OF APPLE VIDEO
A rigorous examination of the television process-

ing of the Apple signal involves technical details

beyond the scope of Understanding the Apple lie.

Brief descriptions of some of these technical details

are presented here for those readers who wish to

study television processing of Apple He video in

depth,

A square wave is the sum of the odd harmon ics of a

sine wave of the same frequency. For example, a 3

MHz square wave can be produced by summing the

following sine waves:

3 MHz at amplitude A
9 MHz at amplitude A/3
15 MHz at amplitude A/5

The more harmonics added, the more perfect the

square wave. This sinusoidal make-up of a square

wave is significant because tuned circuits such as

those found in a television receiver respond to the

sinusoidal components of signals. A square wave
will be processed as the sum of its sinusoidal

components.

Generally, Apple PICTURE signals, which pro-

duce color displays, are 3.58 MHz square waves.

These square waves modulate a television carrier

frequency in the user supplied modulator, creating

a radio frequency with a square modulation enve-

lope. Sinusoidally, the square wave intelligence is

carried by the following series of frequencies:

carrier

carrier + 3.58 MHz
carrier + (3.58 MHz) x 3

carrier + (3.58 MHz) x 5

The IF strip of the television will pass the sine

wave carrier and those sine wave frequencies above
the carrier, up to carrier + 4.2 MHz. Only the carrier
and carrier + 3.58 MHz of the above distribution are
within this range. As a result, the 3.58 MHz square
envelope is converted to a 3.58 MHz sinusoidal enve-
lope, and the output of the second detector in the
television is a 3.58 MHz sine wave. This sine wave is

passed by the chrominance amplifier to the syn-

chronous demodulator, where it is processed with

the reconstructed COLOR REFERENCE sine and

cosine waves to produce color signals. It is also pro-

cessed by the luminance amplifier to produce the

luminance signal.

Many televisions have a 3.58 MHz trap in the

luminance path which reduces color interference

with the luminance signal. The effect of this trap is

to remove the 3.58 MHz variation, and pass a gray

luminance level which lasts for the duration of the

3.58 MHz presence. A similar effect is felt on the 7

MHz modulation envelope produced by LORES/
HIRES80 5 and 10 colors. The 7 MHz + carrier

frequency is out of the band pass of the IF strip, so

the 7 MHz variations are removed and replaced by a

gray level. These solid gray levels do not degrade the

Apple luminance signal, but enhance it. We cannot

see 3.58 MHz variations in picture brightness at

normal viewing distance. We just see solid blocks of

brightness. Conversion of 7 MHz and 3.58 MHz sig-

nals to solid gray levels does not, therefore, degrade

the picture we perceive.

A very interesting special case among Apple

PICTURE signals is that created by turning alter-

nating groups of three HIRES40 dots on and off.

Conventional Apple wisdom is that this will createa

horizontal dashed line with white coloration of the

dashes because they are three adjacent dots. How-
ever, the picture signal produced by this pattern is a

square wave of 3.58 MHz/S. This square wave has

significant 3.58 MHz sinusoidal content, since 3.58

MHz is the third harmonic of the fundamental

square wave frequency. This produces a 3.58 MHz
sine wave at the output of the chrominance ampli-

fier about 1/3 the amplitude of the signal produced

by a 3.58 MHz PICTURE signal. The result is a

washed out coloring of the 3.58 MHz/3 PICTURE
signal, not nearly as intense as the coloring of 3.58

MHz PICTURE signals. The chrominance ampli-

fier frequency band is from 3.1 MHz to 4.1 MHz, so

any PICTURE signal from 3.1 MHz/3 to 4.1 MHz/3
should have some coloration.

A second television phenomenon is less predicta-

ble. Many televisions have a coupling transformer

or inductor/capacitor combination at the input to

the chrominance amplifier, I have found that this

input circuit has a marked tendency to ring at 3.58
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MHz when the PICTURE signal switches from

white to black or black to white. This ringing pro-

duces an output from the chronninance amplifier of

about the same amplitude as that produced by a 3.58

MHz/3 PICTURE signal. One result is edge color-

ing of white screen displays. The 3.58 MHz ringing

should vary greatly from television to television, and

may be reponsible for many of the off-color edges

found in Apple displays.

In a normal television broadcast signal, the lumi-

nance signal energy is concentrated at multiples of

the horizontal frc(iuency removed from the picture

carrier. This is because the luminance signal itself

has a very high content of harmonics of the line

scanning freiiuency. When the luminance signal

modulates the carrier, theenergj' is largely distrib-

uted in groui)s centered at the following frequencies:

carrier

carrier + horizontal frequency

carrier + 2( horizontal frequency)

The color signals have a similarly high content of

horizontal frequency harmonics. When the 3.58

MHz color subcarrier is modulated by a color signal,

the onergj' is largely distributed at

3.58 MHz (suppressed)

3.58 MHz + horizontal fretiuency

3.58 MHz + 2(horizontal frequency)

The 3.58 MHz color subcarrier is used because car-

rier + 3.58 MHz resides midway between the "car-
rier + 227(horizontal freq)" and the "carrier +
228(horizontal freq)" energy concentrations of the
lum inance signal. The "carrier + n(horizontal freq)"

luminance distribution is thus interlaced with the
"carrier + 227.5(horizontal freq) + n(horizontal

freq)" distribution. This reduces interference be-

tween the chrominance and luminance signals.

The Apple PICTURE signal is high in horizontal

frequency harmonic content, just like the normal
television luminance signal and color signals. There-

fore, the energy of the modulated carrier should be
distributed primarily at "carrier + n(horizontal

freq)" intervals. The process of modulating a 3.58

MHz subcarrier with a color signal does not take

place, so the "carrier + 3.58 MHz + n(horizontaI

freq)" energy distribution should not exist to the

same extent as it does in a normal television chromi-

nance signal. However, the 3.58 MHz PICTURE
signal with horizontal frequency harmonic perio-

dicity should create some elements of the "carrier

+

3.58 MHz + n(horizontal freq)" distribution when
the carrier is modulated. It is, therefore, interesting

to note that the 3.58 MHz COLOR REFERENCE
signal of the Apple is 228 times the horizontal fre-

quency, not 227.5 times the horizontal frequency as

in a normal television signal. This means that the

"carrier + n( horizontal freq)" energy distribution is

superimposed, rather than interlaced, with the

"carrier + 3.58 MHz + n(horizontal freq)" distribu-

tion. My conclusion is that the energy of a carrier

wave modulated by Apple video is largely distrib-

uted at multiples of the horizontal frequency

removed from the carrier frequency, with no inter-

laced distribution induced by the chrominance

element.

. , j.iil;»!ii§ili»
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chapter 9

The Disk Controller

The long term success of the Apple II line of com-

puters could not have come about without the devel-

opment of the Disk II 5 M inch floppy disk drive. For

simple storage of data and programs, disk I/O is

merely faster and more convenient than cassette

'I/O. But for important computer uses such as word
processing, data base management, business ac-

counting, and file handling, the disk drive or its

equivalent is mandatory. There can be no doubt that
for most owners the disk drive is the most important

peripheral in the Apple He computer.
Since the original Apple II was strictly cassette

based, the interface to the Disk 11 had to be built on a

peripheral card , The extentofmotherboard support

of the Disk II is an empty card slot and the mother-
board firmware. Motherboard firmware includes

no disk handling routines but only looks for disk

handling routines in the peripheral slots and jumps
to them at power up. The bootstrap program and
the circuits that interface the computer with the

drive are on the disk controller, which is a pe-

ripheral card usually installed in Slot 6. The disk

controller is connected by a 20-wire ribbon cable to

the disk drive, which contains more electronic cir-

cuits as well as the drive mechanisms.

It is primarily the controller circuits and the

available disk operating systems which determine

the features of disk operation that are unique to the

Apple, and it is the controller circuits which are the

main topic of this chapter. General features of the

disk drive are also discussed, but no attempt is made
here to document the disk operating systems beyond

the RWTS (Read or Write a Track and Sector) sub-

routine of DOS 3.3, the DIIDD (Disk II Device

Driver) subroutine of ProDOS, and the disk data

formats of DOS 3.2, DOS 3.3, and ProDOS.*

DISK II OVERVIEW

Near the end of 1977, Apple Computer's decision-

making group was still very small. Mike Markkula,

the chairman of the board, presented the group with

a list of products needed to be developed for the

Apple. At the top of the list was a floppy disk drive

for the Apple II. Within a very short period of time.

Operation of DOS 3.3 and ProDOS are weil documerted in the

books Beveath A pple DOS ( Qual ity Software, 1982) and Beneath

Apple ProDOS (Quality Software, 1984) by [ton Worth and

Pieter Lechner.

***:;:
'rtEa,^ ^ .
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Apple developed the Disk II and released it along

with its operating system, DOS 3.

The disk drive chosen by Apple was a Shugart

SA400. Apple designed their controller card

(mounted in a peripheral slot), analog card (mounted

in the disk drive), and data formats around this

standard drive. More recently, companies other

than Shugart have made the Disk II drive for Apple,

but the Disk 11 has always been nearly identical to

the old Shugart drive. Additionally, other Apple

drives such as the twin half-height drive and the

Apple lie built-in drive perform identically to the

Disk II. That is. they are single sided, single density

drives that support 35 tracks and 143,360 bytes of

data on 5 V4 inch floppy disks.

Various companies make other drives and con-

trollers which will work in the Apple He. These

drives are generally less expensive than their Apple

counterparts and they work perfectly well with

DOS 3.3, ProDOS. and the Disk II controller. The

main disadvantage of buying alternate source disk

drives is that you do not receive the excellent docu-

mentation that comes with an Apple drive. This

documentation, however, can be purchased sepa-

rately from retailers who carry Apple products.

Other compatibledrives and controllers will besim-
ilar, but the discussions in this chapter detail the

operation of the Disk II controller and, to a lesser

extent, the Disk II drive.

Floppy disks are magnetic media, just like audio

and video tapes. Reading and writing is performed
by rotating the disk while a stationary read/write

head presses against it. Disk speed is 300 RPM
which translates to 48.4 inches per second on the

inner track. This is a great deal faster than audio
cassette tape speed, so the rate of data transfer is

greater than that achieved in an audio cassette stor-

age system.

In between read or write periods, the head may be
positioned radially so that different tracks can be
written to or read from. The head is positioned pre-
cisely by a stepper motor under 6502 program con-
trol. There are 35 tracks on the Disk II, but some
second source drives have 40 or more tracks which
can be utilized by modifying DOS 3.3 or ProDOS.
There is no hardware sensor that can be used to

determine which track the head is on. The bootstrap
program absolutely determines where the head is

by running it against the outer stop at initialization.
From that point the controlling DOS closely moni-
tors head location, always saving the current posi-
tion in RAM. Also, when reading data from or
writing data to a formatted disk, the controlling
DOS always verifies head position by reading the

stored track number from the disk and comparing
it

to the track number it is attempting to access
Figure 9.1 is a functional diagram of Apple He

disk I/O. Data transfer between the MPU and the
controller is 8-bit parallel via the data bus. Control
by the MPU is via the address bus, of course.* Data
transfer between the controller and the drives is

serial, and control of the drives is via multiple con-
trol lines serving various functions. The controller is

primarily a digital data processing device, whilethe
analog circuit card in the disk drive performs the
functions of amplification, shaping, and gating.

Control of the disk is software intensive, meaning
very little is done automatically by hardware.
Hard sectored disks are disks with little holes in

them which divide the disk into a number of sectors.

Disk drives supporting hard sector formats have a
sensor in them which signals the host computer
when a hole is passing by and allows a program to

determine where the disk is in its circular trip. The
Disk II does not have this feature, and Apple disk

operating systems don't require it. Instead, the

Apple uses a soft sectored format in which posi-

tional information is stored on the disk in uniquely

identifiable address fields. These address fields are

the "holes" which divide the disk into sectors and

identify rotational position. The address fields eon-

tain an address field identifier and a volume-track-

sector address from which programs can locate

specific address fields. Behind each address field,

there is adata field with space for 256 bytes ofdata.

An address field and the data field that follows it

make up a sector of disk information.**

DOS 3.3 and ProDOS write 16 sectors (address

fields followed by null data fields) in their disk for-

matting routines. The 16-sector format is not

unconditionally dictated by hardware. It is just a

very reasonable number of sectors to have, consider-

ing the facts that the 6502 addressing modes are

best suited for manipulation of datablocks up to 256

bytes in size, that 256 bytes is a workable size for

data blocks in disk I/O, and that the Disk II is capa-

ble of storing 16 sectors of 256 bytes on a track in the

DOS 3.3/ProDOS format. As an example, the hard-

ware will let you store data in eight sectors of 512

bytes each. Sixteen sectors of 256 bytes, however, is

*In thischapter there is much discussion of the roUoftheMPU in

disk I/O. The reader will do well to remember that while the

MPU has certain capabilities of manipulating the Disk 11 hard-

ware, these capabilities can only be utilized under T>TOgr»m<xm-

trol. In other words, a 6502 program must supervise the role of

the MPU in disk I/O.

•The Apple Disk II will work with hard sectored disks, but the

holes in the disk will be i^ored.

'MSi'
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the only format supported by the RWTS subroutine

ofDOS 3.3 and the Disk II device driver of ProDOS,

and the only reasons to deviate from it are for copy

protection or to have fun (using the word "fun" in a

very broad sense).

With DOS 3.3, the nuts and bolts details of disk

I/O are handled by the RWTS (Read or Write a

Track and Sector Subroutine). The majority ofDOS
3.3 is concerned with such tasks as command inter-

pretation and execution, file nnanagement, track

and sector mapping, and cataloging, Anytime it

actually reads or writes disk information, however,

it uses RWTS. There are four types of calls to

RWTS: FORMAT, READ, WRITE, and SEEK
(head position only). FORMAT writes identifying

information for 16 sectors on all 35 tracks. READ
positions the head and reads a specified track/sec-

tor, and WRFTE positions the head and writes to a

specified track/sector. SEEK moves the head to a

specified track.

Functions comparable to those handled by RWTS
are handled by the DIIDD (Disk II Device Driver)

in ProDOS. Data is written or read, two sectors per

call, in 512-byte data blocks. There are three types of

calls to the Disk II device driver: READ block,

WRITE block, and return STATUS. The READ
and WRITE calls perform the same function a.*

READ and WRITE calls to RWTS except that two
sectors {512 bytes) of data are transferred instead of
one. The STATUS call checks if a write protected
disk is installed in a drive. Formattingof disks is not
performed by the device driver but is performed by
FILER, a separate utility associated with ProDOS.
Ignoring elaborate copy protection methods, the

normal method of reading a sector is to position the
head and poll the disk input port until the draired
identifying leader, or address field, is found. Then
the data following the address field is read into an
area ofRAM the size of the sectors being used. Data
is written one sector at a time. The normal writing
method is to find the pertinent sector on a formatted
disk as when reading, but to overwrite the data area
after the desired sector address field has been found.

Figure 9.2 shows the paths data takes duringdisk
I/O. Data is transferred between the MPU and the

data register on the controller, one byte at a time

over the data bus.* Data is shifted serially between

the controller and the disk drive under control ofthe

*The data register is referred to in some writings as the data

latch.

DATA BUS

A

DATA REGISTER

CONTROL

LOGIC

STATE

SEQUENCER

READ PULSE

WRITE SIGNAL
*
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READ
INTER-

FACE

[>±^
DISK DRIVE

Figure 95 Data Transfer In Disk I/O.
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logic state sequencer on the controller. The logic

state sequencer is a ROM together with some flip-

flops wired up to act like a little 2 MHz computer. It

has a stored program which it sequences through
while executing commands that control the data
register. Some writings refer to the sequencer as the

"state machine," but logic state sequencer more
clearly describes its functions. Via address bus
commands, a 6502 program can configure the

sequencer to shift out write data, shift in read data,

or shift in the state of the write protect switch in the

disk drive.

In the write process, a 6502 program causes the

MPU to store a byte of data i n the data register of the

controller. The logic state sequencer shifts this

information, monitoring each bit individually.

Every time the sequencer sees aONE, it toggles the

WRITE signal. This changes the direction of mag-
netic field in the read/write head. As the disk

passes across the head during write operation, the

surface of the disk near the head is magnetized, and
the direction of field in the head determines the

direction of the magnetic field on the disk. When the

writing stops, the data remains on the disk in the

form of transitions or lack of transitions in the mag-
netic field. Disk I/O is identical to cassette I/O in this

regard. Serial data is stored in the form of magnetic
field reversals on the medium. A ONE is a field

reversal. A ZERO is the lack of a field reversal.

Reading is the reverse of writing as far as the

read/write head is concerned. As the disk rotates,

magnetic field reversals on the moving disk surface
cause voltages to be induced in the head. The voltage

pulses are sensed by a special purpose floppy disk
read interface chip which puts out a nice square
read pulse for every magnetic field reversal on the
disk. The sequencer monitors these read pulses and
shifts ONEs and ZEROs into the data register based
on the presence or absence of the read pulse at the
normal write interval.

The sequencer syncs up on the read data if it was
written properly. This means that it will shift data
into the data register until a complete byte is shifted
in, then it holds that complete byte long enough for a
6502 program to detect it by polling the data regis-
ter. The program recognizes that the data register
holds a valid byte when the most significant bit of
the register is set. When a val id byte is detected, the
program must quickly process or store the byte and
start checking the data register for the next one.

It can be seen from this overview that the key to

understanding how data is transferred to and from
the disk is the logic state sequencer and how it is

manipulated by the 6502 program. Later, we will

analyze the sequencer in great detail, but first we
need to lay the groundwork by looking at the hard-
ware environment.

THE DISK II DRIVE

Figure 9.3 is a functional diagram of the Disk II

drive. The intention here is not to explain all details

of floppy disk drive operation, but only to establish

the basis of control of the drive from the computer.
In addition to Figure 9.3, reference to Figure 9.1

should help clarify the points of discussion. Even
though only the Apple Disk II is mentioned, most of
the discussion is also valid for substitute drives. As
Figure 9. 1 i ndicates, all connections to the drive are
routed to the controller.

Power Supply

The drive takes its power supply voltages from the

Apple's main power supply. +12V, -12V, and -5V
are all utilized, but only +12V is used for motor
drive. Since +12V is used both to position the head
and rotate the disk, the load on +12V is significant,

especially at disk start-up. The drive has a high
capacity +12V input filter to assist the Apple's

power supply in supplying motor start-up current.

The Drive ENABLE' Input

The ENABLE' input is low at drive 1 or drive 2,

but not both, when a drive is being accessed. At the

enabled drive, the drive motor is on, the IN USE
indicator glows, head positioningisenabied.and the

read pulse output and the state of the write protect

switch are enabled to the controller. Speed of disk

rotation is regulated by a motor speed control board

in the back of the drive. This speed is adjustable via

a potentiometer on the speed regulator board.

The Head Positioning Mechanism
The head assembly is positioned precisely, via a

stepper motor. The stepper motor, which rotates, is

linked mechanically to the head assembly, which

travels linearly. A 6502 program positions the head

assembly by directly controlling the four phased

inputs to the stepper motor.

Figure 9.4 is a functional diagram of a 4-phase

stepping motor, which can provide a basis for

understanding the positioning of the read/write

head. The rotor is a cogged ferrousdrum whose cogs

may be attracted by one of four electromagnets. The

electromagnets are activated sequentially under

program control. There may be any number of cogs

on the rotor, but only one of them is next to one of the

four electromagnets at any time.
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Phase-O Phase-1 Phase-2 Ptiase-3 RETURN

Figure 94 A Stepping Motor.

To rotate the rotor one step to the right in Figure
9.4, energize the phase-2 magnet, then deenergize

the phase-1 magnet. Magnetic attraction will then
align the cog with the phase-2 magnet. To go three

steps left from this new position, perform this pro-

gression; phase-1 on, phase-2 off, wait, phase-0 on,

phase-1 off, wait, phase-3 on, phase-0 off, wait. The
wait is for the response time of the motor, which is

slow compared to the MPU. Summarizing, to step

left, sequence through the phases in descending
order. To step right, sequence in ascending order.

The Apple disit drive uses a 4-phase stepper motor
for head positioning. The controller has provisions
for bringing the control voltage for each phase high
or low individually. In the drive, these voltages will

turn.on or cut off current to the electromagnets in
the stepper motor. A good deal of the software over-
head is required to position the head and remember
its location (see PROGRAMMING EXAMPLES
FROM RWTS later in this chapter). Two phases
must be stepped through to move the head one track

,

/nd the Disk II and standard versions ofRWTS and
DIIDD support 35 tracks on a disk.

^Writing to the DPsk

,^
There are two write related inputs from the con-

troller to the drive, WRITE REQUEST' and the
rNRlTE signal. WRITE REQUEST' causes the
irive to be configured for writing unless the disk is

fi^rite protected. Configuring the drive for writing
insists of allowing the WRITE signal to control
he current in the coil of the read/write head, and of
applying a direct current to a second head referred
here as the erase head. The WRITE SIGNAL

ontrol of the current in the read/write head is such

that the high/low state of the WRITE signal deter-

mines the direction of the magnetic field set up in

the read/write head.

Current in the read/write head tends to produce

magnetic fields on the disk parallel to disk motion.

Current in the erase head tends to produce magnetic
fields on the disk perpendicular to disk motion. The
actual strength and direction of the fields produced

are a result of the vector sum of the WRITE signal

field and the erase field (see Figure 9.5). The pres-

ence of the erase field means that there is always

some field in the head assembly while writing, even

in themiddleof a WRITE signal fieid reversal. The
absenceof a field in the head assembly would allow

previous field alignment on the disk to remain

unchanged. Thus, the erase field causes the pre-

viously written data to be erased when the WRITE
signal component of the field vector has an ampli-

tude of zero.

As was mentioned in the overview, data bits are

stored on the disk as field reversals, or the lack of

field reversals, at a regular interval. This fact is not

changed by the presence of the erase component in

the field. Just understand that the erase, or radial,

component is constant, while the read/write, or tan-

gential, component reverses depending on the

WRITE signal.

The Wfite Protect Switch

There is a spring loaded switch in the Disk 11

drive which is open when a write protected disk is

installed. A write protected disk is one with no notch

on the left edge or one with the notch covered up.

Having this switch open causes the WRITE PRO-

TECT signal to be high, which isolates the WRITE

A^tt
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signal from the read/write head even if WRITE
REQUEST' is low. The WRITE PROTECT signal

is also routed from the enabled drive to the con-

troller so a 6502 program can determine the state of

the write protect switch.

The WRITE PROTECT signal and the read pulse
are the only two outputs from the drive to the con-
troller (see Figures 9.1 and 9.3). Both are output
through tri-state drivers which are gated by the
drive ENABLE' input. This allows the two drives to

share control of the read pulse and write protect
lines.

An interesting feature of the write protect circuiy-

ry is that its activating voltage is the phase-1 voltage

inputtotheheadpositioningmotor(seePLUGl.pin
4 in Figure 9.3). As a result, phase-1 must be turned
off after head positioning or writing to the disk is

impossible. This is probably a way of forcing the
programmer to turn off all phases (not just phase-1)
after head positioning. This seems to imply that
keeping a stepper motor input active causes an

undesirable effect—perhaps a tiny vibration or

overheating of the motor. In any case, the RWTS
and DIIDD head positioning routines leave all four

phases off after head positioning. The boot routine

on the controller card, however, leaves phase-0

energized after sending the head to track 0.

The Read Pulse

When writing is not enabled, passing a field re-

versal on the surface of the disk over the read/write

head induces a voltage in the coil. This induced volt-

age will alternate in polarity for every field rever-

sal. The induced voltage is sensed by a special

purpose chip which is designed for this function.

The special purpose chip, a Motorola MC3470, out-

puts a positive 1 -microsecond pulse for every field

reversal (see Figure 9.6). This read pulse is routed

from the enabled drive to the controller.

Now we come to the biggest problem with reading

a disk. The signal coming off the read/write head is



The Disk Controller 9-9

THE WRITE
INTERVAL IS

FOUflMPUCVCLES

WRITE SIGNAL

CORRESPONDING
READ PICK-UP

VOLTAGE

READ PULSE
FROM MC3470

Figure 9A When Reading, the Lack of a Read Pulse at a Regular Interval Represents a ZERO.

adirty little voltag-e. The shape and size of this read
pick-up signal will vary with disk speed, tempera-
ture, humidity, head alignment, disk warpagfe, and
Murphy's Law in the read environment as opposed
to the same factors in the write environment. The
MC3470 has to clean up the imperfect read pick-up
signal and pass it to the controller. The basic fea-

tures of the MC3470 clean up job include ampl ifica-

tion, shaping, filtering, and noise rejection. The
MC3470 detects positive and negative voltage peaks
on the read pick-up signal, then waits about two
microseconds to verify that a second opposite polar-
ity peak has not occurred. The purpose of this is to

prevent narrow noise pulses from generating invalid
read pulses. After the 2-microsecond mask period, a
1-microsecond read pulse is output. Even with this

sophisticated interface, the controller must be able
to reliably monitor a read pulse whose timing inter-
val will vary significantly. In addition, it must be
able to interpret either the presence or the absence
of the read pulse at the distorted interval.
The 2-microsecond delay period between peak

detection and read pulse output turned out to be too
short for the new format when Apple upgraded
DOS 3.2 to DOS 3.3. Apple solved this problem by
replacing fixed res istor R2 1 with a pote ntiometer on
the analog card in the disk drive. Technicians align
the potentiometer for an optimum delay, which
wcrks out to be approximately three microseconds.
The combination of the read/write head and the

MC3470 responds very well to field reversals on the
moving disk as long as there is not too much space
between them. However, if there is too much space
between field reversals on the disk, the MC3470

starts puttingout false read pulses. This means that

you can't utilize copy protect schemes that call f()r

i.solated field reversals on the disk separated by
large intervals of constant field diroclion. In other

words, the MC3470 will reliably produce rt';i<l pulses

while data of normal density is moving past the

read/write head, but reduction of this density will

cause spurious read pulses to he generated. The
write interval in the Apfilc is four MI'U cycles, and
we will see that the maximum time lu-lween field

reversalson a disk in any Apple DOS format is three

write intervals.

THE DISK II CONTROLLER
The Disk II controller contains thai part of disk

I/O electronics which needs to be pnsitionetl close to

the motherboard. This includes a Bootstra[) ROM, a

data register, a logic state .sequencer, and a com-

mand decoder. Figure 9.7 is a functional block dia-

gram of the controller, and Figure 9.8 is a full

schematic.

The Bootstrap ROM
The Bootstrap ROM is referred to as the IT) ROM

by Apple. It contains a 256-byte program which

begins the bootstrap procedure that reads the DOS
from adisk, puts it into RAM, and initializes it. This

256-byte program is the only 6502 program which

resideson the controller, and it may be accessed any

time at CnXX where n is the controller siot number.

This program has just enough code to get the con-

tents of track 0, sector into RAM. Then program

control is passed to that part of RAM so that the
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Figure 9.7 Functional Diagram: The Disk II ControlkK.
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bootstrap procedure can be continued. The Boot-

strap ROM is connected to the address bus and data

bus naturally, and its output enable is the I/O

SELECT' input to the slot. This response to the I/O

SELECT' input causes the DOS whose image re-

sides on a drive 1 disk to be booted when PR#n or

IN#n is executed from BASIC*
The Autostart power-up RESET routine uses the

contents of the Bootstrap ROM to detect the pres-

ence of a Disli II controller in the Apple. It does this

by starting with Slot 7 and working downward,

cheeking each slot for the presence of $20, $00, $03,

and ?3C at locations $Cn01, $Cn03, $CnG5, and

$Cn07. When it finds this combination, it starts exe-

cuting at $CnOO on that slot, thus booting the DOS.

The Command Decoder

The overseeing 6502 program manages the con-

troller via address bus commands in the DEVICE
SELECT' range of the controller's slot ($C080,X

th rough $C08F,X with slot number times $10 in the

X-register). This range is divided up into eight

off/on switches by an LS259on the controller identi-

cally to the way the $C05X range on the mother-

board is divided up (see TEXT, MIXED, PAGE2,
HIRES, and AN0-AN3 in Figure 7.1). In other

words, there are eight off/on soft switches by which

a program can manage disk I/O. Like the mother-

board screen mode switches and annunciators, the

disk switches are set OFF by even addresses and ON
by odd addresses. Table 9.1 is a brief listing of the

functions of these address decoded commands, but

more detailed explanations follow.

•See Chapter 7, PERIPHERAL SLOT CONNECTIONS and
THE APPLE I/O SYSTEM: KSW AND CSW.

Drive Off/On and Drive Select

The $C088,X/$C089,X switch disables the drives
or enables a drive, while the $C08A,X/$C08B X
switch selects drive 1 or drive 2 for enabling. Here is

an illustrative, but otherwise useless program
sequence:

LDX
CMP
CMP
CMP

#$60
$C08B,X
$C089,X
$C08A,X

CMP $0088,

X

SLOT 6
SELECT DRIVE 2
DRIVE 2 ON
DRIVE 2 OFF,
DRIVE 1 ON
DRIVES OFF

Turning a drive on ($C089,X) performs the fallow-

ing at the controller:

1. Applies -^5V power to the sequencer ROM and
the sequencer flip-flops at A3.

2. Applies Q3' to the clockpulse inputs of the data

register and the sequencer control flip-flops.

The sequencing and data transfer clock is Q3
falling. (DRIVES OFF forces the control flip-

flops to clear.)

3. Enables the outputs of the sequencer ROM.
4. Enables sequencer control of the data register.

(DRIVES OFF forces the data register to hold

its present state.)

5. Causes the ENABLE 1' or the ENABLE 2' sig-

nal to go low depending on which drive is

selected by the drive 1/drive 2 switch. At which-

ever drive is enabled, this turns on the drive

motor and IN USE indicator, and it enables

head positioning, writing, and control of the

read pulse and write protect inputs to the

controller.

Tabte9.1 Disk II Controller Commands.

SWITCH OFF FUNCTION ON FUNCTION
Q0 $C0B0,X - PHASE OFF $C081,X - PHASE ON
Ql $C082,X - PHASE 1 OFF $C083,X - PHASE 1 ON
Q2 ?C0B4,X - PHASE 2 OFF §C085,X - PHASE 2 ON
Q3 $C086,X - PHASE 3 OFF $C087,X - PHASE 3 ON
Q4 $C088,X - DRIVES OFF $C089,X - SELECTED DRIVE ON
Q5 9C08A,X - SELECT DRIVE 1 §C08B,X - SELECT DRIVE 2
Q6 $C08C,X - SHIFT WHILE WRITING,

READ DATA
$C08D,X - LOAD WHILE WRITING,

READ WRITE PROTECT
Q7 $C08E,X - READ $C08F,X - WRITE

1. RESET" forces all switches off.
J

2. Access to even addresses causes the data register contents to
be transferred to the data bus.

*;r
^"i

^1
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The drive off/on signal is routed through one half

of an NE556 timer. The effect of this timer is to

delay drive turn-off until one second after a refer-

ence to $C088,X. This gives the drive apparent
momentum, keeping it running after it is turned off.

The result is that the drive never turns off between
closely spaced accesses, and in these instances,

access time is reduced because there is no delay

while the disk connes up to speed. This is why the

computer is ready to process after a "CATALOG"
well before the IN USE light goes out on the drive.

The 1-second turn off delay does not apply to turning
offthedrivevtaa RESET. Pressing RESETcauses
the delay timer to clear and turns off the drive

almost immediately.

The second half of the NE556 timer is used to

generate a .1 second power-up RESET. This is

necessary to achieve the disk autostart capibility on

Revision Apple li motherboards. These early

Apples had no power-up reset generator. In the

Apple He, the lOU generates a 35-millisecond

power-up reset, so the only effect of the controller

power-up reset circuitry is to extend the power-up
reset to 100 milliseconds.

Head Positioning Commands
Address bus commands $C080,X through $C087,X

are translated directly into four phase-off/phase-on

stepper motor controls. These control voltages are
routed to the drives where they are amplified and
applied to the head positioning motor. Ascending
references to $C080,X through $C087,X cause the
head assembly on the enabled drive to move toward
the inner track (track 34). Descending references
cause movement toward track 0. The controlling
program must wait approximately 20 milliseconds
for motor response after turning a phase on. The
actual motor response will vary with momentum,
and the RWTS and DIIDD head positioning rou-
tines reduce positioning time by varying the waiting
period with expected momentum.
The motor must be stepped two phases per

track, so there are really 70 head positions. RWTS
writes at the phase-0 aligned and the phase-2 aligned
positions, but copy protected disks may have data
written on the half-tracks, the phase-1 aligned and
pnase-3 aligned positions.* The head assembly has a

Another copy protection scheme is to turn two adjacent phasesM then let the stepper motor settle approximately midway
oetween them. This is referred to as stepping to a quarter track.

,, .

*> phases must be turned off in rapid sequence if one of
nem is phase 1, thedrive is unmodified, and data is to be written
on the quarter track.

mechanical stop (an electrical stop in some alter-
nate drives) at track 0. One method to absolutely
ascertain the head position is to step outward 80
phases as the bootstrap program does. The head will
run against the track stop, and you wi II be at track
0. The head/stepper motor linkage is aligned so that
the motor will be phase-0 aligned at track 0, so
from track it is known that stepping inward must
be begun by turning phase-1 on by a reference to
$C083,X. From this point, the head position can be
stored in RAM, and the phase alignment can be
determined from the head position. After head posi-
tioning, the four phases should all be turned off,

because the drive will behave as if a write protected
disk is installed if phase-1 is left on.

READ/WRITE

$C08E,X/$C08F,X is the controller's READ/
WRITE soft switch. It is an addressing input to the

sequencer and divides the sequencer into its two
most significant parts, the READ sequence and
the WRITE sequence. It also is inverted to become
the WRITE REQUEST' signal to the drives. Thus,

the READ/WRITE switch configures the controller

for reading or writing via sequencer addressing,

and it configures the enabled drive for writing via

the WRITE REQUEST' line unless a write pro-

tected disk is installed.

SHIR/LOAD

SHIFT/LOAD is a fairly inadequate label for the

$C08C,X/$C08D,X Softswitch, but any label would

be. It is chosen because, during writing, $C08C,X
causes shifting of the data register on every eighth

sequencer clock, and $C08D,X causes loading of the

data register from the data bus on every eighth

sequencer clock. In reality, the SHIFT/LOAD
switch performs several functions which defy sum-

marization in a short label.

SHIFT/LOAD is an addressing input to the se-

quencer and it divides both the READ sequence and

the WRITE sequence into two parts. As mentioned

above, it is a programmable SHIFT/LOAD control

for the data register. When the READ/WRITE
switch is low, the SHIFT/LOAD function is changed

to READ/CHECK WRITE PROTECT. These se-

quencer control functions are summarized in 'fitble

9.2. The operation should become clearer when we

study the sequencer listings.

$C08C,X and $C08D,X are also the normal input

and output port addresses used by RWTS for trans-

fer of disk data. In reality any even address could be

used to load data from the data register to the MPU,

•**!!•:_
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Table 92 Funclions of the $C08CX/$C0eD,X and $C08E/$C06F Switches.

shift/load
$C08C,X

$C08D,X

$C08C,X
$C08D,X

read/write
?C08F,X

$C08F,X

$C0BE,X
$C08E,X

Sequencer Funct.ion
Data register shift every eighth sequencer'
clock while writing.
Data register load every eighth sequencer
clock while writing.
Enable READ sequencing

-

Check state of write protect switch and
initialize sequencer for writing.

although $C088 (DRIVES OFF) and $C08A (SE-

LECT DRIVE 1) would be inappropriate for this

purpose. Use of $C08D,X as the output address goes

hand in hand with the fact that it causes loading of

the data register from the data bus.

The Logic State Sequencer and
Data Register

As mentioned before, the logic state sequencer is

a ROM wired up to behave like a little 2 MHz com-

puter. It is this powerful sequencer that enables the

controller to perform such complex control with so

few chips. It uses a 256-byte ROM with four of its

data outputs (04—07) connected through flip-flops

to four of its address inputs (A5, AO, A6, and A7).

The flip-flops are clocked by Q3 falling while a

drive is enabled.*

There are eight address inputs to the sequencer

ROM, so let's refer to the four flip-flop latched end

around inputs as the sequencing inputs and the

other four address bits as the partitioning inputs.

Assume for a moment that the four partitioning

inputs are fixed. The overall ROM address will then

change every time Q3 falls, and the contents of bits

04—07 of any addressed location will determine the

address after the next clockpulse. These four data
bits thus contain flow information, and they are

programmed so the flow will proceed in an orderly

manner from clock to clock. There are 16 states of

the four sequencing address inputs and 16 states of

the four partitioning address inputs. The sequencer
ROM is thus divided into 16 partitions of 16 se-

quencer states each.

The four partitioning inputs are:

Al — QA, the MSB of the data register

A2 -SHIFT/LOAD, the $C08C,X/$C08D.X
switch

A3 -READ/WRITE, the

$C08E,X/$C08F,X switch

A4 —The read pulse from the disk drive

The A2 and A3 inputs allow the 6502 programmer
to configure the sequencer for loading while writ-

ing, shifting while writing, reading data from the

disk, or checking the write protect switch. The Al
and A4 inputs allow the sequencer flow to deviate

depending on the presence or absence ofa read pulse

and the state of shifted data in the data register.

The data register is a very versatile 8-bit IC that

can shift left, shift right, load parallel or store paral-

lel based on its control inputs. The remaining four

outputs of the sequencer ROM are connected to

inputs of the data register, completing our picture of

the sequencer. Four of the ROM data bits are pro-

grammed to control sequencing and the other four

data bits are programmed to control the data regis-

ter. There are only six distinct commands which the

sequencer can cause the data register to perform,

but there are 16 possible states of the command bits,

due to redundant states which command the data

register to do the same thing. Table 9.3 shows the

16-bit states in hexadecimal and binary with an

asterisk next to the six states used by Apple to per-

form commands in their DOS 3.2 and 3.3 ROMs.
In addition to the sequencer control of the data

register, any reference to even addresses in the

DEVICE SELECT' range of the controller slot will

cause the contents of the data register to be placed

on the data bus. For this reason, programs should

not cause the MPU to write to even addresses or the

bidirectional peripheral data bus driver will com-

pete with the data register for control of the periph-

eral data bus. It is important to note that, while a

6502 program can check the state of the data regis-

ter at any time, a program can store data to the data

register only when the sequencer is performing a

load. As a result, the write operation involves get-

ting the 6502 program in sync with the sequencer

*The sequencer clock is actually the risinjredge of Q3', developed

by gating: Q3 through a 74LS132 NAND gate {see Figure 9.8).

Due to propagation delay, the clock is effectively Q3 falling plus

approximately 15 nanoseconds.
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and keeping it there by performing write operations

in exact timing loops
.
If the data register is to accept

data from the MPU, the 6502 program must store

the data to the data register at exact multiples of
the bit writing interval. This interval is eight

cycles of the sequencer or four cycles of the MPU.
It is important to make a distinction here between

what can be done and what normally is done. A
program can store data at any multiple of the bit

writing interval—8, 12, 16, 20, etc, MPU cycles—
and the data register will accept it. However, RWTS
and DIIDD only store data to the data register at

32-, 36-, and 40-cyele intervals. There are very prac-

tical reasons for this which will become apparent as

this discussion progresses.

Both the sequencer control flip-flops and the data

register are clocked by Q3 falling when a drive is

enabled. This means the sequencer operates at

approximately 2 MHz, twice the frequency of the

6502. Additionally, the read pulse from the enabled

drive is synchronized to the Q3 falling clock, quant-

ized in pulse width to one Q3 period, and inverted in

the process to form a negative pulse. It is this syn-

chronized, negative read pulse which is applied to

A4 of the sequencer ROM, and the read pulse is

therefore monitored in the same 500-nanosecond
time frame as the other addressing inputs to the

ROM. In a further attempt to stabilize the shaky
read pulse, a Schmidt trigger type NAND gate is

used in the read pulse quantizing circuit (see Figure
9.8). Use of this type of gate increases noise immuni-
ty and ensures smooth transitions of the A4 input to

the sequencer ROM.

During both reading and writing, the data regis-

ter is shifted left while its most significant bit, QA,
is monitored. In writing, the state of QA is moni-
tored and the WRITE SIGNAL is toggled at the bit

writing interval when QA is set. In reading, ONEs
and ZEROs are shifted into the data register depend-
ing on the presence or absence of a read pulse at the

bit writing interval. When QA becomes set, the

sequencer holds the data register long enough for a
6502 program to detect the valid byte with a seven

MPU cycle polling loop. Then the data register is

cleared and the next byte is shifted in from the disk.

Decoding the Contents

of tt>e Sequencer ROM
In the past, the contents of the logic state se-

quencer ROM have been a mystery in the world of

Apple users. The basic reason for this is that no one
who understood the contents ever bothered to pub-
lish any information about it. A primary aim of this

chapter is to fill this gap in Apple literature by
providing formatted listings of the DOS 3.2 and
DOS 3.3 sequencer ROM* contents and discussing

operational aspects of disk I/O which are deter-

mined by the contents.

This section shows how to make the contentsof the

sequencer ROM accessible to theMPU and provides

*The logic state sequencer ROM was changed when Apple
upgraded from DOS 3.2 to DOS 3.3 so the two versions of the

ROM are referred to here as the DOS 3.2 and DOS 3.3 versions.

The DOS 3.3 version has slightly different read sequences which

improve the read reliability in the 16-seclor formats of DOS .'1.3,

Pascal, and ProDOS.

Table 93 Logic State Sequencer Commands.

03-02-01-00

MSEEtaSOJC FUNC'i'lCHmx BnuMs:

•0 0000 CLA a.KAR DATA REGISTt;K
1 0001 GLR
2 0010 C\R
3 0011 a,R
4 0100 GLR
5 0101 a,R
6 0110 CLR
7 0111 a,R

*8 1000 NOP NO OPERATION
*9 1001 SUd SHIFT ZERO LEitT INTO DATA REGISTER
*A 1010 SR SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER
*B 1011 IJJ LOAD DATA REGISTER FROM DATA BUS
C 1100 NOP
*D 1101 sr,i SHIFT ONE TfTT INTO DATA REGISTER
E 1110 SR
P 1111 ID
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a program which makes formatted listings of those

contents. The program will accurately list the con-

tents of any ROM designed to operate in the B3

socket of the Disk II controller. It is not necessary for

the reader to go through the exercise of making

listings of the DOS 3.2 and DOS 3.3 sequences since

these listings are furnished in Figures 9. 10 and 9.11.

He may, however, find it interesting and educa-

tional to make his own listings^

The MPU cannot normally read the contents of

the sequencer ROM because the ROM is not con-

nected to the data bus. You can change this situation

by removing the bootstrap ROM from the D3 socket

and moving the sequencer ROM from the B3 socket

to the D.S socket. The contents of the sequencer ROM
can then be read by the MPU by addressing $C6XX
(assumes Slot 6). Of course, your disk drive won't

work with the controller configured this way, but

you can save the data to cassette tape and then

transfer it to a disk file when your controller is back

to normal.

This data can be listed to a printer using the moni-

tor, but it is not particularly readable in this form. I

have written a BASIC program to format the data

into a readable listing. Figures 9.9 through 9.11

contain listingsof the Applesoft BASIC formatting

program, the DOS 3.2 sequencer, and the DOS 3.3

sequencer respectively. The program was written in

BASIC rather than assembly language so it could be

more easily understood by readers who choose to

study it. Also, readers should find it very easy to

manipulate the sequencer listing because it is for-

matted as a 16 by 16 BASIC subscripted string

variable. The program takes a little over a minute to

run. It will list any sequencer ROM designed to run

in the Disk II controller as long as its source file is

read from the DSsocketof the controller. The source

file needs to be resident on diskette as a binary file

named "SEQROM". However, it would be easy to

change line 50 of the program so the source file can
be obtained elsewhere. Before running the pro-

gram, enable the 80-column display or an 80-column
printer.

The manipulations of the program are based on
the following features of controller wiring:

1. Address bus AS is connected to the A7 input to

the D3 socket. Address bus A7 is connected to

the A5 input to the D3 socket.

2. Data bus lines D4 through D7 are connected to

outputs 07 through 04 on the D3 socket in

reverse order.

3. A natural significance order of addressing
inputs to the sequencer ROM is WRITE—
READ PULSE~SHIFT/L0AD-QA-07-.
06—05—04. This does not correspond to the
way they are conneeted toA 7 through AO on the
sequencer ROM.

4. The read pulse applied to A4 of the sequencer
ROM is a negative pulse.

These wiring connections were not designed to

confuse us, although they serve the purpose. They
\j(ere designed to minimize wire crossover on the
mechanical layout. A design engineer can swap the
address and data pin assignments on aROM until he
finds his own version of peace of mind, then he com-
pensates for the scrambled pin assignments when
he writes the ROM program.* The sequencer ROM
formatting program must account for this by read-

ing each byte of data, unscrambling address bits to

find where that data is in the sequence, and revers-

ing data bits before storing them in a 16 x 16 string

variable matrix from which listings can easily be
made.
The result is the listings of Figures 9.10 and

9.11.** The WRITE and READ sequences are

separated from each other, and the listing is other-

wise divided into columns of 16 sequencer states.

This is a natural division since 16 different values

can be represented by the four sequencingdatabits.

The far left hand column is the sequencer state, and
the other columns hold the contents of the ROM for

that sequencer state. The left digit ofeach number
is the next sequencer state, and the right digit is

the command. Next to each number is a mnemonic
for the command digit.

*Steve Wozniak designed the Disk II controller. Working with

Randy Wigginton, Wozniak completed this complicated and

innovative design in the space of one week (the final week of

1977). Steve is very proud of the nnechanical layout and at one

tlme red id the layout for the sole purpose of reducing the number

of feed-through holes from three to two. I had long assumed that

much of Apple's disk interface technology had been borrowed

from Shugart, but I couldn't have been further from the truth.

The format and circuitry represent a notable creative effort by

the Apple group. Besides the controller design. Wozniak wrote

RWTS. Randy Wigginton wrote the restof the original DOS. and

Rod Holt designed the analog board of the disk drive.

"The formatted listings presented here are my own representa-

tions which resul ted from lengthy investigation. The mnemonics,

address labels, and layout won't, therefore, be the same as those

used by Apple engineers. Who knows what they use? 1 submit,

though, thatmy representation provides adequate illustration in

the absence of any labels and formats published by Apple.

)M
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10 REM

12 REM LIST IJOGIC STATE SEQUENCER ROM

14 REM BY JIM SATHER
15 RSI 2/22/83
16 REM
30 REM IHIS PROGRAM FORMATS AND LISTS IHE PROGRAM CONTAINED IN THE
32 REM DISK 11 LOGIC STATE SEQUENCER. BEFORE RUNNING THIS PROGRAM,
33 REM YOU MUST CREATE A BINARY SOURCE FILE ON A DISK AND
34 RHM NAME IT "SEQROM". THE SOURCE FILE IE CREATED BY PLACING
36 ISM THE B3 RDM IN TOE D3 SLOT OF THE DISK CONTROLLER. THE
38 RIM SOURCE FILE IS WRITTEN TO CASSETTE FROM $C600-SC6FF. WHEN THE
40 REM CONTROLLER IS RESTORED, THE CASSETTE FILE IS TRANSFERRED TO DISK.
42 R£M
50 PRINT CHR$ (4) ;"BLOAD SEQROM,A7936"
100 DIM LST(15,15): DIM ASWAP(7) : DIM DFIX(15) : DIM HEX$(15): DIM CMND$(15)
110 FOR X = TO 7: READ ASWAP(X) : NEXT
120 FOR X = TO 15: READ DFIX(X): NEXT
130 FOR X = TO 15: READ HEX$(X) : NEXT
140 FOR X = TO 15: READ CMNDS (X) : NEXT
150 GR : COLOR= 6: REM SOMETHING TO WATCH WHILE WAITING
200 REM
201 REM FORMAT DATA INTO 16 X 16 MATRIX
202 REM
210 EX3R COL = TO 15: FOR ROW = TO 15:WRK = ROW + 16 * COL
300 REM
301 REM GET BINARY FORM OF WRK
302 REM
305 FOR X = TO 7:A(X) =

310 WRKI = WRK / 2:WRK = WRK / 2: IF (WRK - WRKl) THEN A(X) = 1

320 WRK = WRK%: NEXT X
400 REM
401 REM RECONSTRUCT DECIMAL WRK WITH ADDRESS BITS SWAPPED:
402 REM A7-A6-A5-A4-A3-A2-A1-A0 > A0-A2-A3-A6-A7-A5-A4-A1

403 REM THE DATA WILL THEN BE ADDRESSED BY THE WORD:

404 REM WRITE-READ PULSE-SHIFT/LOAD-QA-O7-06-05-O4.
405 REM
408 P0WER0F2 = 1

410 FOR X = TO 7: IF A(ASWAP(X)) THEN WRK% = WRK% + PCiWEB0F2

420 P0WER0F2 = P0WER0F2 * 2: NEXT
500 REM
502 REM SWAP BITS D7-D4 OF DATA BEFORE SAVING, BECAUSE IMESE

503 REM BITS ARE SWAPPED ON THE D3 ROM.

504 REM
507 DTA = PEEK (WRK% + 7936) :HI = INT (DTA / 16)

510 LST(COL,ROW) = 16 * CDFIX(HI) + DTA / 16 - HI)

520 PLOT ROW.CGL: NEXT HOW: NEXT COL: TEXT
600 REM
601 REM
602 REM ADDRESS SWAP TABLE
610 DATA 1,4,5,7,6,3,2,0
620 REM
630 REM DATA SWAP TABLE
640 DATA 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
650 REM
660 REM DECIMAL TO HEX CONVERSION TABLE
670 DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
680 REM
690 REM SEQUENCER CO^WAND TABLE
695 DATA -CLR,-CLR,-CLR,-CLR,-CLR,-CLB,-CLR,-CLR
700 DATA -NOP,-SLa,-SR ,-lD ,-NOP,-SLl,-SR ,-LD

Figure 9.9 BASIC Listing; List Slat© Sequencer ROM (1 of 2).
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802 REM AT THIS POINT IN THE PKOGRAM, THE SEQUENCER LISTING

810 ^ RESIDES m 16 COLUMNS OF 16 SEQUENCES. THESE COLUMNS

820 REM ARE ARRANGED SO EACH COLUMN CONTAINS mE COMPLETE SECJUENCE

830 REM FOR A StATE OF THE AmRESS WORD:

840 REM WRITE-READ PULSE-SHIFT/U3AD-QA.

900 REM „
901 REM ********* LIST WRITE SEQUENCE

902 REM
910 GOSOB 2000: GOSUB 2100: GOSUB 2200: GOSOB 2300: REM PRINT WRITE HEADING.

920 FOR ROW = TO 15: PRINT HEX$(RDW) ;"-";

930 FOR COL = 8T0 15 „.*-,,
940 HII = LST(COL,ROW) / 16:L0% = (LST (COL,EOW) / 16 - HI%) * 16

950 PRINT" ";HEX$(HI%);HEX5(L0%);CMND5(LO%};

960 NEXT COL: PRINT : NEXT BOW

999 GET B$: PRINT : PRINT

1000 REM
1001 REM ********* LIST READ SBQUMCE

1002 REM
1010 REM TOE READ PROGRAM IS EASIER TO UNDERSTAND WHEN THE

1020 REM LOAD PORTION IS SEPARATED FROM THE SHIFT PORTION AND

1024 REM WHEN QA' (QA LOW) IS SEPERATED FROM QA. THEREFORE

1030 REM THE COLUMN ORDER IS CHANGED IN THE READ LISTING.

1040 REM

1045 REM COLUMN ORDER DATA FOR READ LISTING

1050 DATA 0,4,1,5,2,6,3,7
1055 IF FLAG THEN 1070

1060 FOR X = TO 7: READ CSWAP(X) : NEXT :FLAG = 1

1070 REM
1080 GOSUB 2400: GOSUB 2500: GOSUB 2600: GOSUB 2700: REM PRINT READ HEADING.

1090 FOR ROW = TO 15: PRINT HEX? (ROW) ;"-";

1100 EX)R COL = TO 7

1110 HII = LST(CSWAPCC0L),ROW> / 16:L0% = (LST(CSWAP(COL) ,ROW) / 16 - HI%) * 16

1120 PRINT" ";HEX$(HI%);HEXS(IXi%);CMND$(LO%);

1130 NEXT COL: PRINT : NEXT ROW; PRINT

1160 GET B$: PRINT : PRINT

1170 PRINT "CODE mEMONIC FUNCTION"

1180 PRINT " CLR CLEAR DATA REGISTER"

1190 PRINT " 8 NOP NO OPERATION"

1200 PRINT " 9 SL0 SHIET ZERO LEFT INTO DATA REGISTER"

1210 PRINT " A SR SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER"

1220 PRINT " B LD LOAD DATA REGISTER FRC»1 DATA BUS"

1230 PRINT " D SLl SHIFT ONE LEFT INTO DATA REGISTER"

1240 END
1990 REM
2000 PRINT : PRINT ; SPC( 37)

; "WRITE": PRINT : RETURN

2100 PRINT " * READ PULSE * NO READ PULSE

2110 RETURN
2200 PRINT " * SHIFT * LOAD * SHIFT * WAD
2210 RETURN

,

2300 PRINT "SEQ *—QA.'—

*

QA *—QA' * QA *—QA' * QA *—QA' * 0^—
2310 PRINT : RETURN
2400 PRINT ; SPC( 37);"RERD": PRINT : RETURN
2500 PRINT " * SHIET * LOAD

*

2510 RETURN
2600 PRINT " * QA' * QA * QA' * QA

2610 RETURN „
2700 PRINT "SEQ *—RP *-N0 RP—

*

RP *-N0 RP—

*

RP *-N0 RP—

*

RP—*-'» ^^*

2710 PRINT : RETURN

Figure 9.9 BASIC LIsHrtg: List State Sequencer ROM (2 of 2).

d^'
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WRITE

*.

SEQ *-

READ PULSE—
SHIFT *

-QA'— * QA *— QA'-
LOAD-

NO READ PULSE
-SHIFT * LOAD-

-QA *—QA' * QA *— QA' * QA-

0- 18-NOP L8-N0P 18-NOP 18-NOP
1- 28-NOP 28-NOP 28-NOP 28-NOP
2- 39-SL0 39-SL0 3B-LD 3B-LD
3- 48-NOP 48-NOP 48-NQP 48-NOP
4- 58-NOP 58-NOP 58-NOP 58-NOP
5- 68-NOP 68-NOP 68-NOP 68-NOP
6- 78-NOP 78-NOP 78-NOP 78-NOP
7- 08-NOP 88-NOP 08-NOP 88-NOP
8- 98-NOP 98-NOP 98-NOP 98-NOP
9- A8-N0P A8-N0P A8-N0P A8-N0P
A- B9-SL0 B9-SL0 BB-LD BB-LD
B- C8-N0P C8-N0P C8-N0P C8-N0P
C- D8-N0P D8-N0P D8~N0P D8-N0P
D- E8-N0P E8-N0P EB-NOP E8-N0P
E- F8-N0P F8-N0P F8-N0P F3-NOP
F- 88-NOP 08-NOP 88-NOP 08-NOP

18-NOP
28-NOP
39-SL0
48-NOP
58-NOP
68-NOP
78-NOP
08-NOP
98-NOP
A8-N0P
B9-SL0
C8-N0P
D8-N0P
E8-N0P
F8-N0P
88-NOP

18-NOP
28-NOP
39-SL0
48-NOP
58-NOP
68-NOP
78-NOP
88-NOP

18-NOP
28-NOP
3B~LD
48-NOP
58-NOP
68-NOP
78-NOP
08-NOP

98-NOP
A8-N0P
B9-SL0
ca-NOP
DS-NOP
Ea-NOP
F8-N0P
08-NOP

98-NOP
A8-N0P
BB-LD
C8-N0P
D8-N0P
E8-N0P
F8-N0P
88-NOP

18-NOP
28-NOP
3B-LD
48-NOP
58-NOP
68-NOP
78-NOP
88-NOP
98-NOP
A8-N0P
BB-LD
C8-N0P
D8-N0P
E8-N0P
F8-N0P
08-NOP

READ

* QA
. Sh I FT

•* QA- *

. LOAD
Qft. *. ,

*

SEQ *— RP *

D8-N0P
D8-N0P

-NO RP—

18-NOP
28-NOP

18-NOP
28-NOP

NO RP

—

*- RP—-*-N0 RP-

0A-SR
0A-SR

-* RP—

0A-SR
0A-SR

-*-N0 RP-*

0- 08-NOP 0A-SR
0A-3R

0A-SR
1- 28-NOP 0A-SR
2- D8-N0P 38-NOP 38-NOP 38-NOP 0A-SR 0A-SR 0A-SR 0A-SR
3- D8-N0P 48-NOP D8-N0P 48-NOP 0A-SR 0A-SR 0A-SR 0A-SR
4- D8-N0P 58-NOP D8-N0P 5a-N0P 0A-SR 0A-SR 0A-SR 0A-SR
5- D8-N0P 68-NOP D8-N0P 68-NOP 0A-SR 0A-SR 0A-SR 0A-SR
6- D8-N0P 78-NOP D8-N0P 7a-N0P 0A-SR 0A-SR 0A-SR CA-SR
7- D8-N0P 88-NOP D8-N0P 88-NOP 0A-SR 0A-SR 0A-SR 0A-SR
8- D8~N0P 9a-N0P D8-N0P 98-NOP 0A-SR 0A-SR 0A-SR 0A-SR
9- D8-N0P 09-SL0 D8-N0P AB-NOP 0A-SR 0A-SR 0A-SR 0A-SR
A- CD-SLl BD-SLl D8-N0P B8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
B- D9-SL0 39-SL0 D8-N0P C8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
C- D9-SL0 D9-SL0 D8-N0P A0-CLR 0A-SR 0A-SR 0A-SR 0A-SR
D- ID-SLI UD-SLl E8-N0P E8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
E- PD-SLl FD-SLl F8-N0P F8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
F- DD-SLl 4D-SL1 E0-CLR E0-CLR 0A-SR 0A-SR 0A-SR 0A-SR

CODE MNEMONIC
CLR

u NOP
» SL0
A SR
B LD
a SLl

FUNCTION
CLEAR DATA REGISTER
NO OPERATION
SHIFT ZERO LEFT INTO DATA REGISTER
SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER
LOAD DATA REGISTER FROM DATA BUS
SHIFT ONE LEFT INTO DATA REGISTER

Figure 9.10 The DOS 35 Logic State Sequencer.
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WRITE

i — NO RRAn PULSE .

* ''HI'^'^ *

SEQ

* SHi r-i

*~QA'— * QA *_QA' * QA *_0A' * QA * -QA- * QA_.

f)- 18-NOP 13-NOP 18-NOP 18-NOP 18-NOP 18-NOP 18-NOP 18-NOP
1- 28-NOP 28-NOP 28-NOP 28-NOP 28-NOP 28-NOP 28-NOP 28-NOP
?- 39-SL0 39-SL0 3B-LD 3B-LD 39-SL0 39-SL0 3B-LD 3B-LD
^- 48-NOP 48-NOP 48-NOP 48-NOP 48-NOP 48-NOP 4a-N0P 4B-N0P
4- 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP
S- 68-NOP 68-NOP 68-NOP 68-NOP 68-NOP 68-NOP 68-NOP 68-NOP
6- 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP
7- 08-NOP

98-NOP
as-Nop 08-NOP 88-NOP 08-NOP as-Nop 0a-NOP 88-NOP

8- 93-NOP 98-NOP 98-NOP 9a-N0P 98-NOP 98-NOP 98-NOP
P- A8-N0P A3-NOP A8-N0P A8-N0P A8-N0P A8-N0P A8-N0P A8-N0P
A- B9-SL0 B9-SL0 BB-LD BB-LD B9-SLGI B9-SL0 BB-LD BB-LD
B- Ca-NOP C8-N0P C8-N0P C8~N0P C8-N0P C8-N0P C8-N0P C8-N0P
C- D8-N0P D3-NOP D8-N0P D8-N0P D8-N0P D8-N0P D8-N0P D8-N0P
n- E8-N0P E8-N0P E8-N0P E8-NOP E8-N0P E8-N0P E8-N0P E8-N0P
E- F8-N0P F8-N0P F8-N0P F8-N0P P8-N0P F3-N0P F8-N0P F8-N0P
F- 88-NOP 08-NOP 88-NOP 08-NOP 88-NOP 08-NOP 88-NOP 08-NOP

READ

*

* QA
SHIFT

• * — QA * n^
LOAD

' * QAV"
SEQ *— RP * -NO RP— * RP * -NO RP

—

" RP * -NO RP-_* RP * -NO RP-*

0- 18-NOP 13-NOP 18-NOP 18-NOP 0A-SR aA-SR 0A-SR 0A-SR
1- 2D-SL1 2D-SL1 38-NOP 38-NOP aA-SR 0A-SR 0A-SR 0A-SR
2- D8-N0P 38-NOP 08-NOP I28-N«P| 0A-SR 0A-SR 0A-SR 0A-SR
3- D3-N0P 43-NOP 48-NOP 48-NOP 0A-SR 0A-SR 0A-SR 0A-SR
4- D8-N0P 58-NOP D8-N0P 53-NOP 0A-SR 0A-SR 0A-SR 0A-SR
5- D8-N0P 68-NOP D8-N0P 68-NOP 0A-SR 0A-SR 0A-SR 0A-SR
6- D8-N0P 78-NOP D8-N0P 78-NOP 0A-SR 0A-SR 0A-SR 0A-SR
7- D8-N0P 88-NOP D8-N0P 88-NOP 0A-SR 0A-SR 0A-SR 0A-SR
8- D8-N0P 98-NOP D8-N0P 98-NOP 0A-SR 0A-SR 0A-SR 0A-SR
9- D8-N0P 29-SL0 D8-N0P A8-N0P 0A-SR 0A-SR 0A-SR aA-SR
A- CD-SLl BD-SLl Oa-NOP B8-N0P 0A-SR 0A-SR 0A-SR aA-SR
B- D9-SL0 59-SL0 oa-NOP C8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
C- D9-SL0 D9-SL0 D8-N0P A0-CLR 0A-SR 0A-SR 0A-SR 0A-SR
D- D8-N0P 08-NOP E8-N0P E8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
E- FD-SLl FD-SLl F8-N0P F8-N0P 0A-SR 0A-SR 0A-SR 0A-SR
F- DD-SLl 4D-SL1 E0-CLR E0-CLR 0A-SR 0A-SR 0A-SR 0A-SR

CODE MNEMONIC FUNCTION
CLR

8 NOP
9 SL0
A SR
B LD
D SLl

CLEAR DATA REGISTER
NO OPERATION
SHIFT ZERO LEFT INTO DATA REGISTER
SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER
LOAD DATA REGISTER FROM DATA BUS
SHIFT ONE LEFT INTO DATA REGISTER

Figure 9.1 1 The DOS 3.3 Logic State Sequencer.

',y^-
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As a quick example of interpreting- this listing,

assume that the sequencer is at the top of the fifth

column of the WRITE sequence in Figure 9.10. This
means the sequencer is at State and the partition-

ing address bits are WRITE—NO READ PULSE-
SHIFT—QA'. The data being driven out of the

sequencer ROM is 18. The 1 is the next sequencer
state which will occur when Q3 falls. The 8 is the
command which will be executed when Q3 falls, a
NOP. A quick scan through the WRITE listing will

show that it contains mostly NGPs and that it nor-

maiiy flows from one sequencer state to the next.

The WRITE Sequence

The WRITE sequence and WRITE PROTECT
sequence are the same in the 3.2 and 3.3 sequencers,

so this section pertains to both. Please refer to the 3.3

iistingduring these discussions, using the 3.2 listing

for comparison.

We begin our analysis by making two simplifying

observations. First, if WRITE is selected at the

READ/WRITE switch ($C08F,X), the left four

columns (READ PULSE) are identical to the right

four columns (NO READ PULSE). This means that

read data has no effect on the WRITE sequence and
it can be ignored for purposes of writing. This is a
necessity because meaningless read pulses will nor-

mally be present while writing. Second, all entries

of the READ—LOAD sequence states are OA. This
means that READ—LOAD sets the sequencer state

to and idly shifts the state of the write protect
switch right into the data register where it can by
checked by a 6502 program. Thus we have the basis
for checking if a disk is write protected, namely:

LDA SCfe)aD,X

LDA $C08E,X
BMI ERROR

CHECK WRITE
PROTECT IF READ,
READ.
BRANCH TO WRITE
PROTECT ROUTINE
IF QA SET.

These are the program steps used by RWTS to check
for write protection before w rit i ng the data b I ock of
a sector. A routine such as this must be performed
every time before writing. It not only checks if a disk
IS write protected, it also clears QA if the disk is not
write protected and sets the sequencer to State 0.
this initializes the sequencer for writing, and it is
the only way an MPU program can establish the
state of the sequencer,

: J"
*e above program steps, the data register was

Wm^^^
via a LDA $C08E.X. This sets READ/

WHITE to READ, shifts the state of the write pro-
wet switch into QA of the data register, and places

this shifted value on the data bus so the MPU can
load it to its accumulator. Now, in reality, anytime
you run this program, the READ/WRITE switch
will already be set to READ, because we are prepar-
ing to write. If READ/WRITE were set to WRITE
and a disk with no write protect was rotating, the
logic statesequencer would be merrily stomping the
flux out of all the data on the track. When you write
to the disk, the program waits until the right
moment, switches READ/WRITE to WRITE, then
stores a few hundred bytes of data to the data regis-

ter in precision loops, then switches back to READ.
So, since the READ/WRITE switch was already in

READ above, the "LDA $C08E,X" is not intended
to switch READ/WRITE to READ. It is intended
solely to load the contents of the data register from
the most appropriate even controller address
$C08E,X.

If for some reason the above write protect check
were entered with the READ/WRITE switch in

WRITE, the write protect switch would still be read
correctly. This is some pretty fast addressing, shift-

ing, storing, and loading, the timing for which is

illustrated in Figure 9.12. This figure shows the last

PHASE period of an MPU access to the READ/
WRITE or SHIFT/LOAD switch. The whole opera-
tion depends on the very brief access time (70

nanoseconds) of the 6309 PROM that Apple uses for

the sequencer ROM. This enables DEVICE SE-
LECT' to fail, the accessed switch to change states,

and data out of the sequencer ROM to become valid

in plenty of time for the data register to be newly
configured when the controller clock rises. The con-

troller clock is Q3 falling or, more accurately, Q3
inverted rising with a typical propagation delay of

15 nanoseconds experienced in the inversion. The
data register then responds to its clock well before

PHASE falls, allowing the MPU to load the new
state of the data register. All this means that the

following general rule applies: when the MPU reads

the data register, the sequencer responds to any new
configuration, performs a resulting operation on the

data register, and then gates the contents of the data

register to the data bus for reading by the MPU.
Now assume a 6502 program has checked the

write protect switch and found it can now write to

the disk. The program can then write a byte of data

to the disk with these steps:

LDA DATAl
STA $C08P,X WRITE
CMP 9C08C,X SHIFT

Figure 9. 13 shows the timing of what happens here.

The "STA $C08F,X"withoutindexingacrossapage
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6502 PHASE

DEVICE SELECT'

J
I

READ/WRITE OR
SHIFT/LOAD SWITCH

SEQUENCER ROM
DATA OUTPUT

CONTROLLER
CLOCK (A2-3)

"1

SEQUENCER
CONTROL FLIP-FLOPS

r
70 nsec

tnaK

I 70 nsec

max

L

Figure 9.12 Timing Diagram: Changing the READ/WRITE or SHIFT/LOAD Switch.

6502 PHASE ~\_

$C08F.X VALID ON ADDRESS BUS

READ/WRITE (SC08E,X/$CoeF.X) f

Ciock data bus

to data register

CONTROLLER —

1

/ \ i 1 i 1

CLOCK (A2-3) 1 ( \ I \ I [

J 6502 WRiTE DATA,^ L

SEQUENCER
STATE

Figure 9.13 Timing Diagram: Switching to Write After Checking Write Protect.
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boundary actually puts $C08F,X on the address bus

[or the last two MPU cycles of this 5-cycle instruc-

tion. The first $C08F.X cycle is a read access and the

second is a write access with the MPU controlling

the data bus during the greater part of PHASE 0.

The first $C08F,X cycle causes READ/WRITE to

switch to WRITE about 90 nanoseconds after

PHASE rises. Withi n 70 nanoseconds of this event,

the sequencer ROM's data outputs have responded

to the new address input. The sequencer state is still

0. That won't change until the sequencing flip-flops

sense a clock edge. The sequencer is therefore wait-

ing for a clock edge, sitting at State 0—WRITE—
LOAD—QA'. There may or may not be a read pulse,

but we don't care. Assume there is no read pulse.

. Now look at the WRITE sequence in Figure 9.11

(finally). We are at the top of column seven where a

18-NOP is found. At the next sequencer clock

'nothing is done to the data register, but the se-

quencer moves up to State 1. State 1 contains a

28-NOP, which causes sequencing to State 2 at the

next clock. State 2 contains a 3B-LD, which causes

sequencing to State 3 at the next clock as well as the

loading of the data register from the data bus.

Now look again at Figure 9.13. The sequencer
clock edge in State 2 occurs while the MPU is plac-

ing valid data from the "STA $C08F,X" instruction

on the data bus, and it therefore has succeeded in

storing data to the data register. Note that a "STA
$COEF" (assumes Slot 6) would not have worked
here because MPU data would have been on the data
,bus at State instead of State 2. Clearly, Apple
designed the WRITE sequence to support the
features of the 6502 "STA ABSOLUTE,X " in-

struction with no page crossing.
Now look back at Figure 9.11. Assume that when

the MPU stored data in the data register, it set QA.
In fact, if the data was written by RWTSor DIIDD,
it'sasurething—QA is set. We will see that all data
words that RWTS or DIIDD store to the disk have
their MSB set. This means that instead of sequenc-
ing to State 3 in column 7, the sequencer goes to
State 3 of column 8. It makes nodifference here, but
It will when we reach State 7. Until that point is

reached nothing happens. At State 7, if QA is set,

sequencing up the states continues, but if QA is

reset, the sequencer loops back to State 0. Right
™*' QA is set, so the next state is State 8.

.

When State 8 is entered from State 7, the WRITE
?{^5l switches from low to high. Why? Because the
WRITE signal is connected to the A7 input of the
jquencer ROM. The sequencing address bits are

K h
.~^^~^^' so A7 is low in states 0—7 and

I'gn in states 8—F (see Figure 9.8). Now think

about the decision that was made at State 7 in this

1 ight. IfQA was reset, theWRITE signal was left
alone. If QA was set, the WRITE signal was
toggled.

Continuing on in column 8, State A is reached
before the next event. Remember that "STA
$C08F,X" was followed by "CMP $C08C,X". Just as
we arrive at State A. this second instruction switches
SHIFT/LOAD to SHIFT, causing us to arrive at
State A in column 6 instead of 8. This is just in time
to cause shifting instead of loading at State A,
because there is a SLO in column 6 compared to the
LD in column 8. The "CMP $C08C,X" is barely short
enough to meet the timing requirements for switch-
ing SHIFT/LOAD to SHIFT.
The SLO causes the next bit to be shifted into QA,

while QH, the LSB of the data regi.sler, is filled with
a ZERO. SLO is functionally similar to the fi,'>02

instruction, ASL. From this point, we .sequence up
to State F in column 5 or f> depending on whether
QA was set or reset by the SLO. From State F. the

sequencer will loop back to State if QA is set,

toggling the WRITE signal, or it will loop back to

State 8. leaving the WRITE signal high, if QA is

reset.

Now let's step back and look at what's happening.

Writing to the disk is a load and shift process, a

little like HIRES pattern outputs but much slower.

Also, the MPU takes a very active role in the loading

andshiftingof disk write data. There are two 8-Htate

loops in the WRITE sequence. After initializing the

WRITE sequence, data is stored in the data register

at a critical point in the A7' loop. As (quickly thereaf-

ter as the 6502 can do it, the sequencer is configured

to shift left at the critical point instead of loading.

Then the MPU goes about its business while the

sequencer continues looping, shifting the data regis-

ter. If the sequencer senses QA high, flow vectors

to the opposite loop, toggling the WRITE signal.

Figure 9.14 is a flowchart of the WRITE sequence,

which may help you interpret the listing. The flow-

chart is reminiscent of the schematic of a flip-flop.

This is not surprising because the WRITE sequence

has functional similarities to a toggling flip-flop.

So, the sequencer outputs eight bits of data. What

then? Well, if the program controlling the MPU did

nothing more, after the eighth bit was shifted out,

the data register would be all zeroes and no more

field reversals would be written on the disk. This

constant field condition cannot be read by the drives

but results in sporadic read pulses. In other words,

the MPU needs to stay involved. Normally, the

MPU program will wait until the last bit has been

shifted to the disk, then switch SHIFT/LOAD to
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READ C08E.X

C08D,XLOAD

READ/WR>
SHIFT

RIGHT

CHECK
W. PROTECT

WRITE

SHIFT/\ LOAD(COeCI,X)

LOAD

SHIFT (C08C, X)

LOAD DATA
REGISTER

FROM
DATA BUS

RESET

"Y~
^y^

"Y"
WRITE SIGNAL LOW WRITE SIGNAL HIGH

Figure 9 .14 Rowchart ol the Write Sequence.
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LOAD with a STA instru ction at the precise moment
that the data register will accept it. This moment
occurs once every sequencer write loop, once every

eight sequencer clocks, or once every four MPU
cycles. It takes 32MPU cycles to output eight bits of

information, so to continuously shift out informa-

tion in 8-bit groups, the MPU must store data at

$C08D,X every 32 cycles, then immediately en-

able shifting; with a read access to $C08C ,X. This

example writes a byte to the disk then begins writ-

ing a second byte.

LDA 5C08D,X
LDA $C08E,X
BMI ERROR
LDA DATAl
STA $C08F,X
CMP $C08C,X
PHA
PLA
PHA
PLA
BIT $0

NOP
LDA DATA

2

STA ?Cy8D,X

LOAD
READ
WRITE PROTECT ERR

WRITE DATAl
SHIFT {4CP)
(3CP)
(4CP)
(3CP)
(4CP)
(3CP)
(2CP)
(4CP)
LOAD (5CP):
TOTAL = 32CP

CMP $C08C,X SHIFT
The above example illustrates the principle of

writingcontinuous bytes of data: initiate the WRITE
sequence, then store data every 32 cycles. This will

normally be accomplished in 82-cycle loops. After
storing the last byte to be written, wait 32 cycles,
switching READ/WRITE to READ on the"32nd
cycle. You don't have to write in 32-cycIe loops. You
can store 6-bit data words in 24-cycle loops if you can
figure out some purpose for it. You can store data in
any multiple of 4 cycles and the data register will
accept it. Read syncing leaders are written by stor-
ing SPF to the data register in 36-cycle loops (DOS
3,2) or 40-cycle loops (DOS 3.3 or DIIDD).* This
creates aseries of llllIlllO or 1111111100 strings
which, we will see, syncs up the sequencer for read-
ing following data,

Disk Data Formate
There is an inherent problem with stori ng data on

I'oppy disks. As their name suggests, floppies are
ess than rigid. This and other factors contribute to
me following fact of life: just because some Apple
n some literature, the read syncing leaders are referred to as a

«nesof autosync bytes or self-syne bytes.

wrote data to a disk at a 4-cycle bit interval doesn't
mean that read pulses are going to come back from
the disk at the same interval. In the first place, the
Apple has a built-in clockpulse jitter with every
65th MPU cycle longer than the rest. Thiselongates
some write intervals by 140 nanoseconds, and it

doesn't help. But normal problems with the floppy
medium and drive inconsistencies are more signifi-

cant in causing read pulse variations.

Realizing that the read pulse varies a lot, consider
how this variation affects trying to detect the
absence of a pulse. In reading the absence of a pulse,
the READ sequence must wait a certain amount of

time past the last actual pulse, then decide "there
was definitely no pulse there; that sure was a
ZERO." In the absence of a clockpulse coming off

the disk, the previous read pulse, or ONE, becomes
the time reference for the absence of a read pulse, or

a ZERO.
What if you have two ZEROs in a row'' Well the

last ONE bit is the time reference for the second and
ail succeedingZEROsinastring. Suppose the read-

ing drive rotates at 280 RPM but the disk was writ-

ten using a drive that rotated at 320 RPM. You
cannot read a long string of ZEROs under these

conditions, because while the write interval was
eight controller cycles, the read interval could be ten

cycles. Furthermore, in the absence of field rever-

sals on the disk beyond three or so write intervals,

the read interface chip in the drive begins to gen-

erate invalid read pulses, Y'ou simply cannot read a

long string of ZEROs, because your time reference

is unstable and your read interface can't do it

anyway.

How may ZEROs in a row can be read reliably?

Two, RWTS3.3and DIIDD never write more than

two ZEROs in a row, and RWTS 3.2 never \v rites

more than one ZERO in a row. Of course, normal

data bytes very often have more than two adjacent

zero bits. These normal data bytes cannot be stored

directly to the disk but must be translated to disk

compatible 8-bit words. It takes more than one

LOAD-SHIFT cycle to output a data byte, because

266 possible numbers can be represented in a nor-

mal byte, but not nearly as many can be represented

if you place restrictions on the number of adjacent

ZEROs.
' There is a second restriction on data which the

Apple stores to the disk. The MSB is always set.

The MSB is used by both the READ sequence and

6502 programs to define when a byte of read data is

in the data register. The MSB is therefore not data
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but the BYTE FLAG.* It serves as a data gap which

allows the READ sequencer to hold the previous

byte in the data register for a long enough time that

a 6502 program can detect the presence of a com-

plete byte in a 7-cycle polling loop:

POLLIT LDA $C08C,X
BPL POLLIT

The Apple Disk II was first released with DOS 3

and the associated controller. Then the DOS was

upgraded to 3.1, then 3.2, then 3.2.1 with no change

in written data format. This format will be referred

to here as the 3.2 format. The 3,2 data restrictions

are MSB set and no two adjacent bits reset. All

sector data are written using the following 32

values:

RWTS 3.2 WRITE TABLE
BC9A - AB AD AE AF B5 B6
BCA0 - B7 BA BB BD BE BF D6 D7
BCA8 - DA DB DD DE DF EA EB ED
BCB0 - EE EF F5 F6 F7 FA FB FD
BCB8 - FE FF

The values D5 and AA are also valid, and they are

used as the first two identifying values which pre-

cede every add ress field and data field. A 5-bit word
can contain 32 values, so the 3.2 writing process

involves taking a 256-byte data block and translat-

ing it into 410 5-bit words. The 410 5-bit words do
not directly index the write table to find the byte to

be written. Rather, the first word written directly

indexes the write table. The second index is an
exclusive-OR between the first and second words:

Each following index is an exclusive-OR between
the current and previous word. At the end, a 411th
word ia written. The last word of the coded buffer

di rectly indexes the write table for this word. When
this process is reversed in the read operation, each
byte has to be correctly read for the following bytes

to be read correetiy. The 41 1th word read serves as a
checksum and must be equal to the 410th decoded
word or the read will be deemed unsuccessful and
revert to a try again loop. This check sum procedure
is an effective method of verifying the validity of
disk data transfer.

Apple increased the disk data density in the DOS
3.3 upgrade by easing the restriction on adjacent
ZE ROs. The 3,2 controller can read this data, but it's

a struggle and the possibility of reading errors is

*Steve Wozniak originally devised the Apple disk formats. In a
speech given in Anaheim. California, on April 17, 1983, he said
that his idea for flagging groups of data by having every eighth
bit set came directly from the "stop bit" used in RS232 data
transmission.

great. Apple improved the read reliability by chan?
ing the sequencer ROM. They also made the ques^
tionable move of changing the Bootstrap ROM and
bootstrap procedure, the most notable result of
which is that a 3.

3
controller will not boota3.2 disk

This incompatibility is due solely to program based
conventions. The 3,3 controller is fully capable of
reading anything written on 3.2 disks.

The DOS 3.3 restrictions on written data areMSB
setj no more than one pair of adjacent ZEROs, and at
least one pair of adjacent ONEs in bits 6 through 0.

D5 and AA are still used only as field identifiers,

and they don't meet the pair of adjacent ONEs
requirements. This is notable because it helps dis-

tinguish D5 and AA from the other valid written

words. The restriction requiring a pair of adjacent

ONEs rules out 95, A5, A9, and CA. Besides D5and
AA, the DOS 3.3 written values are:

RWTS 3.3 WRITE TABLE
BA29 - 96 97 9A 9B 9D 9E 9F
BA30 - A6 A7 AB AC AD AE AF B2
BA38 - B3 B4 B5 B6 B7 B9 BA BB
BA40 - BC BD BE BF CB CD CE CF
BA48 - D3 D6 D7 D9 DA DB DC DD
BA50 - DE DP E5 E6 E7 E9 EA EB
BA58 - EC ED EE EF P2 F3 F4 F5
BA60 - F6 F7 F9 FA FB FC FD FE
BA68 - FF

There are 64 values in the write table, so you can

guess that six bits are written per LOAD-SHIFT
cycle, and a 256-byte block is written in 342 LOAD-
SHIFT cycles. With the size of the data field in a

sector thus reduced, Apple was able to increase the

number of sectors per track from 13 to 16.

The most recent development in the evolution of

Apple He disk I/O has been the release of ProDOS.

No changes were required in the sequencer ROM to

upgrade to ProDOS, and to a very great extent,

ProDOS data formats are identical to those of DOS
3.3.* The same write table is used to encode data

although the table format is different than that of

RWTS 3.3 (see $FAOO-$FAFF of DIIDD), and

address and data fields are identified with the same

series of bytes. Sectors on a ProDOS formatted disk

can be read and written by RWTS 3.3, and pairs of

sectors on a DOS 3,3 formatted disk can be read and

written by DIIDD. There are some minor differ-

ences between DOS 3.3 and ProDOS formats (see

•The equivalence of DOS 3,3 and ProDOS data formats extends

only to data encoded on the disk at the track/sector level. As has

been mentioned, file structure in the two operating systems is

completely different, as is the treatmentofdata as 2-sect»r blocks

by ProDOS.



The Disk Controller 9-27

Figure 9. 15), but they do not affect operation and do
not affect the following discussion. Therefore, only
two data formats will be referred to—the DOS 3 2
format and the DOS 3.3/ProDOS format.

An important point concerning Apple disk data
formats is that you can write any sort of bit stream
you desire, but you must write something that can
be read by the logic state sequencer. The sequencer
was designed to read a certain data format, and it's

all it can do to read this floppy data reliably. Copy
protect artists must study the READ sequence very
thoroughly to discover ways to write bit streams
which can be synced by the READ sequence with
some secret manipulation by a 6502 program.
We will see that the READ sequence will properly

read streams of data written from the 3.2, 3.3. and
ProDOS write tables in 32-cyele loops. It does take

an indefinite period of time for the sequencer to sync
up when it first encounters a random stream of data.

However, random data streams in the DOS formats
are always preceded by read syncing leaders which
force the READ sequence into sync very quickly.

These leaders consist of a series of 111111110 or

1111111100 data streams. They are written by stor-

ing $FF in the data register in 36-cycle loops

(UllUllO) or 40-cycle loops (lllllllIOO) before
flowingdirectly into the 32-cycle data writing loops.

Writing data at intervals greater than 32 cycles
results in trailing ZEROs (see WRITE sequence.
State 2;39-SL0). This causes the ZEROs behind the
eight ONEs in the read syncing leaders.

When a string of read pulses from a read syncmg
leader is applied to the sequencer, bytes of data
following the seventh FF36 or fourth FF40 will

always be in sync* RWTS 3.2 syncing leaders are
series of FF36s. RWTS 3.2 uses more than seven,
which works fine, but only seven are necessary.
RWTS 3.3 and DIIDD use FFs written in 40-cycie
loops as read syncing leaders. A stringof four FF40s
followed by valid data will ensure that following
data will be in sync. The useof FF40s allows RWTS
3.3 and DIIDD to sync in a shorter period of time,
slightly increasing the space available for data.
There are two different times when data is writ-

ten to a disk. One time is when RWTS, FILER, or
other utility formats the disk, writing sector infor-
mation for 16 (3,3/ProDOS) or 13 (3.2) sectors on 35
tracks. The other time is when the data field for a
sector on a track is written. Writing a data field
consists of positioning the head, then reading until
tnespecified sector address field is found. After the

^mSand PF40 refer to $FF bytes written using 36- or 40-cycle

desired address field has passed bv, the data field is
written from a 342-byte {410 if DOS 3 '>) buffer
The 3.2 and 3.3/ProDOS sector formats are shownm Figure 9.15. Other than the three extra .sectors

there are several basic differences. The address
field Identifiers are different, D5 AA B5 in 3.2 andD5 AA 96 in 3.3/ProDOS, causing bootstrap incom-
patibility between the two formats. The read sync-
ing leaders are different as was mentioned DOS 3 '^

overwrites each track with 9984 FF86s before writ-
ing the sectors, but DOS 3.3 and ProDOS don't. DOS
3^2 reserves space for data by writing 431 FF32s
after each address field while formatting. DOS 3 3
and ProDOS reserve space by actually writing a
data field, with unwritten gaps of about 50 MPU
cycles on either side. The gaps are too short to enable
accidental detection of a false data field identifica-
tion strmg .so they don't hurt anything. In either
DOh 3.2 or DOS 3.3 processing, the data space
behind an address field is overwritten with a leader
and data field when a "write sector" call to RWTS is
made. The .same is true of a "write block" call to
DIIDD, but thedata space behind two address fields
is overwritten.

An interesting point about DOS formats is the DE
AA EB series that follows every address field and
data field. Apple has always had trouble writing the
EB. In RWTS 3.2 they cut off the EB at the end of
the data field by neglecting to wait 32 cycles before
switching READ/WRITE to READ after storing
EB^ in the data register. They changed that in

RWTS 3.3, so the EB is actually written at the end of
the data field. However, RWTS 3.3 and the FILER
formatting routine both cut off the EB at the end of

the address field. Those cut-off EBs are not really

written, and no attempt to verify their presence is

made in RWTS or DIIDD processing.

The READ Sequence
There is an odd contrast in Apple Disk 11 I/O. The

6502 program works the tail off the MPU to write

data— initializing the WRITE sequence, then stor-

ing coded data in precise timing loops. Yet, the

WRITE sequence listing is really pretty simple.

Reading is just the opposite. The MPU program sits

back and lets the sequencer do all the work. The

program merely polls the data register, waiting for

the sequencer to lay a complete byte at its feet. The
READ sequence is not simple. Our discussion will

concentrate on the 3,3 sequencer, which is very

nearly the same as the 3,2 sequencer.

We start by assuming that the sequencer is con-

figured for reading ($C08E,X; ?;C()8C,X) and that a

valid data field is passing across the READ/WRITE
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DOS 3.2 FORHftTTED SECTOR

SYNCING LEADER
16-80 FFS

FF FF-
36 36

-»-FF FF
36 32

fiDDRESS FIELD

D5 AA B5 VOL VOL TRK TRK SCT SCT SUM SDM DE AA EB

32 32 32 32 32 32 32 32 32 32 32 32 32
32

DATA SPACE
431 FFS

FF FF-
32 32

->-FF
32

NEXT
SECTOR

KWTS
COMHAND-2
DATA

SYNCING LEADER
11 FFs

FF FF-
36 36

-fr-FF

36

DATA FIELD

D5 AA AD
32 32 32

410 WORDS
CODED 5/3

SUM
32

DE AA EB
32 32 14

DOS 3.3 / ProDOS FORMATTED SECTOR

LAST EB OF 3.2 DATA
FIELD NOT COMPLETELY
WRITTEN.

SYNCING LEADER
5-40 FFS

FF
40

FF-
40

'FF
40

ADDRESS FIELD

D5 AA
32 32

96
32

VOL VOL TRK TRK
32 32 32 32

SCT
32

SCT SUM SUM DE
32 32 32 32

AA
32

EB
16

GAP
50

DATA SPACE

NULL
DATA FIELD

GAP
S2

NEXT
SECTOR

H
LAST EB OF 3,3/PcoDOS ADDRESS
FIELD NOT COMPLETELY WRITTEN.

RWTS
COMHAND-2 —
DATA

/• -\

SYNCING LEADER
5 FFs

DATA FIELD

FF FF FF FF FF
40 40 40 40 36

D5 AA AD
32 32 32

342 WORDS SUM
CODED 6/8 32

DE AA EB FF
32 32 32 14

[H

NOTES: [T] Volume = $01 (SAA SAB in 4-4 code} on disks lormatted by FILER.

d] Pre-Data gap is 49 cycles in disks formatted by FILER

Post-Oata gap is 54 cycles in disks fortnalted by FILER.

H] RWTS 3 3 Command 4/Ccmmanil 2 data field misalignment is approximately 60 cycles.

FILER format/ DIIDD Command 2 data 1ield misalignment is approximately 16 cycles,

[H Final SFF is cut ofl at 14 cycles wtien data field is written by RWTS 3.3 Command 2 or 4 or by

FILER lormatting routine. It is cut off at 22 cycles wtten ttie data field is written by DIIOD Com-

mand 2

Figure 9.1 5 Diskette Formatting.

,.'*i-3''
,.ft**
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head with every eighth bit set. Further assume that

QA of the data register is not set, there is no read
pulse present, and the sequencer is at State 2. You've
gotto start somewhere, and we are starting at State

2 of column 2 in the READ sequence listing of Fig-
ure 9.11.

At this location in the sequencer there is a 38-

NOP. At State 3, there is a 48-NOP. At State 4, there

is a 58-NOP. We are sequencing through the states,

waiting for a read pulse. Assume a read pulse occurs

at State 6, switchi ng the sequencer to column 1 . The
read pulse will last for one sequencer clock because
it is synchronized to the clock by a pair of flip-flops

and a NAND gate. There is a D8-N0P at State 6 in

column 1. In fact ifyou look at column l.aread pulse

at any of the states would have resulted in a
D8-N0P.
When the read pulse goes away after the next

clock, the sequencer goes to State D in column 2, a
08-NOP. This means move down to State (18-NOP)
and then up to State l(2D-SLl).ThisSHIFT LEFT
ONE is a direct consequence of the read pulse. A
read pulse occurred, so a ONE was shifted in.

Assume the SLl does not cause QA to become set,

and don't get tired of assumptions. We now sequence
to State 2 in column 2, right where we started, mov-
ing down the line, waiting for a read pulse.

This time let's say no read pulse occurs before we
reach State 9. This is the point at which the se-

quencer decides it can't wait for a ONE any more—
thatwasaZERObit.State9isa29-SL0.AZEROis
shifted in. We'll say QA is still not set and we're back
to State 2, waiting for a read pulse. This cycle will

continue until QA becomes set after an SLO or SLl.
The sequencer is shifting in data based on the pres-

ence or absence of read pulses.

Now assume QA sets as the result of an SLO or
SLl. This breaks the loop, shifting flow to State 2 of

column four, a 28-NOP. We are at State 2; the next
state is State 2; we are going nowhere until a read
pulse occurs. This is the QA WAIT location, out-

lined in both the 3.3 and 3.2 listings. If the se-

quencer is in syne with the data stream, the fact
that QA is set means that a valid 8-bit word is

now in the data register just as it was when it was
stored there to be written. We will assume for now
that the sequencer is in sync with the data stream.
This means that the next read pulse will be the MSB
set pulse of the next word.
So we're sitting at QA WAIT waiting for the

BYTE FLAGof the nextS-bitgroup. The read pulse
occurs. Do we clear the data register and do an SLl?
No way, Jose. That's a valid byte sitting in the data
register. We're going to hold that information as

long as possible so that the 6502 program can figure
out it's good stuff. The read pulse shifts the sequencer
to State 2 of column 3 (08-NOP). Then the read pulse
goes away and we sequence to column 4, State
(18-NOP), then State 1 (38-NOP), then State 3 (48-

NOP), etc. We are sequencing now, waiting for the
read pulse that means the second MSB is a ONE or

the decision point that means the second MSB is a
ZERO.

We'll say a read pulse occurs at State 8. The
sequencer goes to column 3, State 8 (D8-N0P),
column 4, State D (E8-N0P), State E (F8-N0P),
State F (EO-CLR). The data register is finally

cleared. It was held from the last read pulse or

decision point of the previous word until past the

BYTE FLAG pulse and second MSB pulse of this

word. The sequencer then goes to column 2, State E
(FD-SLl), then to column 2, State F (4D-SL1). We
shift ONE twice, once for the BYTE FLAG and
once for the second MSB set, then flow to State 4 of

column 2 in the exact condition in which we started:

QA reset, sequencing along, waiting for a read

pulse.

Now we shift in six more bits of data which sets

QA and puts us at QA WAIT. You should notice that

QA is set precisely when a complete 8-bit word , lead

by the BYTE FLAG, is completely shifted in. We
made an assumption earlier that we were in syne,

but no further assumptions were required. Once we
are in sync with a continuous stream of MSB set

data, we stay in sync.

We are at QA WAIT, waitingfor the BYTE FLAG
pulse that starts the next word. Suppose somebody

had written the word we just read using a 3fi-cycle

loop instead of 32. There wou Id be a ZE RO following

the eight bits of data prior to the BYTE FLAG
pulse. You can't read ZEROs from QA WAIT.
There is no decision point here. The only thing the

sequencer will respond to is a read pulse, so the

ZERO passes right by and is not shifted to the data

register.

Assume the next BYTE FLAG pulse occurs, this

time followed by a ZERO. From QA WAIT the

sequencer takes the same path it did previously,

except no read pulse occurs. The decision point is

reached at column 4, State C (AO-CLR) followed by

column 2. State A (BD-SLl), State B (59-SLO). State

5 (68-NOP), etc. The sequencer cleared the data

register, shifted a ONE, shifted a ZERO, then con-

tinued processing of the next six bits.

The whole idea of the QA WAIT is this: the

sequencer always Itnows the next bit is a ONE so

it is not monitoring the next pulse as data; it is

monitoring the next pulse as the BYTE FLAG. It
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monitors the pulse that follows the BYTE FLAG as

data, and after monitoring this second pulse, it

clears the data register and shifts in a ONE,ZERO
or a ONE,ONE. In the process, the valid data word

is held in the data register for a long time with the

MSB set, a condition which a 6502 program can

easily detect.

How does the sequencer get in sync with a data

stream? The QA WAIT will cause the sequencer to

eventually sync on nearly any valid data stream it

encounters. This is because it ignores ZEROs while

sitting at QA WAIT. What the READ sequence

does is to give the MPU a look at the data stream
in groups of eight bits. Every such group has a

leading ONE. ZEROs between a group and the

next ONE are lost.

Suppose the sequencer encounters a stream of

data which was written in 32-cycle loops with the

MSB set on every 8-bit word. Being out of sync, the

sequencer groups the first data into eight bits lead

by a ONE in some random way. This is illustrated in

the first entry of Tkble 9.4, IXXXBXXX. The B
represents the BYTE FLAG pulse. It is a normal
read pulse, like that generated by any other ONE,
but it is represented by B here for illustration. When
the sequencer is in sync, the BYTE FLAG will be
the first ONE of every group.

At the first entry of Table 9.4, the BYTE FLAG is

i n the fifth bit position from the left. If the bit foUow-
ing this group is a ONE , that ONE becomes the first

bit of the next group, and the BYTE FLAG stays in

the fifth bit position. If, however, the bit following

this group is a ZERO, the ZERO is lost and the
BYTE FLAG moves closer to the MSB of the next
group. Eventually, several ZEROs will have been
encountered between groups, and the BYTE FLAG
will reach the MSB. From that point, the se-

quencer will stay in sync because the bit follow-
ing each group of eight will always be a ONE.

In data written by RWTS or DIIDD, the se.
quencer is never left to randomly sync on a data
stream. All data is preceded by read syncing leaders
which ensure that the sequencer is in sync when
following data is encountered. A string of seven or
more FFs written in 36-cycIe loops or four or more
FFs written in 40-cycle loops will ensure synchroni-
zation. These 9- and 10-bit write cycles cause syn-
chronization because they are longer than the 8-bit
groups. When encountered, these strings quickly
are aligned into groups of eight ONEs followed by
one or two ZEROs, Table 9.4 shows the worst case

conditions for syncing to strings of FF36s and
FF40s.

In the READsequenceexamples we went through,
many events could have occurred which were not

taken into account. It would not be practical or use-

ful to try to step through all possible events. Deeper
analysis shows that the read sequence is designed to

correctly interpret read pulses while tolerating an
expected variation in the pulse interval. Figure 9.16

is my attempt to put the basic flow of the 3.3 READ
sequence in perspective in a simple diagram. The
pertinent sequencer states are listed next to each

block to aid readers in correlating the flowchart to

the sequencer listing.

In this flowchart, it was assumed that the read

pulse interface circuits were successful in produc-

ing a read pulse which was actually one clock period

in width. In the READ sequence, there are provi-

sions to handle the rare event that a 2-clock read

pulse occurs. This is an extra ounce of reliability

which would clutter up the flowchart and obstruct

understanding ofnormal flow. I have monitored the

read pulse with an oscilloscope and have never seen

any read pulses that were not properly synchronized

to the sequencer clock.

Please direct your attention to the 8CP WAIT
decision block near the bottom of Figure 9.16. This

Table 94 Syncing the Read Sequence to Data

.

SYNCING TO A
RANDOM DATA STREAM SYNCING TO FF36S SYNCING TO FF408

IXXXBXXX 10Blilll 100B1111
1XXXBXXX0 110B1111 11100B11
IXXBXXXX 1110B111 1111100B
IXXBXXXX 11110B11 111111100
1XXBXXXX00 111110B1 B111111100
IBXXXXXX 1111110B B111111100
1BXXXXXX0 11111110
BXXXXXXX B11111110
BXXXXXXX B11111110

idLpiS
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QA'

SECOND READ PULSE 4-12 CLOCKS AFTER FIRST

3CPN0P
CLEAR

QA

QA'

SHIFT LEFT 1

SHIFT LEFT 1

/-^

SHIFT LEFT

BEAD PULSE

1CP
MOP

SHIFT LEFT
2CPN0P

SHIFT LEFT 1

RESET

QA?

SET

Figure 9.16 SimptWed Rowchart of the Read Sequence.
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represents the time when the sequencer is sequenc-

ing up column 2, waiting- for a read pulse. The 8CP

WAIT indicates that a ZERO will be shifted if a read

pulse hasn't occurred by the eleventh sequencer

clock after a read pulse, and following- ZEROs will

be shifted every eight clocks after the first ZERO.

Thewrite interval iseightclocks. of course, so there

is an allowable distortion of three clock pulses for

the first pulse position after a read pulse. This is the

main difference between the 3.2 sequence and the

3,3 sequence. After the first ZERO, following

ZEROs are shifted every 10 clocks in the 3.2 se-

quence. This represents a skew away from the write

interval while reading^ strings of ZEROs. It makes

no difference with the 3.2 data format, but it makes

reading less reliable with the 3.3/ProDOS format.

The skew in the 3.2 READ sequence is shown in

Figure 9.17. While the 3.3 sequencer always makes

a shift decision on the third clock period past an

expected pulse, the 3.2 sequencer starts making the

decision at the wrong point after the first ZERO.
There are never more than two ZEROs in a row in

3.3/ProDOS data, but the sequencer will handle

more than two if drive improvements make it a

possibility. Note that the 3,2 sequencer will read

3.3/ProDOS formatted data, especially if the read-

ing drive is slightly slow. The 3.3 sequencer reads

3.3/ProDOS data more reliably though,

If a read pulse occurs on the twelfth sequencer

clock after the previous read pulse, it is smack in the

middle of the two points where the sequencer

expects a pulse. Is this an early pulse caused by a

fast drive or a late pulse caused by a slow drive? The
sequencer treats this pulse as an early pulse when it

occurs, no doubt because it takes less room in the

sequencer ROM to do so. As a result, the sequencer

tolerates a fast reading drive or a slow writing
drive better than the opposite condition when read-

ing the data format it was designed to read.

For reference, I have tabulated the intervals

which the sequencer can tolerate for various types of

written data. Figure 9.18 shows this tabulation, and

you can see that it shows what would happen wit!

one data stream not used in any Apple DOS
(BlOOOl). This is sequencer performance, not driv(

and disk performance. The use of a string of thret

ZEROs is not recommended, although a copy pro
tect scheme might use such a string.

As an example of interpreting Figure 9.18, inter-

val A is the case of a BYTE FLAG pulse followed bj

a second MSB pulse. The expected interval between
these two pulses is eight sequencer clocks. The 3.S

sequencer will read the second pulse correctly if il

occu rs anywhere from 3 to 12 clocks after the BYTE
FLAG pulse. The 3.3 sequencer will read the second

pulse correctly if it occurs anywhere from 4 to 12

clocks after the BYTE FLAG pulse.

The amount of time a valid data word is held in the

data register depends on the second MSB of the next

word, normal pulse interval variations, and, in the

3,2 sequencer, the least significant bits of the word.

The only bad thing that can happen is that the data

will be valid for too short a period of time due to a

fast readingd rive, a slow writing drive, or both. The

average data valid period for some data streams is

tabulated in Table 9.5. Values are in sequencer

clocks, so the number of MPU cycles is half as many.

In the Ikble 9.5 DATA STREAM entries, "B"

represents the BYTE FLAG pulse which follows the

valid data. As always, variations in disk surface

speed at the read/write head are most likely to cause

errors in the presence of one or two consecutive

ZEROs,
The average data valid period must be at least 14

sequencer clocks if the MPU is to detect it in a

normal 6502 polling loop. Notice that the 3,2

sequencer would have trouble meeting this require-

ment on data which has two trailing ZEROs. This is

one more reason that a 3.2 sequencer would have an

easier time with 3.3/ProDOS formatted data if the

reading drive were a little slow.

The selection of D5 AA as the field identifier

in DOS 3.2, DOS 3.3, and ProDOS was no accident.

D5 and AA both consist of alternating strings of

READ
PULSE

1

JL

READ
PULSE

EXPECTED

READ
PULSE

EXPECTED

READ
PULSE

EXPECTED

READ

PULSE

EXPECTED

1o H-
IO o o

DOS 3.3 DECISION POINT-

DOS 3.2 DECISION POINT

.

Figure 9.1 7 Decision Points for Reading ZEROs.
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19

27

11

27

19
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35

ALL VALUES IN SEQUENCER CLOCK PERIODS

Figure 9.18 Read Performance of the Logic State Sequencer.

ONEs and ZEROs, afact which g-ives them a unique
identity in an environment f11 led with strings of F Fs
and other valid DOS data. Even when it is not in

sync, the sequencer should never accidentally pro-
duce the D5 AA combination from a valid data
stream. This is because the 11010101 10101010,
11010101010101010, and 110101010010101010 com-
binations do not exist in a valid data stream.
Obviously, ifD5AA should not be accidentally read,
then the D5 AA AD, D5 AA B5, and D5 AA 96
conibinations should not be accidentally read either.
Reliability is even greater because the AA AD com-
bination itself should not be accidentally produced
by DOS 3.2, DOS 3.3, or ProDOS data.

n
^A B5 combination should not be aceiden-

«ily produced by DOS 3.2 data, but it can be pro-
duced by an out-of-sync encounter with DOS 3.3 or
i'roDOSdata. Specifically, the strings EA 96AX or

EA 96 BX can be Krotiped as AA B.'S if the sequencer

is out of sync:

Xll. 101010100 .101 10101 -X

It is my speculation that this is the reason the

address identifier was changred to 05 A A 96 in DOS
3.3, causing the DOS 3.3 controller to be unable to

boot 3.2 disks. It is my further speculation that this

is why DOS 3.3data words all have at least one pair

of adjacent ONEs in bits throujfh 6. This elimi-

nates longer strings of ONEs alternating with

ZEROs which might tend to be interpreted as field

identifiers in an unstable read pulse environment.

In particular, the data EA A5 9X or EA A5 AX or

EA A5 BX could be grouped as AA 96 if the use of

A5 were allowed:

XI 1.101ClfeJ10. 10010110.x
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Table 9J5 Data Valid Periods in Sequencer Clocks.

DATA STREAM 3.2 AVERAGE VALID PERIOD 3.3 AVERAGE VALID PERI

XXIBI 18 16

X10B1 16 16
100B1 14 16
XX1B0 19 17
X10B0 17 17
100B0 15 17

The switch from B5 to 96 as an address field iden-

tifier in DOS 3.3 may have been required to main-

tain the normal level of reliability in Apple Disk II

I/O. I hope it was worth the cost of bootstrap incom-

patibility between DOS 3.2 and DOS 3.3. If so, my
apologies to Apple for sug:gesting they could have

done better to stick with D5 AA B5 as the address

field identifier.

The Read Sequence as a
Finite State Automaton
A reviewer of a rough draft of Undemtavdivg the

Apple II. engineer/programmer Jim Aalto, used the

Figure 9.11 listing of the DOS 3.3 read sequence to

construct his own illustrative tool for studying- the
read sequence. This tool is valuable enough that we
decided to include it in that book as well as this one
(see Figure 9.19). Jim depicts the read sequence as a

"finite state automaton." Like a flowchart, Figure
9.19 shows the logical paths the sequencer may take,

but the flow is in step with the sequencer clocks
pictured at the top. The average read pulse interval

is also pictured, so sequencer performance with
pulses arriving at various intervals is clearly illus-

trated. It is recommended that readers studying
this figure attempt to relate it to the read sequence
listingof Figure 9.11.

PROGRAMMING EXAMPLES
FROM RWrS

There are several levels at which you can program
disk I/O. The Apple disk operating systems are set

up with very versatile file handling capabilities
which can be utilized from BASIC as shown in the
Apple manuals, DOS Proqramwer's Manual for II,

II+. He and BA SIC Programming With ProDOS. If

one had a desire, he could also perform such direct
control functions as turning drives on and off, select-

ing drive 1 or 2, positioning the head, checking for
write protection, and checking to see if a drive is

turned on from BASIC via PEEK instructions. As

an example, the following Applesoft subroutine will

tell you if a disk in Slot 6, Drive 1 is write protected;

10 SLOTS = 49376 : REM $C0E0
20 DRIVEl = PEEK (SL0T6 + 10)
3B REED = PEEK (SL0T6 -I- 14)
40 DRIVESTART = PEEK (SL0T6 + 9)
50 LODE = PEEK (SL0T6 -I- 13)
6kJ WPROTECT = PEEK (SL0T6 + 8)
70 REM LINE 50 GETS DATA REGIS-

TER AND TURNS DRIVE OFF
80 IF WPROTECT > 127 THEN PRINT

"WRITE PROTECTED"
90 IF WPROTECT < 128 THEN PRINT

"NOT WRITE PROTECTED"
100 RETURN

Note that no DOS need be resident for this program

to work. It bypasses the DOS and goes straight to the

controller.

More sophisticated programs may make direct

use of DOS subroutines to perform special func-

tions. You do not have to be an expert on DOS 3.3 or

ProDOS to do this in your programs. DOS Pro-

grammer'f! Manual for II, II+, lie shows you how to

read a sector, write a sector, position the head to a

track, or format a disk by making calls to RWTS.
ProDOS Technical Reference Manual (for the Appk
IIfamily) shows you how to read and write ProDOS
data blocks by making direct calls to DIIDD. It is

also possible to make direct calls to the higher level

file handlers, the DOS 3.2/3.3 file managers and the

ProDOSMLI (Machi ne Language Interface). Infor-

mation concerning the calling of these handlers is

contained in the "beneath" books, Beneath Apple

DOSand Beneath AppleProDOShy Don Worth and

Pieter Lechner.*

*Beneatli Apple DOS, Quality Software, 1982; Beneath Appk
ProDOS, Qual ity Software, 1984. These books cover considerably

more subjects than those mentioned here and are recommended

reading for any student of Apple disk I/O. ProDOS Tichnwal

Reference Marmal also contains information on callinj: theMU
and other programming tasks related to ProDOS and is recom-

mended reading.

;fi0^
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On a different level, programs may bypass RWTS
and DIIDD or modify them, substituting different

routines to manipulate the controller and transfer

data to and from the disk in formats not utilized by

DOS 3.3 or ProDOS. To learn how to do this, you

should study this chapter to see how the controller

works, and you should study RWTS and DIIDD to

see how DOS formats are written and read. RWTS
and DIIDD are similar but different programs that

illustrate some of the very complex techniques of

reading- and writing disk data. The following dis-

cussion points out some examples from RWTS 3.3

which show how disk data transfer can be accom-

plished. Some of the different features ofDIIDD are

discussed in the section following the RWTS
descriptions,

RWTS is located at $B800--$BrFF of the DOS
(assuming 48K of RAM). Its entry point is $BDOO.
although it can be called by a "JSR$3D9" in order to

disable interrupts during RWTS processing and to

ensure compatibility with future versions of DOS.
Upon return from RWTS, 6502 status is interpreted

as an error flag (carry set indicates that an error

occcurred in RWTS). You are urged to make a list-

ing of RWTS using your printer, so you can refer to

it while reading this section. Make a listing of the

Bootstrap ROM at $CnOO-$CnFF while you're at

it. Reference to the RWTS general flowchart in

Figure 9.20 should also help you keep your bearings.

Drive Turn-On

Drive turn -on is easy. Always configure for read-
ing first (LDA $C08E,X), select the drive ($C08A,X/
$C08B.X), and turn it on ($C089,X). Wait about a
second after turn-on for the disk to get up to speed
and then ,vou can read and write. The RWTS turn-on
procedure, which begins at $BDOO, is a good deal
more sophisticated than this. It takes into account
all sorts of factors to get optimum performance in a
general purpose routine.

First, RWTS checks to see if the slot being
accessed is the same as the slot that was accessed last

time RWTS was called ($BD13). If not ($BD19), it

makes sure that a drive in the last slot accessed is not
still rotating before proceeding. Remember that it

takes one second for a drive to turn off after access to
$C088,X. RWTS will not turn on two drives at once,
presumably because of loading on the +12V power
line.

It is possible to check whether a drive at a slot is on
by configuring for reading data and monitoring the
data register. If a drive is turned on, the data regis-
ter will be changing and vice versa. This is the check
used by RWTS:

ORG ?BD22
LDA $C0aE,X READ

STILLON LDY #$08
LDA C08C,X SHIFT

NOTSURE CMP C08C,X
BNE STILLON
DEY
BNE NOTSURE

This routine loops until the drive at the previous slo

turns off. It will hang in this loop until RESET ii

pressed if a call is made to RWTS that specifies i

new slot and the last slot was never turned off

RWTS itself always finishes by turning off tht

accessed drive.

After processing the old slot, RWTS checks if th«

new slot has a rotating drive ($BD34), This will be

the case if the 1-second turn-off delay hasn't elapsed,

If the drive is already rotating, there is no need tc

wait for it to get up to speed. RWTS saves the rotat-

ing/not rotating status ($BD4E), then turns the

drive on ($BD4F). This prevents a still rotating

drive from turning off after its 1-second lease on life.

Next. RWTS checks to see if the specified drive is

the same as the last call to RWTS ($BD6A). If not

($BD6E), it then assumes that if a drive was rotat-

ing earlier, it was the wrong one. Therefore, it sets

the rotating/not rotating status to not rotating

($BD73). It also selects the drive via the $C08A,X/

$C08B,X switch ($BD74).

Now if the selected drive was not previously rotat-

ing, RWTS waits 150 to 176 milliseconds ($BD85)

then calls the head positioning routine. 150 millisec-

onds is not enough time that the drive is up to speed,

but RWTS saves time by positioning the head while

waiting for drive speed to stabilize. The 150-millisec-

ond delay accomplishes two things. First, it avoids

trying to position the head just after adrive has been

turned on, which is a period ofheavy current flow on

the +12 volt line. Second, if the opposite drive has

just been disabled, the 12 volts may not have yet bled

off from the disabled drive.* This might acciden-

tally cause positioning of the disabled drive if

RWTS tried to step the enabled drive too soon.

Before DOS 3.2.1, this delay before positioning

did not exist in RWTS. Apple added it in DOS 3.2.1,

presumably to improve performance, but they

botched it up. The way it is written in DOS 3.2.1, the

delay before head positioning is dependent primar-

ily on the random state of $46E6 when RWTS is

called and to a lesser extent on $46E6,X. The error is

in the JSR $BA7F which is stored at $BD7E. This

*I measured +12V bleed off time in my Disk II drive st two

milliseconds.

f'^iifei
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Figure 920 Flovrehart of the RWTS Subroutine.
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should be changed to JSR $BA7B to make the wait-

ing subroutine entry point correct. The error does

not exist in DOS 3.3 or ProDOS.

After the 150-millisecond delay in drives which

were not previously rotating and almost imme-

diately in previously rotating drives, the head is

positioned to the selected track ($BD94). During the

ISO-millisecond delay and during head positioning,

the motor-on time count is incremented at $46 and

$47. This 2-byte counter counts the amount of time a

drive has been rotating at the rate of one count per

100 microseconds. The preset count is part of the

Device Characteristics Tiblo used in a call to

RWTS. The DOS uses a value of $D8EF which is

equal to -$2711 or -lOOOl in decimal. This con-

verts to minus one second.

After head positioning, the motor count will have

partially counted up to $0000. If the drive was not

previously rotating, RWTS will go no further than

the count and wait loop at $BD9E until the motor

count reaches $0000. This will complete the turn-on

procedure, which takes one second plus small change

for a not previously rotating drive and whatever

time it takes to position the head for a previously

rotating drive.

Positioning the Head In RWTS

At bootstrap time, the Apple finds track by

banging the head assembly against the outer stop.

The programming sequence which does this is at

steps $Cn3B through $Cn50 of the 3.3 Bootstrap

ROM (the P5A ROM). This routine shows a very

economical wa.\' to step the head in terms of software

overhead. .Just wait 20 milliseconds for motor re-

sponse before turning off a stepper phase. The boot-

strap routine uses 80 on-off descending references to

$COE0—$COE7 (assumes Slot 6)todrive the head 38

or 40 tracks outward depending on initial phase

alignment. The timing is $C0E0, $C0E1, wait,

$C0E0. $C0E7, wait. $C0E6, $C0E5, wait, $C0E4,
$C0E3, wait $C0E4. $C0E3, wait, $C0E2,
$C0E1, wait. The wait period is 20 milliseconds.

Note that phase-0 is left energized on the stepper

motor after positioning. This is indicative of the fact

that even numbered tracks are phase-0 aligned and
odd numbered tracks are phase-2 aligned. It also

contradicts every theory I can think of as to why the

analog card was designed so that leaving phase.-l on
forces write protection.

The head does not have to be banged against the

stop to locate its position. The track number is writ-

ten as part of the address field in front of every
sector on a formatted disk. The head location can be
determined at any time by simply reading an

address field. Of course banging the head against
thestopisthebestway to absolutely determ ine head
position, and there is no room in the bootstrap ROM
for a routine that reads an address field and then
tiptoes out to track 0.

The RWTS positioning routine is far more sophis-

ticated, and there are two calls you can make. Both
calls are made with slot number times $10 in the

X-register. You can do a "JSR $B9A0" with the

destination track times two in the accumulator and
the current track times two at $478. This will simply

position the head using two phases per track. You
can also do a "JSR $BE5A" with the destination

track in the accumulator, a Device Characteristics

Table set up, and some RAM locations correctly set

up. This will edit the RAM locations and do a JSR
$B9A0. The RAM assignments are:

$3C, $3D —Device Characteristics Tkble

location.

$35 —MSB set if drivel. MSB reset

if drive 2.

$478 plus slot # — Drive 1 last accessed track

times 2.

$4F8 plus slot # — Drive 2 last accessed track

times 2.

The $B9A0 routine is the actual positioning rou-

tine for either type of call. It uses a technique of

programming duration periods of the stepper motor

controls to maximize acceleration in the first part of

head travel then to reduce head velocity near the

destination track to prevent overshoot and minimize

settling time. For this purpose, the routine utilizes a

wait after phase-on table at $BA11 and a wait

after phase-off table at $BA1D. These amount to

momentum tables for a typical head assembly. The

values in the table can be multiplied by .1 millisec-

onds to give the wait time.

As an example, the Slot 6 phase control for step-

ping from track $10 to track $11 is as follows:

$C0E3. wait $01. $COEO, wait $70, $C0E5, wait$30,

$C0E2, wait $2C, wait $100, $C0E4. This is phase-1

on. phase-0 off, phase-2 on, phase-1 off, phase-2 off.

The above wait periods in decimal add up to .1 + 11.2

+ 4.8 + 4.4 + 25.6 = 46,1 milliseconds which is the

single track response time of the Disk II operating

with RWTS, not including a millisecond or so of

general computing time. The final wait of 25.6 mil-

liseconds doesn't come from the wait tables but from

looping through the 100-microsecond wait routine

($BAGO) 256 times at the end of every head position-

ing sequence. This is the settling time of the Disk II

head positioning assembly.
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As mentioned previously, the 100-microsecond
waiting loop that is used to generate delay periods

also increments the motor-on counter. This is part of

the scheme by which the head is positioned while the

motor gets up to speed, killing two welfare bills with
one Republican.

Formatting the Disk (Command 4)

Once the head is positioned and the disk is up to

speed, RWTS looks at the command entry of the

JOB {I/O Block) to see what it is supposed to do
($BDAB). Command ($BDAF) causes an imme-
diate exit with drives off and no error indicated.

Command 4 ($BDB3) causes the disk to be format-

ted with 16 sectors written on every track. Other
than Commands and 4, even commands cause

writing of a sector's data field, and odd Commands
cause reading of a sector's data field, but only

Commands 2 and 1 are normally used. Command 2

and 1 processing is the part that gives RWTS its

name.

The FORMAT routine starts at $BEAF. It works
by starting at track ($BEBB). then formatting

each track one by one. It starts by guessing there

will be 40 FFs in the read syncing leaders which

precede every sector ($BEDO). It then writes the 16

sectors with 128 FF40s before sector ($BFOD) and
40 FF40s before the other sectors. Sectors are writ-

ten in order from to F, but they are effectively

interleaved because the sector specified in the lOB
is not actually the one that is read during a Com-
mand 1 or 2 call to RWTS. Rather, the specified
sector indexes tlie Sector Interleave l^ble at

$BFB8.
Writing a sector while formatting consists of writ-

ing the address field ($BF 17) which is preceded by a
read syncing leader, then writing a data field

($BF1C), which is also preceded by a read syncing
leader. The write coded data buffer contains all

ZEROs ($BEBB), which means the data in the data
field will be a string'of $96s.

After writing the last sector on a track, the MPU
waits for a number of cycles equal to about 200 plus

50 times the number of sync bytes (50-cyele loop at
$BP3A). This delay ensures that there will be a read
syncing leader preceding sector that is at least as
long as those preced ing the other sectors. An attem pt
IS then made to read the address field of sector 0. At
40 sync bytes, the sector address field will proba-
bly be long gone, in which case the size of the address
field syncing leader will be reduced by two ($BF52).
then the tail end of sector F will be found {$BF71).
and the sectors will be written again starting at the
same point on the disk as before ($BFOD). This cycle

continues until the sectors fit evenly on the disk. The
sync count is reduced by twos until it reaches 16,

then by ones until i t reaches 5. If 16 sectors do not fit

on the disk with a 5-byte leader, the disk speed is

probably adjusted way too high and a' formatting
error (error code $08) is signaled ($BF60).
When the sectors fit well on the track, all the

address fields ($BF62) and data fields ($BF67) are

read and validated. As each sector is validated

($BF6A), an FF is stored in the correct spot in the

Sector Initialization Map at $BFA8. Examining
this map may give you hints about the cause of for-

matting errors. When all the sectors are validated,

the track number is checked ($BF98). If it is track

and the sync count is greater than 15, then two is

subtracted from the sync count ($BFA2). Other-

wise, the sync count is left alone for the next track.

Since the optimum sync count is found while for-

matting track 0, the other tracks take much less

time to format.

After a track is completely formatted, flow re-

turns to $BEDC. Address fields are read ($BEEB)
until sector is found, then the sector data field is

read ($BEF4) and the head is stepped to the next

track (or RWTS is exited with the drive off if all

tracks have been formatted). Thedrive will acluall.v

turn off about one second after RWTS is exited.

Waiting until the sector data field has just past

before switching tracks means that, after reading

the data field of sector F' on a track, data can be

processed during the following sector period, then

the head can be stepped one track inward and a

sector address field will be ready to read. This

could be the basis for a very fast special purpose

loader that reads data from disk while increasing

sector number and stepping inward. It does not,

however, particularly minimize DOS 8.3 access

time because neither DOS ;?.3 file access (decrease

sector number while stepping inward or outward)

nor booting (decrease sector number while stepping

inward, then outward) takes advantage of it.

Reading and Writing Sectors

(Commands ^ and 2)

Reading and writing sectors are very similar

operations in RWTS. Both operations cause drive

selection and turn-on, head positioning, location of

pertinent sector, reading or writing of a data field.

and drive turn-off. Additionally, write data is coded

from 256 bytes to 342 6-bit words before locating the

specified sector, and read data is decoded from 342

6-bit words to 256 bytes after reading a data field.

If the RWTS command is not a or 4, read/write

processing begins at $BDB5. First, the command
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type is checked and saved ($BDB5). Ifadata field is

to be written, the 256 bytes of data specified by the

lOB (I/O Block) are coded into 342 6-bit words

($BDB9). After write data coding ($BDBC), read

and write processing take the same path. A retry

count is set to $30 indicating 48 attempts will be

made to read the correct address field. The address

field is read {|BDC4), then checked for correct track

($BDED). volume {$BE10), and sector ($BE26).

Unless volume is specified, finding the wrong

volume causes a return from RWTS with the drive

off and a VOLUME MISMATCH ERROR indica-

tion (error code $20). Finding an incorrect track

number causes up to four repositioning attempts

(count preset at $BD09), followed by a major track

recalculation ($BDCE), and up to four more reposi-

tioningattempts($BDDC)beforea DRIVE ERROR
is indicated. A major track recalculation consists of

banging the head against the track stop, then

repositioning to the specified track. Only one major

track recalculation is allowed because the number
of recalcu lation tries is set to one at the beginning of

RWTS ($BD04). A major track recalculation is also

performed if the correct sector cannot be located

after reading 48 address fields. Another 48attempts

are made after recalculation before a DRIVE
ERROR is indicated (error code $40).

Once the correct address field has been read, the

command is checked again ($BE32). Read opera-

tions consist of reading the data field ($BE35). de-

coding the buffer 342 to 256 ($BE40), turning the

motor off ($BE4D), and exiting. Write operations

consist of writing the coded data to the data field

($BE51), turning the motor off ($BE4D), and exit-

ing. It takes longer to begin writing than it does to

begin reading, so the reading will start just before

the read syncing leader is encountered if the data
field was written by a Command 2 on the same
drive.

Data fields written by Command 2 are not aligned

with those written during formatting. Writing of

the data field during formatting begins 50 cycles

after writing of the address field ends. Writing of

the data field during Command 2 begins 123 (1 18 if

volume = 0) cycles after the DE AA is detected at the
end of the address field. This is the equivalent point
in time at which the 16-cycle EB is stored while
writing the address field plus to 6 cycles for MPU
detection of AA. As a result. Command 2 begins
writing a data field about 60 cycles (123 + 3
- 16 - 50) aftej- the NULL data field is written
while formatting.

There are only 52 cycles between the end of thtNULL data field and the beginning of the syncing
leader of the next address field, so the data field
written by Command 2 will bump up against the
syncing leader of the following address field. It

seems likely that the first address field sync byte
will be overwritten by Command 2. Furthermore

if

the Command 2 drive is faster than the formatting
drive, destruction of the first part of the address
field read syncing leader is a certainty. This should
cause no problem unless the formatting drive was
very fast, causing very short address field leaders.

Command 1 should still be able to read the NULL
data field written by Command 4. Command 1 will

cause the MPU to start looking at the data register

while the data field syncing leader is still passing

the read/write head. The data field leader is 196

cycles long so the 60-cycle misalignment should not

cause the data field identifier to be missed.

The misalignment between the Command 2 and
Command 4 data fields is caused by the long pro-

cessing time used in verifying volume, track, and

sector numbers during Commands 2 and 1. If they

were concerned, Apple could easily and substan-

tially reduce the misalignment by fetching volume

and sector from the lOB and Sector Interleave Table

before reading the address field instead of after.*

The error detection circuitry in RWTS is very

sophisticated, allowing as it does for the possible

problems that might occur in data transfer. Not so

sophisticated is the error indication found in the

lOB after a return from RWTS. There are three

types of error codes: VOLUME MISMATCH (J20),

error during Command 2 or 1 ($40), and error dur-

ing Command 4 ($08). With a little extra program-

ming RWTS could give such indications as AD-
DRESS FIELD CHECKSUM ERROR, DATA
FIELD CHECKSUM ERROR, CAN'T FIND AD-
DRESS FIELD IDENTIFIER, CAN'T FIND
DATA FIELD INDENTIFIER. CAN'T FIND
END OF ADDRESS FIELD, CAN'T FIND END
OF DATA FIELD, CAN'T FIND TRACK, CANT
FIND SECTOR, SYNC COUNT < 5, and so on. As

it is, such DOS indications as DRIVE ERROR or

I/O ERROR mean only that something went wrong

in RWTS.

*In effect, Apple does this in DIIDD. The sector lookup is per-

formed in the course of getting sector numbers from the block

number, and there is no volume check in ProDOS. As a result, the

misalignment between formatted data fields and data fields

written by DIIDD is reduced from about 60 cycles in DOS 3.3 to

about 16 cycles in ProDOS (78 + 3 - 16 - 49).

S^
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Write Routines

There are several routines related to writing in
RWTS. One is the WRITE ADDRESS FIELD
routine at $BC56. This routine writes the syncing
leader and address field shown in Figure 9. 15, and it

is only called when a disk is being formatted. The
input parameters are:

Y Reg—Number of FFs in syncing leader
$41— Volume
$44—TY-ack

$3F— Sector

$3E— Contains the value $AA

The routine first checks for write protection

{$BC57), then stores the first FF in the data register

($BC61), then continues to write FFs in a 40-cycle

loop ($BC69—$BC77). The number of FFs is ad-

justed by the format routine so the 16 sectors fit on
each track without a large gap between sector and
sector 15. The minimum number of FFs in the
leader will be 5.

After the sync writing loop is exited, the series D5
AA 96 is stored directly to the data register at 32-

cycle intervals. This is the address field identifier—

the values D5 and AA are not used in the storing of

data. The D5 is placed in the data register 32 cycles

after the last FF of the syncing leader, so there are
no ZEROs following the last FF and it serves no
read syncing purpose.

The volume ($BC88), track ($BC8D), and sector
($BC92) numbers are written next, followed by a
checksum which is the exclusive-OR of the volume.
track, and sector numbers. These four values cannot
be stored directly to the disk, but RWTS writes
them in a pair of 32-cycle loops following a simple
coding scheme. First, the value to be stored is

shifted left and ORed with AA. After storing this
result to the disk in a 32-cycle loop, the unshifted
value is ORed with AA and stored to the disk. The
result is that four of the bits are encoded in each
storage cycle, and only valid data words are stored.
There are 16 possible storage words in this 4-4
encoded storage format: AA, AB, AE, AF, BA.
BB, BE, BF, EA, EB, EE, EF, FA, FB, FE. and
FF. The use of AA here slightly degrades the integ-
rity of the D5 AA field identifier, but the system
works anyway.

The 4-4 CODE AND WRITE routine begins at
$BCC4. This coding method offers less density than
the 6-8 coding method, but it could be the basis for a
low overhead read/write subroutine which would

transfer 2500-byte blocks of data directly between
RAM and a track on the disk. Such a low overhead
subroutine would serve the purposes ofmany Apple
users.

After the checksum is written, the WRITE AD-
DRESS routine finishes up by writing the values
DE and AA, then part of an EB. The EB is trun-
cated to a 1110 since the controller's READ/WRITE
switch is switched to READ ($BCBD) on the 16th
MPU clock after the EB is stored in the data regis-

ter. Switching to READ here results in a 50-cycle

gap between the address field and data field. The
50-cycle gap causes no harm, because it is not long
enough to randomly produce a Sword data field

identifier (D5 AA 96 or D5 AA AD).
Another write related routine is a routine which

codes a 256-byte data block into 342 6-bit words.
This PRENIBBLIZE routine beginsat$B800. The
address of the 256-byte data block must be stored at

$3E and $3F and the 6-bit words will be stored in a
pair of coded buffers in the OOXXXXXX format.

The six MSBs of the 256 data bytes are stored in a

256-word buffer beginning at $BBO0, and the 2

LSBs of the 256 data bytes are grouped together in

an 86-word buffer beginning at $BCOO. The 256-

word and 86-word buffers are the source file for the

write data field routine at $B82A.
The WRITE DATA FIELD routine is called in

formatting a disk (RWTS Command 4) and in writ-

ing data to a sector (RWTS Command 2). In format-

ting, the 256-word and 86-word coded data buffers

contain all ZEROs, so a NULL data field is written

50 cycles after the end of an address field. In a

Command 2 write, data is coded using the PRE-
NIBBLIZE routine first, then the desired address

field is read, then the data is written with the

WRITE DATA FIELD routine using the coded data

buffers as a source file. This "real" data field is not

centered on the NULL data field but lags it by

approximately 60 cycles.

The WRITE DATA FIELD routine checks for

write protection ($B830), writes four FF40s fol-

lowed by an FF36 ($B83D), then stores the data field

identifier, D5 AA AD, directly to the data register

at 32-eycle intervals. Then the coded data buffers

arewritten in 32-cycle loops, usingthe exclusive-OR

of the current 6-bit word and the previous 6-bit word

to index the Write Table at $BA29 to obtain the

value to be written. This odd storage method is re-

versed in the read operation, and it creates a check-

sum by which the validity of data transfer is

checked. The 86-word buffer is read first for output
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from the top down ($B862). then the 256-word

buffer is read from the bottom up ($BA7B). After-

wards, the DE AA EB trailer is written with the EB
completed. This Is opposed to the incomplete EB at

the end of the 3.3/ProDOS address field and the 3.2

data field.

Read Routines

The READ ADDRESS FIELD routine is at

$B944. This routine is used to locate any address

field, fetch the volume, track, and sector, and to

check validity of the read. It is performed in format-

ting to verify correct sector distribution and con-

tent, and it is used in reading or writing the data

field of a sector to locate the correct sector.

The routine starts by looking for any D5 AA 96

sequence. This should occur within roughly 385

valid data register words from any pointon the disk.

If it doesn't occur within 772 valid data words

($10000 minus $FCFC), the routine is exited ($B94D)

with the carry status set, indicating an error condi-

tion. After finding D5 AA 96, the four parameters

are read in a 4-4 read loop while accumulating the

checksum ($B96D). Volume, Track, Sector, and
Checksum are stored at $2C, $2B, $2A, and $29
respectively. Next, the presence of the trailing DE
AA is verified. Checksum failure or absence of DE
AA causes the carry to be set, indicating an error

condition. The calling routine will not process the

data if the error flag is set or the volume, track and
sector are not those desired. RWTS calling routines

will attempt to find the correct sector 48 times, bang
the head against the stop, then reposition, then try to

find the correct sector 48 more times before giving

up and deciding there is an error. Reading an incor-

rect volume, however, causes the immediate return
with aVOLUME MISMATCH error unless volume
was specified in the lOB.

The sector which is read is not taken directly from
the lOB. Rather, the lOB value is used to index the
Sector Interleave Tkble at $BFB8 which contains 0,

D, B, 9, 7, 5, 3, 1, E, C. A, 8, 6. 4, 2, F. As an example,
if the lOB specifies sector 1, the sector which will be
sought will be sector D. This leads to the following
effective order of sectors on each track; 0, 7, E, 6, D,
5. C, 4, B, 3, A, 2,9,1, 8, F. Presumably it is chosen to
minimize access time to sequential sectors in the
DOS environment.

The READ DATA FIELD routine is at $B8DC.
This is called when the sector writing is verified
while formatting or when a Read Sector (Command
1) call is made to RWTS. Reading begins after the
desired sector is located via the READ ADDRESS
FIELD routine.

Since the READ DATA FIELD routine is always
called after the address field has been read and
verified, the data field should pass under the read/
write head very soon. If more than 32 valid words
are read ($B8DC) and D5 AA AD isn't found, the
routine is exited with carry set to indicate an error
Oddly, finding D5 AA XX other than D5 AA AD
gives the routine 86 extra chances to find D5 AA
AD.

After finding the identifier, the data field is read
into the 86-word buffer, top byte first ($B8FF)and
into the 256-word buffer, bottom byte first ($B913),

Each valid word read from the data register is used
to index the Read Tkble which begins at $BA96.
This table is the inverse of the Write Tahh. Each
table value is exclusively ORed with the "running
total" to get the value stored in the big and little

buffers. This is the inversion of the writing process

and the running total is checked for correctness at

$B92A. A nonmatching checksum or absence of a
trailing DE AA causes return with carry set, indi-

cating a read error.

The formatting routine calls the READ DATA
FIELD routine just to check the carry status and to

verify its own handiwork. When reading the data

field in a Command 1 call to RWTS, the data must be
decoded from the 6-bit words in the big and little

buffers into the 256-byte RAM buffer thatwas spec-

ified by the lOB. A POSTNIBBLIZE routine

which performs this is located at $B8C2.

DIFFERENCES BETWEEN RWTS
AND DIIDD

DIIDD performs the same sortof tasks in ProDOS
that RWTS performs in DOS 3.3 and DOS 3.2. As

you mightexpect, closestudy of these two programs

reveals that DIIDD is a modified version of RWTS
3.3. There are, however, some basic differences in

overall concept between DIIDD and RWTS as well

as differences in the implementation ofthe read and

write sector functions which make DIIDD read/

write processing faster than RWTS read/write

processing.

The difference in overall concept is in the types of

calls that can be made to RWTS and DIIDD. RWTS
supports head positioning (Command 0), sector

reading (Command 1), sector writing (Command 2),

and formatting (Command 4). DIIDD supports

checking for write protection (Command 0), block

reading (Command 1), and block writing (Com-

mand 2). Formatting must be performed via a

separate utility (normally FILER) in ProDOS, and
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reading or writing of single sectors is not normally
performed.

There are some minor differences between the
RWTS Command 4 routines and the FILER format
routines ($7900"$7D37).* Most importantly, the
tolerance on the size of the read syncing leader is

tighter in the FILER routines ($10 to $1A as speci-

fied in memory locations $7D1F and $7D20 of

FILER). This means that drive speed must be very
close to 300 rpm if FILER is to format disks. An
associated bonus is that the FILER formatting rou-

tine returns a fast (error code $34) or slow (error

code $33) indication if a drive is off speed.

Calling DIIDD from a machine language pro-

gram is considerably simpler than calling RWTS.
The unwieldy, relocatable I/O block and device

characteristics table of RWTS are replaced by a

simple set of device driver input parameters at

memory locations $42— $47:

LOCATION DESCRIPTION OPTIONS
$42 Command code $00 = STATUS

$01 = READ
$02 = WRITE

$43 Unit Number DSSSOOOO
D= Drive number (0 = drive 1,

1 = drive 2); SSS = Slot number
(0to7)

S44-45 I/O Buffer CanbeS000Oto$FFFF
$46-47 Block Number Must be $00 to $117

Except for these basic parameters, none of the fea-

tures which are specified in a RWTS lOB and DCT
can be specified for DIIDD. This isn't much of a

disadvantage, though, because few persons require
changes to standard DIIDD characteristics and
those that do can always modify DIIDD code for

their purposes.

Sectors vs. Blocks

The general RWTS scheme of coincident flow for

reading and writing sectors is intact in DIIDD.
Read and write flow is the same (except for write
prenibblization) up to the time the specified track/
sector address field is located. Different is the fact
that a Command 1 call to DIIDD results in the
reading of two sectors to a 512-byte memory
buffer. Similarly, a Command 2 call results in the
writing of two sectors fronn a 512-byte memory
buffer. This is accomplished by code at the front
end of DIIDD {$F800—F835) that converts the

'Program references in this section are to FILER and DIIDD
isfangs from the ProDOS version 1.0.1 master diskette, Jan. 1,

1S84. These addresses may cliange in future versionsofProDOS.
Subtract $100 from FILER addresses given here for ProDOS
versions predating version 1.0.1.

input block number to a track and sector number.
The data field of that sector is then read to or written
from the first half of the specified 512-byte buffer
($F823), and then the data field of that sector plus
two is read to or written from the second half of the

specified buffer ($F829).

Conversion of the block number to track and sec-

tor numbers consists of converting the 2-byte block
word

0,0,0,0,0,0,0,T5 T4,T3,T2,T1,T0.S2,S1.S0

to the track and sector words

0,0,T5,T4,T3.T2,T1,TO 0.0,0,0,81, S0,0.S2.

For example, the block words, 00000000 01101101,
convert to track 00001101 ($D), sector 00000101

($5), and a block $06D call to DIIDD will result in

reading or writing the data block of track $D, sec-

tors $5 and $7.

The nature of the sector transformation described

above is such that it optimizes the access to blocks in

the ProDOS environment. More spocificaliy, the

two sectors accessed by a call to DIIDD arc so[)a-

rated by a single sector, and sc(]uential blocks are

separated by a single sector (except for sector $C/$K
blocks which are separated from the following

blocks by two sectors). Therefore, ProDOS has one

sector period (minus pronibbliv.ation time if writ-

ing) in which to process between calls to DIIDD if

sequential blocks are to be accesssed without wait-

ing for an entire disk revolution. This is also true

when the sequential blocks are on two different

tracks since track-to-track sector synchronization

during formatting places one sector period (.sector 0)

plus a single track positioning period l^etween sec-

tor $F on one track and sector $0on the next higher

track.

After the track and sector are derived from the

block number, the next steps are drive turn-on and

head positioning. In this area, DIIDD is very

nearly the same as RWTS except for one big opera-

tional change. The change is that DIIDD only waits

about .6 seconds for drive speed stabilization com-

pared to the 1 second waiting period of RWTS. This

delay is determined by the fourth byte of the device

characteristics table of RWTS ($D8 as specified by

Apple literature) or by the load immediate instruc-

tion at $F84F of DIIDD (LDA #$F8). Roughly, the

$D8 and $E8 values lead to ($100 - $D8) x .025= 1

second delay plus change for RWTS and ($100 -

$E8) X .025 = .6 second delay plus change for DIIDD.

I hopefully assume that, while developing Pro-

DOS, Apple decided theold Shugart 1-second speci-

fication—hey Rockeeeey, watch me pull a rabbit out
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of my hat—was too conservative. I more hopefully

assume that Apple tested a variety of disk drives,

and settled on .6 seconds as a safe nnotor-on to

read/write delay period. Of course, a typist might

have just entered $E8 instead of $D8 by mistake,

and thereby established a new Apple disk I/O speci-

fication. In any case, it will work for DOS 3.3 if it

works for ProDOS, and you can speed up DOS 3,3

access by uainj? $E8 instead of $D8 in the device

characteristics table.

The head positioning routines of DIIDD are very

close to those of RWTS, right up to the same values

in the wait after stepper phase on and off tables. A
very subtle difference is that the same Accumulator

X .1 milli.'^econdtiminjj routine is usedforproducing

stepping- delays ($FB85), but that non-zero page

memorv locations are used for timing. The INC
$FH(!F and INC $FB70 instructions of the DIIDD
subroutine take one cycle longer than the INC $46

and INC ?47 in.'^tructions of the equivalent RWTS
subroutine, resulting in a 102-cycle timing loop in

DIIDD compared to the lOl-cycle loop in RWTS.
The net result is that head positioning with DIIDD
takes about ]% longer than head positioning with

RWTS. The slow head positioning does not notice-

able decrease ProDOS disk access speed, but it does

reduce allowable processing time between access to

a sector ^l/SP' block on one track and a sector $0/$E

lilock on the next higher track.

As noted before. DIIDD read/write processing

is very similar to RWTS read/write processing.

Notable differences are that after address field

reading there is no volume check, the sector check is

sim[>lified ($F8D7), and reading an incorrect track

number residts in an attempt to step to the desired

track from the located track ($F8C8). Also, after

reading a data field, there is no call to a "postnibbli-

zation" subroutine.

The simplified sector check and absence of a

volume check after address field reading result in

reduction of the delay between Command 2 address

field reading and data field writing from about 123

cycles in RWTS to about 78 cycles in DIIDD. This, in

turn, reduces the misalignment between data fields

written during formatting and data fields written

via Command 2 from about 60 cycles in RWTS to

about 16 cycles in DIIDD. Since there is a 54-cycIe

gap trai I ing the data field and the speed tolerance of

ProDOS is so tight, the DIIDD Command 2 data
field should not partially overwrite the read syncing
leader of the following address field.

Nibblization Improvements

ProDOS disk I/O is much faster than DOS 3.3disk
I/O. Part of the reason for this overall speed im-
provement is a reduction of data processing time in

Command 1 and 2 calls to DIIDD.* The main
improvement is in read processing where data that
is read is not stored directly to 256- and 86-word
buffers for later "postnibblizing" as it is in RWTS.
Instead, data is postnibblized "on the fly." That is,

the 6-2 coded data is decoded immediately after it is

read and is then stored directly in the 256-byte

memory area indicated by the DIIDD input param-
eters. Reading data on the fly cuts DIIDD read pro-

cessing time approximately in half (once the drive is

u p to speed ). Add itional ly , w rite prenibbi izing takes

less time with DIIDD than RWTS, so there is some
speedup in the write process as well.

RWTS read/write processing utilizes separate

256- and 86-byte buffers for intermediate storage of

343 OOXXXXXX words before writing or after

reading. DIIDD, on the other hand uses only an

86-byte auxiliary buffer in addition to the256-byte

memory area that is specified as the read destina-

tion or write source. In PRENIBBLIZE ($FDFO),

the lower two bits of every word are packed into the

auxiliary buffer in the XXXXXXOO format. The

auxiliary buffer and the unmodified 256-byte mem-
ory buffer then become the source for the WRITE
DATA FIELD ROUTINE. During writing, the

data from the 256-byte buffer is converted to the

XXXXXXOO format via "AND #$FC" instructions

($FD56, $FD84, $FD9B).

Apple's purpose in eliminating the 256-byte inter-

mediate buffer in DIIDD was not to save space. It

was, rather, to save the time it takes, in prenibbliza-

tion, to strip off the two LSBs and store the 256

XXXXXXOO words in the intermediate buffer.

Packing the two LSBs of 256 bytes into 86

XXXXXXOO words in the auxiliary buffer still

takes a lot of time, but the code that does this

($FDFO—$FE43) is optimized for speed so PRE-

NIBBLIZE execution time is minimized.

A lot of complicated code was devised just to speed

up prenibblization, but this goal was nicely achieved

*The ProDOS speed improvement also stems from the fact that

one call to DIIDD results in two sector accesses, from sector

interleaving designed to take advantage of DIIDD improve-

ments, and from streamlined MLI file handling including a

"direct read" mode that transfers file read data directly from a

disk to its memory destination without first transferring it to a

ProDOS file buffer.
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since DIIDD prenibblization takes only about 6,450

eyetes as opposed to about 10,950 cycles in RWTS.
The savings of 4,500 cycles represents more than one

third of a sector (one sector passes the drive head in-

about 12,750 cycles). To put it another way, with

every other sector interleaving, ProDOS can use

about 5800 cycles (12750 - 6450 - 500 cycles for

slow DIIDD head positioning) of processing time

between Command 2 calls to DIIDD. If DIIDD pre-

nibblization took 10,950 cycles, ProDOS would be

able to use only about 1300 cycles between Com-

mand 2 DIIDD calls.

Apple was able to achieve an even better perfor-

mance improvement in Command 1 DIIDD process-

ing. Whereas postnibblization in RWTS takes

about 10,250 cycles and occurs entirely after the

data has been read from disk, postnibblization in

DIIDD is performed on the fly {while the data is

being read) and adds no processing time to Com-

mand 1 DIIDD calls. In other words, ProDOS can

process data for up to 12,750 cycles between Com-

mand 1 DIIDD calls, and still pick up the next block

without waiting for a complete disk revolution.

The READ DATA FIELD subroutine, which is

called after the address field for a specified sector

has been read, begins at $FBFD. At entry to thi.s

subroutine, the read syncing leader preceding the

datafield willbe passing the drive head, so there is

some time for processing before the $D5 $AA $AD
datafield identifier is expected. This time is utilized

to modify some instruction operands in the subrou-

tine so disk data can be read via "LDX $C0nC"
instead of "LDA $C08C,X" as is required by the

reading scheme, and so the bottom third ($FC6F),

middle third ($FC96), and top third ($FCAE) of the

256-byte buffer can be accessed via "STA $nnnn, Y",
thus saving a cycle over the "STA (ZP),Y" alter-

native.

After the pre-read processing, the data field iden-

tifier is read ($FC31), a running checksum is initial-

ized {$FC55), and 86 disk words are read ($FC59),
decoded to XXXXXXOO format ($FC5E), and stored
in the auxiliary buffer ($FC61).

Next, the bottom third ($FC69—$FC83). middle
third ($FC84-$FC9A), and top third {$FC9C-
*PCB7) of the 256-byte buffer are read from disk
and decoded to XXXXXXOO format, then ORed
with OOOOOOXX data which is postnibblized on the

flyfromtheauxiliary buffer XXXXXXOOdata. The

combined XXXXXXXX data which is stored to the
256-byte buffer is true 8-bit data, just as it resided in
a 256-byte buffer before it was stored on disk by a
Command 2 call to DIIDD.

Because of the extra processing that takes place
between readingofdisk data words, DIIDD reading
loops take longer than RWTS reading loops. As
opposed to the 26-cycle reading loops of RWTS, the
reading loops of DIIDD take 26 (auxiliary buffer),

29 (bottom, middle thirds), or 28 (top third) cycles.

This means that DIIDD will not tolerate as fast a
reading drive {or slow a writing drive) as RWTS
will, and it indicates why the FILER formatting
routine has such tight specifications on the length of

the address field read syncing leader and, conse-

quently, on drive speed.

There is a particularly tight spot between reading

the bottom third and middle third of the 256-byte

buffer where there are 30 cycles between data regis-

ter polling {$FC75—$FC88). I believe that this sin-

gle instruction sequence determines the drive speed

variation which DIIDD will tolerate since it is the

weak link in the chain. Given that data is written in

32-cycle loops and that the disk data word should be

held valid in the data register for one cycle more

than a 7-cycle polling loop (see Tkble 9.5). the 30-

cycle period between reads means that there can be

no more than 3 parts in 32 variation in speed

between the reading and writing drives. In other

words, drive speed variation plus speed variation

due to disk flutter must be less than plus or minus

4.7% or occasional reading errors will occur at the

bottom/middle border in a data field.

I believe that Apple could make this speed toler-

ence less critical with some minor modifications to

DIIDD. The modification would center around mov-

ing the auxiliary buffer from $FB00-$FB55 to

$FBAA—$FBFF. This would change the instruc-

tion at SFC7A from "LDX .fFA56,Y" to "LDX

$FB00,Y"and, because the Y-indexing would not be

across a page boundary, reduce the 30-cycie delay to

29 cycles. The change would require the retuningof

the writing loop at $FD3A—$FD4E. but this could

easily be accomplished by getting slot number via

absolute addressing at $FD44. Additionally, all

code from $FBFD on would have to be moved back

three memory locations. No problem, right? I hope

not. The person who wrote this code was so good that

it scares me to second guess him in print. Nonethe-

less, maybe he missed just one little trick.
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HARDWARE APPLICATION

INSTALLING A WRITE PROTECT SWITCH ON THE DISK II DRIVE

Did you ever want to store information on a write

protected diskette? This involves removing the write

protect tab or cutting a write protect notch, writing

the file, then sticking on a new write protect tab.

Here's another one. Did you ever delete a file, then

immediately regret it? If you haven't run into one of

these situations, then I'll only say that your ball sure

bounces more nicely than mine does. This applica-

tion note details a simple modification to the Disk II

drive which enables you to write on write protected

disks and al.so gives you time to have second thoughts

about writing files to or deleting files from a disk.

The modification involves installing a single

switch on the front of the Disk II drive. The 3-

position switch allows selection between normal

operation, forced write protection, or bypass of

write protection. Ifyounormally leave the switch in

the protect position, you will always have to take an

extra step to write, delete or rename a file. This is a

fairly normal feature of expensive storage periph-

erals associated with mainframe computers. Nor-

mally, taking the extra step required to overwrite

data makes the operator think twice about possible

destruction of important data.

The bypass position of the switch allows you to

write on a protected disk. This might be of use in

writing on disks you have protected for your own

reasons, writing on special diskettes that have no
notch

,
and writing on the backs of s ingle sided disks

if you do that sort of thing. If you happen to be a
software publisher, this mod is a must.

The ideaof the write protect switch is notmy own.
It was pointed out to me that the modification had
been suggested in magazine articles. Once it is real-

ized that such a modification is possible, the design

of the modification is fairly obvious.

Figure 9.21 shows the modification. What is

involved is installation of the new switch and rewir-

ing of the already present switch which is activated

by the write protect notch. The type of switch

required is a ON-OFF-ON SPOT (Single Pole,

Double Throw) switch. The installation procedure

given here involves installing it on the front of the

drive, but you may prefer to put the switch on a

remote box. When buying the switch, select one that

switches very easily so a minimum of stress is placed

on the plastic front panel of the drive. Since the

notch activated switch is mounted below the disk

slot, the new switch should also be mounted below

the slot so wires will not interfere with disk inser-

tion. Choose a mounting point near a reinforcing

structure on the back of the front panel to give added

strength to your installation. All wiring should be

soldered, and 24-gauge insulated wire works nicely.
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The purpose of steps 5,7. and II is to improve acces-
sibility, and you may elect not to perform them if you
are good at working in tig-ht spaces.

Instaitation Procedure;*

1. Turn off the computer and remove the con-
troller from its slot. Mark pin 1 of the 20-pin
ribbon cable connector and plug; with fingernail
polish so you will not reinstall the cable incor-
rectly. Disconnect the ribbon cable from the
controller and move the drive to a convenient
work area.

2. Remove the four screws from the bottom of the
drive. Remove the white case by holding the
drive on your palm and sliding the case to the
rear.

3. The notch activated switch can be seen toward
the front on the left side of the drive. Select the
location of your ON-OFF-ON switch so that
wirescanbeeonnected between the two switches
in a way that drive mechanisms are not inter-

fered with. Hold the switch near the selected

spot to make sure no problems will arise. The
location shown in Figure 9.22 works wel 1 with a
small bodied switch.

4. Mark and drill a hole for your switch. Clean out
any plastic filings which fall into the drive.

5. The big horizontally mounted card is the analog
card. You may remove it by disconnecting the
two plugs at the back and by removing the 4-pin
read/write head plug. Remove the retaining
screw on either side, and the analog card slides
out. You may wish to clean the head with alcohol
and cotton swabs at this point.

6. Remove the two beveled head machine screws
from each side of the front panel. Position the

Figure 9,22
A Drive With the Writ© Protect Switch Installed.

panel to the side, attempting not to strain the
wires connected to the IN USE indicator.

7. Use a fine lead pencil to outline the position of
the notch activated switch. This way vou can
remstall it in the same position. It will also help
to slide a disk in and out of the drive while you
observe the switch action, so you will be able to
reproduce the same action at reinstallation.
Remove the two alien screws which hold the
switch to the side of the drive.

8. A black wire is connected to the normally closed
contact of the notch activated switch. Desolder
the black wire. This wire needs to be connected
to the ON-OFF-ON switch and it will probably
require a short splice. Spiice a short jumper
between the black wire and the center or com-
mon contact of the ON-OFF-ON switch. Solder
both connections and insulate the splice connec-
tion with electrical tape or bv another suitable
method.

9. Connect a wire between the rfesoklered termi-
nal of the notch activated switch and the NOR-
MALmodecontactofyour ON-OFF-ON switch.
If you choose to have NORMAL mode in the
down position, then the upper contact will be the
NORMAL mode contact, and vice versa.

10. A brown wire is connected to the common eon-
tact of the notch activated switch, Solder one
end of a,jumper wire to the same contact as the
brown wire. Solder the other end to the BYPASS
mode contact of your ON-OFF-ON switch. The
BYPASS mode contact will be opposite the

NORM.A.L mode contact.

11. Remount the notch activated switch to the side

of the drive, aligning it to the outline ,vou drew
with a pencil. Slide a disk in and verify that the

switch clicks on and off as the disk notch is

engaged and disengaged.

12. Mount the ON-OFF-ON switch to the front

panel.

13. Reinstall the front panel on the drive, making
sure the spindle engagement mechanism mates

with the grooves on the hinged door on the front

panel.

14- The remainder of reinstallation is the reverseof

the dismantling steps. You can easily verify

operation by attemptingto delete some test files

and observing the write protect indication. Do

not operate with any disk containing important

files until you have verified correct operation of

the modified drive.

*P1easereari the NOTE OF CAUTION at the hetrinninRof the

book before makiriE aTi.v mofiifieatiim to.vnur harrJware.
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You should mark the functions of the new switch

on the front panel. I used white dry transfer letters

(available in electronic stores) far this purpose.

Afterwards, I sprayed the switch area with an

acrylic coating (also available in electronic stores) to

protect the lettering. All drive openings should be

covered when spraying with acrylic coating to pre-

vent accidental coating of the read/write head.

Some alternate source drives for the Apple use a

light emitter and photo switch to check for write

protection. Rewiring the photo switch in conjunc-

tion with a new ON-OFP-ON switch should also be
possible on most or all such drives. 1 happen toown a
FOURTH DIMENSION drive manufactured by
Siemens. I added the write protect switch mod to it

by splicing into the wires going to the photo switch.
On the 4D drive, the photo switch is mounted over
the disk slot. The white wire is the input to the photo
switch and is the equivalent of the brown wire in the
above procedure. The yellow wire is the output ofthe
photo switch and is the equivalent of the black wire
in the above procedure.

;'a-j?^Sif
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Maintenance and

Care of the Apple lie
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The modern mierocomputer is such a marveious
thing. Just think of the accumulated knowledge and
industrial capabilityofthe human race represented
by such a machine. Invented by man, feared by man.
exploited by man, and hated by man. Especially
hated by man when it doesn't work right. After
years of having computer systems subjecting- us to

impersonal and illogical errors, we have advanced
to the point where we have computer systems in our
own homes subjecting us to personal and illogical

errors.

The vast majority of computer mistakes are
caused by imperfect programs. The more involved a
program, the greater the chance of an oversight by
the programmer. We used to curse the computers.
Now, when a husband writes a program that allows
nis wife to enter her kitchen recipes, then destroys
them in milliseconds, it's not the computer that gets
cursed. Yes, today's computers are very personal.

Occasionally, computer malfunctions will actu-
ally be caused by a hardware failure rather than a
program in disarray. This should be a fairly rare

occurrence, because d igita! electronic circuitry is so

reliable. Yet, hardware failures do occur, and most

of us encounter them eventually in our home or busi-

ness system. In this chapter, attention wiil be given

to the maintenance philosophy of the Apple He com-

puter. There will besomediscussionof whatoptions

you have when your system fails, and ofsome simple

fault isolation steps which can be taken by you in

yourhome. We also will discuss ways of reducing the

probability of hardware failure in your system.

APPLE HARDWARE RELIABILITY

There is noelectronie circuitry more reliable than

modern digital electronic circuitry. Digital ICs rou-

tinely operate for thousands of hours without fail-

ure, and they are easy to replace if they do fail. The

Apple computer is consequently a very reliable

machine. There are, however, less reliable facets of

a computer than the ICs that popu late it. Some weak

links in the reliability chain are discussed here.



10-2 Understanding the Apple He

Tinkering Users

If you are very involved with your hardware, try-

ing new and different things all the time, you are

bound to make some mistakes which cause hard

ware casualties. People who like to tinker with their

computer should do so, because it's as fun as all get

out. Those same people would be naive to think they

may not occasionally mess something up. Even

though my wife thinks otherwise, I have probably

set no records in this area. I do, however, consider

myself an Apple clobberer of the first degree. The

personality traits necessary to reach this plateau of

destructive potential are an infantile curiosity and

terminal absentmindedness.

The possibility of causing hardware failure by

tinkering leads to the following common sense rule.

If your Apple is your bread and butter— if it costs

you money when it's not running—don't mess with

it. If your Apple is your creative outlet, then play

with your toy any way you please.

The Peripheral Slots and Auxiliary Slot

It is this author's opinion that the most important

hardware feature contributing to the Apple's mar-

keting success is the concept of peripheral slots,

mounted on the motherboard with address decoded

control signals generated on the motherboard. The

peripheral slots do represent a reliability weak

point though. Suppose you had a television which

allowed the owner to enhance it in all sorts of ways

by lifting the Hd on the television and installing

cards in slots on a big motherboard. Surely, every

owner who reconfigured his television a lot would

mess it up eventually, and the TV repair industry

would be happy with the extra business.

The sort of thing that can go wrong when pulling

or removing cards is that a card might get installed

backwards. I've only done this twice. It tends to wipe

out one or more chips on the card. As soon as a chip

shorts a power supply voltage to ground, the power
supply shuts itself offand damage to further chips is

prevented.

An impatient owner might remove or install a
card with power applied to the Apple. You can usu-

ally get away with this, but when you see a spark,

cross your fingers. I've never burned up more than
one chip at a time doing this, but it's possible to"wipe

out every chip connected to DO of the data bus. This
is because DO is adjacent to +12 volts on the periph-
eral slot pins and they may get shorted together.

Combining two reliability hazards, you come up
with the most common cause of hardware failure in

the Apple, a tinkering owner who installs anc
removes cards while power is applied.

One of the worst things that can happen whilt
installing or removing a peripheral card is that flex

ing the motherboard might cause a hairline frac-

ture of a current trace or solder joint. Of course tht

same thing could happen ifyoudrop your Apple or il

a manufacturing defect starts to show symptoms
The resulting marginal electrical contact can cause

system problems to come and go in a random wa>
based on such variables as temperature, mother-

board stress, and the price of hogs in Kansas City. A
good computer technician might be able to isolate a

problem like this on a good day if.you can afford the

wages of a good technician for a whole day.

A reinforcing bar mounted at the back of the

Apple He reduces motherboard flexing to the point

where occasional card insertion and removal is not

likely to overly stress the motherboard. Even with

the reinforcing bar, however, the mechanical integ-

rity of the motherboard mounting is marginal. Per-

sons who regularly remove and insert peripheral

cards should, therefore, not be surprised if problems

related to mechanical stress eventually arise. Such

problems are much more likely if an auxiliary card

is removed and installed regularly, because the

mounting near the auxiliary slot is extremely flimsy.

Peripherals with Moving Ports

Moving parts are a reliability problem in any

industrial creation. Compare an automobile to a

computer. The automobile might run 100,000 miles

before i1;s effective life is over. This will be 5000

operating hours at 20 miles per hour with many
parts replaced along the way. Yet you could turn on

your Apple and let it run for 208 days in a row (5000

hours) and have a very reasonable chance of expe-

riencing no hardware failure. Ifa part fails, you can

replace it and go another few thousand hours with-

out a failure. The main limiting factor on effective

life is obsolescence.

Now take a disk drive, an electro-mechanical

device with precise mechanical alignment. Don't

expect to run a disk drive for 208 solid days without

hardware failure. Friction can cause the motors or

head assembly to wear out, and like the front end

alignment of a car, drive alignment sometimes goes

out. Cleanliness becomes a factor. If you are really

putting a lot of hours on your Apple, then you should

expect to eventually have to have some disk drive

maintenance performed. The same is true of a print-

er. Heavy usage results in wear on the moving parts

.-,s^""



Maintenance and Care of the Apple He 10-3

and in probable eventual maintenance require-

ments. This iswhy printer manufacturers advertise
how few moving parts are in their products.

The Power Supply

In the hypothetical 208-day reliability test that

was mentioned earlier, if any unit failed, it would
most likely be the power supply. This is because the

electric currents in the power supply are so much
greaterthaninanylC. Of course the powersupply is

rated to handle a lot of current, but high current

devices are usually more apt to fail than low current

devices. Also, if the AC line voltage fluctuates, the

power supply is the unit most likely to be damaged
by the resulting current surges.

Application and removal of power to the Apple
can be thought of as a control led fluctuation . The ICs

and power supply are designed to handle the cur-

rent surge that occurs when the switch is turned on.

Still, there is no time when your computer is more
likely to fail than when the power is fluctuating,

including when you turn the power switch on. This

means you should turn the Apple off if power starts

fluctuating, as when the lights in the house go dim
during a storm. It also means that you should not

needlessly turn the power to the Apple off and on.

A particular reliability problem with the Apple
power supply is the power switch. The switch arcs

sometimes at power up, and this can eventually

cause the switch to malfunction. Amazingly, this

problem has been ignored for years by Apple, even
though the rest of the world acknowledges its exis-

tence by using an external switch to turn the Apple
on and off. The part is a turkey, and it should have
been replaced by now in the Apple lie power supply
design with one that will last.

IMPROVING YOUR APPLE'S RELIABILITY

The reliability weak links give some hints on how
to improve the reliability of your own Apple:

1. Above ail else, never remove or install periph-
eral cards, the auxi 1 iary card , or ICs w i th power
applied.

2. To improve reliability, don't tinker with the
Apple or peripherals. This must be each per-
son's compromise between the conflicting de-
sires of wanting a reliable computer and
wanting to tinker. You probably know that my
personal choice is to tinker all I want.

3. Keep the Apple covered when not in use so that
the electronics stay clean and nothing is acci-

dentally dropped inside. Don't set coffee or
sodas on the Apple, because you may spill them.

4. Don't operate the Apple on an unstable power
source. Be wary of operating during electrical

storms because power may fail.

5. Connect power to the Apple through a bus bar or
other device with a switch on it and turn the

Apple on and off using this switch to save wear
on the power supply switch. The bus bar may
have current surge suppressors built-in which
help stabilize the power applied.

6. You may elect to reduce the operating tempera-
ture of the Apple by mounting a fan on the case.

Products are available which perform the three

tasks of providing an external switch, surge sup-

pression, and temperature reduction. None of these

is necessary for operation of the Apple, but it can be
argued that each one could improve its reliability.

Necessity of temperature reduction is the most
questionable. The Apple uses commercial grade (as

opposed to military grade) components which are

guaranteed to operate within specifications over the

0—70 degrees Centigrade (82—158 degrees Fahr-
enheit) operating range. My measurements of the

Apple He operating temperature indicate that it is

under l.SO degrees Fahrenheit just above the 6502,

which is the hottest spot I couid find. This is we!l

within the 158-degree specification of the compo-

nents. Reducing this operating temperature should

still reduce thermal expansion, reduce the possibil-

ity of malfunctioning of components that are not up

to specifications, and reduce the possibility of mal-

functioning due to overloading of signals by too

many peripheral stotcards. Also, by reducing power

supply temperature, one would expect to increase

the amount of current that can be supplied before

overheating and failure of power supply compo-

nents occurs.

To see for myself the effect of using a fan on the

operating temperature of the Apple lie, I ran a

4-hour test, measuring the temperature at the top of

the power supply and just above the MPU with and

without a fan running. The test is patterned after a

similar test I performed on an Apple II for Under-

siandrnffthe Apple 11. The fan used was a Super Fan

II made for the Apple by R. H. Electronics. It hangs

from the left side of the case and has an external

on/off switch and surge suppression. Four periph-

eral cards were installed in the Apple under test,

which was a Revision B Apple He. The temperature

measuring device was a pyrometer which utilizes a

thermocouple for a probe.

"^iis.. „
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The results of the test are shown in the graph in

Figure 10.1. As the graph indicates, it gets very

warm near the surface of the MPU. Also, the fan

reduces the operating temperature by about 10—15

degrees Fahrenheit. Please note that the graph is

probably a good indication of the relative tempera-

tures with the fan off and on, but that there are

many variables which affect the absolute reading,

including the temperatureof the room, probe place-

ment, and instrument accuracy. Additionally, the

test does not measure the amount of improved com-

ponent heat dissipation due to forced air movement
in the cabinet. The measurements made at the sur-

face of the power supply were probably closest to the

ambient air temperature in an Apple lie. It would

be fairly accurate to say that the ambient air

temperature in the Apple He cabinet is about 25

degrees F. greater than room temperature, that the

temperature differential can be reduced by about 15

degrees F. with a fan, and that some improvement

in component heat dissipation wjU occur. Whether
or not this is worth the price of a fan is a subjectiv^
matter.

REPAIR OF THE APPLE Me

Repair of a broken digital computer is different

than repair of other sorts of electronic equipment.
Many uncertainties of electronic circuit operation
do not exist in digital equipment, because most of

the circuitry is made up of 2-state electronic

switches. In most circuit elements, either current
flows or it doesn't flow. This is a simple condition

compared to the infinite variety of signal conditions

which exist in analog electronics.

The complexity of digital equipment lies not in

complex electronics but in complex logical capabili-

ties. As a result, any difficulty in the repair task will

often be due to logical complexity. This is good,
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because it means many hardware functions in a
computer can be verified, and many casualties can
be isolated by self diagnostic programs. More trou-

blesome problems can be diagnosed by external

computers designed and programmed to trouble-

shoot certain classes of problems. Since computer
casualties are often logical malfunctions, what bet-

ter way is there to solve them than by logical analy-

sis using a computer?

The Apple lie has a modest end user self-diagnos-

tic capability consisting of motherboard firmware

routines that check motherboard RAM, ROM, and

lOU and MMU flag manipulation and reading.

However, these firmware diagnostics are somawhat
limited in value since the Apple must be pretty

healthy before they can even be executed. There is

no hardware or firmware based timing or video

signal verification, although auxiliary cards which

perform these tasks must certainly exist in Apple's

checkout and repair facilities. RAM based diagnos-

tic programs are available on disks to computer
dealers but are not available to owners. There is,

therefore, very little an owner can do by way of

isolating difficult casualties unless there is an in-

house computer technician with some test equip-

ment. There are some checks that can be made by

anybody, but more on that later.

The typical computer retailer will have what

Apple calls a Level I repair capability. They will

often have a shop and a computer technician. They
will also have a diagnostic peripheral card that is

made by Apple, several disks full of diagnostic pro-

grams, and a parts and information pipeline to

Apple. The diagnostic peripheral card contains

firmware to check the operation of several areas

including RAM, ROM, the keyboard, and the video

display. If their disk-based diagnostics will load,

they will verify and isolate faults in any peripherals

for which they have diagnostics. The technician or

salesman can then replace components that are

indicated to be bad and hopefully fix the malfunc-
tioning Apple very cheaply. The dealers also have
disk drive alignment disks and procedures which
allow their technicians to precisely align the Disk II

drive and some drives that are compatible with the

Disk II,

Dealerships with more sophisticated repair capa-

bilities will also work on some products for which
they have no advanced diagnostic aids, such as print-

ers or modems. If there is a resident Apple techni-

cian with an oscilloscope, he probably will repair

many problems not pointed out or isolated by the

diagnostic aids.

When a problem is beyond the capability of a

dealership or the repair of a problem will be so time

consuming that it will not be cost effective for the

dealer or customer, the dealer will swap out a major
assembly such as a motherboard or power supply for

a very reasonable cost. He then sends your repair-

able assembly to an Apple Level II repair facility.

Apple can repair the assembly more easily because

they have sophisticated test fixtures, documenta-
tion, and assets not found in a computer dealership.

Other companies besides Apple will also have a turn

around policy on their Apple compatible products.

Therefore, when a peripheral card fails, you may
well be able to get a quick swap at a computer
dealership.

Apple will not allow Level I repair shops to per-

form some tasks. They maintain this control by re-

fusing to swap assemblies upon which unauthorized

work has been performed. For example, a FjCvcI 1

shop can change the analog card in a disk drive, but

they can't change the drive motor. Also, with few

exceptions, Apple won't accept a modified assem-

bly. Apple's no swap rule for modified assemblies is

fairly reasonable considering that they must make
their own repair operation cost effective.

The primary hardware based self diagnostic fea-

tures of the Apple lie are the peripheral slots and

the auxiliary slot. An empty slot becomes a diagnos-

tic port when you plug a specially designed lest

fixture into it. There can be no doubt that Afjple

must use such test fixtures for production check out

as well as fault isolation, because they are an obvious

necessity. From a peripheral slot, you can verify

power supply voltages, verify some timing signals,

check RAM, ROM, the MMU. the lOU. and all

address bus command features via DMA. measure

for shorts at all pins, exercise the 6502 with a test

program via the INHIBIT' line, and verify correct

interrupt response. From the auxiliary slot, you can

monitor timing, video generation, and memory
management signals, and inject substitute timing

signals or a substitute picture signal. Many prob-

lems with individual ICs can be isolated to the chip

while other problems may be isolated only to an

area. Further isolation of problems can be per-

formed by attaching jumpers from smart peri-

pheral or auxiliary slot test fixtures to various ICs.

Apple probably has an area full of engineers who do

nothing but design test fixtures for Apple products,

program them, and write test procedures for them.

We pay for this diagnostic capability when we buy

Apple products, even though it isn't built into the

Apple He. Large scale automated checkout and
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fault isolation of a product is the only way to provide

quality assurance and service a complex mass pro-

duction device in a cost effective way. Money for

developing this capabilitymustcome from sales and

service revenues.

WHEN YOUR APPLE BREAKS

When your Apple breaks, chances are that you

will have to take it to a computer dealer for repair.

Yet, there are .some very simple checks you can

make which might get your Apple up in a hurry.

These are checks which can be made by anyone, and

they are the kind of checks a salesman might make if

you brought your Apple in on the service techni-

cian's day off. Be aware that any damage you
cause while making these checks will void your
warranty if it is still in effect and make out of

warranty repairs more expensive. Also, any use

oftestequipment by unauthorized service personnel

might put your warranty in jeopardy.

In these discussions, the use of a multimeter, logic

probe, or oscilloscope will be occasionally called for.

If you do not have access to the instrument men-
tioned , or you do not know how to use it, it is time to

get your system to a dealer. Incidentally, you can
buy a logic probe and a multimeter for $20 each at

Radio Shack and learn how to use them in a few
minutes.

If you manage to find the exact causeof a problem,

you can buy most Apple components in computer
electronics stores or, more expensively, at computer
dealers. The lOU and MMU, of course, can only be
purchased at an Apple dealership or directly from
Apple Computer, Inc. The computer dealer will

charge you more than an electronics store for parts,

because he is not in business to sell electronic com-
ponents. Like virtually all American maintenence
operations, the computer dealer will put a big mark-
up on his parts prices to improve the profitablity of

his service department.

There are hazardous voltages inside the App],
but they are all in the power supply. Nevertheless,
is a good idea to pull the plug on the Apple anytim
you are working inside. Never work on the powe
supply with the line cord attached. Many of th
power supply components are not isolated from th
line voltage and there are numerous dangerous voli

age points in the power supply.

The Firmware Diagnostics

The firmware diagnostics at $C400—$C7PF* pre

vide the Apple He end user with a modest capability

for verifying correct hardware operation. They ab
are designed to indicate bad RAM chips, bad ROl
chips, and MMUs or lOUs whose soft switches don'
operate correctly, but because of poor overall con

cept, it is unlikely that the firmware diagnostics wil

correctly indicate a bad ROM or RAM chip. Thi

reason for this is that the diagnostics will not run i

there is a completely bad ROM or RAM chip.

When an operator performs a close Apple reset oi

a functional Apple He, the reset routine at $FA62o.

the motherboard EO—FF ROM is executed. Severa

subroutines are immediately executed via JSR in

structions, and then flow is passed to $C100 via th(

GOTOCX subroutine. If at $C23F, close Apple is

found to be held down, flow will then be passed to th«

diagnostic routines at $C401. The contents of tht

diagnostic routines are as follows:

1. Initialization at $C401 includes saving open

Apple key status, stack pointer = $FF, CSW =

COUTl, disabling high RAM for reading and

writing, and calling the HOME subroutine.

2, An MMU soft switch check at $C41D consists

of reading (at $C011—$C018)and verifying the

*The firmware diagnostics are described here as they are in the

original Apple He firmware. Please note that, in the enhanced

firmware, the diagnostics reside at $C600—$C7FF, there is no

ROM check, and both motherboard and auxiliary card RAM are

checlted. See Chapter 6, The Apple lie Firmware Upgrade for

a description of the enhanced firmware.

Table 10.1 MMU Soft Switch Diagnostic Error Codes.

SOFT SWITCH INITIAL STATUS CHANGED STATUS
BANKl 8
HRAMRD 1 9
RAMRD 2 A
RAMWRT 3 B
INTCXROM 4
ALTZP 5 c
SL0TC3R0M 6 D
80STORE 7 E
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diagnostic routine input status of the MMU soft
switches. Then the state of the MMU soft

switches excluding INTCXROM is changed
and the $C011-$C014 and $C016-$C018 sta-

tus is verified. If any errors are detected, the
message "MMU FLAG E4:a b . . . n" is printed
where (a b , . . n) are error codes indicating

errors as shown in Table 10.1.

3. An lOU soft switch cheek at $C498 consists of

reading (at $C01A—$C01F} and verifying the

diagnostic routine input status of the lOU soft

switches. Then the state of the lOU soft switches

is changed and the $C01A—$C01F status is

verified. Ifany errors are detected, the message
"lOU FLAG E5:ab . . . n" is printed where (a b .

.

. n) are error codes indicatingerrors as shown in

T^ble 10.2.

4. After the lOU soft switch check, the program
hangs at $0510 with error messages displayed

if there was an MMU or lOU error. If there was
noMMU or lOU error, the Cl—DF ROM check

is performed.

5. The Cl—DF ROM check at $C53F consists of

summing $C100-$DFFF excluding $C400—
$C4FF and comparing the result to the contents

of $C400. If the sum is wrong, the message
"R0M:E8" is printed and the program hangs at

$C569. Otherwise, the EO—FF ROM check is

performed.

6. The EO—FF ROM check at $C56C consists of

summing $E000—$FFFF excluding $F7FF
and comparing the result to the contents of

$F7FF. If the sum is wrong, the message
"ROM:E10" is printed and the program hangs
at$C58E. Otherwise, the RAM check is begun.

7. The motherboard RAM check at $C591 be-

gins, after a short initialization, by filling all

motherboard RAM, but not auxiliary card

RAM, with $00 ($C5A8). Duringthis initial zero

fill, the speaker will toggle at about 180 Hz if

open Apple was held down when the diagnostics

were initialized.

8. RAM is checked and toggled ascending($C5EB),
and again ascending ($C64A), and cheeked and

toggled descending ($C64C), and again descend-
ing ($C6AD). During these checks, the speaker
is toggled at about 10,000 Hz if open Apple was
held down when the diagnostics were initial-

ized. If an incorrect value is read at anytime
during these checks, the message "RAM:Fa Fb.
.

.
Fn where (Fa Fb . . . Fn) are those RAM chips

of RAM chips F13—F6 yielding incorrect data
(example: RAM:F13 F8 F6). The system then
hangs at $C714 with the RAM error message
displayed. Memory location $01 contains the
memory page in which the error was detected.

9. If no errors are detected and open Apple and
close Apple are not both held down at the com-
pletion of diagnostics, the message "KERNEL
OK" is displayed, then the program hangs at

$C72D. "KERNEL OK" means the diagnostics

passed, that ROM. RAM, and the soft switches
are good, and that the programmer who wrote
the diagnostics was more interested in u.seleas

jargon than in a meaningful English language
message.

10. If open Apple and close Apple are both held
down when the RAM diagnostics are completed
without error ($C720), an I/O exercising pro-
gram is moved from $C7AE—$C7E2 of ROM
to $0100—$0134 of RAM and executed. This

program enables slot I/O {$C7AE), makes
ascending read and write references to $C090—
$CFFF($C7B6), makes descending read refer-

ences to $C079-$C000 ($C7CF). then disables

slot I/O and recycles the diagnostics ($C7DA).

Some aspects of interpreting diagnostic perfor-

mance are obvious, but others are not. Here are a

few notes about diagnostic interpretation:

1. If one of the ROM chips is bad. the portion of

reset routine beginning at either $FA62 or

$C100 will not be fetched and executed. If a

RAM chip is bad. then the flow will not return to

the reset handler after subroutines are executed

because the return link information will not be

correctly saved and retrieved from the slack. In

Table 1 0.2 lOU Soft Switch Diagnostic Error Codes.

SOFT SWITCH INITIAL STATUS CHANGED STATUS
TEXT 8

MIXED 1 A
PAGE2 2 9

HIRES 3 B
ALTCHRSET 4 7

80COL 5 6
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other words, if a RAM or ROM chip is com-

pletely bad, flow will never arrive at $C401 and

the diagnostics will not be executed.

2. There are four major checks performed in the

following order: soft switches, CI—DF ROM,
EO-FF ROM, RAM. If any of these checks

fails, an error condition is indicated and the

remaining checks are not performed.

3. Memory locations in Page OofRAM are utilized

in performance of all checks, and error printing

subroutines are called via JSR instructions.

Therefore, ifthe diagnostics were somehow per-

formed with Page or Page 1 malfunctioning,

performance would be unreliable.

4. The RAM test audio tones provide a means of

verify ing diagnostic performance in the absence
of video display. This is true, even when the

speaker is disconnected, because the LED con-

nected across the speaker jack will glow during
the 10000 Hz toggling if the speaker is discon-

nected.

5. An intermittent error might show up only if the
diagnostics are recycled many times. To recycle

the diagnostics, turn off the Apple lie and dis-

connect the keyboard plug, paddles or joysticks

with pulled down pushbuttons, and any periph-
eral cards that would interfere with recycling.

Remove the disks from all of your disk drives*
and turn on the Apple lie. The diagnostics,

including the portion that exercises I/O, will

recycle until an error occurs or you turn off the
Apple He.

Since operation of the diagnostics is normally
precl uded by bad RAM or ROM, the diagnostics are
good for verifying good memory, not troubleshoot-
ing bad memory. Properly conceived Apple He
diagnostics would reside solely in the EC—FF ROM.
In this ROM, the first action taken at any reset
would be a BELL routine which did not depend on
RAM to operate correctly. The ability to execute a
stored sequential program would thus be verified
independently of RAM. If the BELL does not ring,
RAM and the CI—DF ROM have nothing to do with
it.

After ringi ng the BELL, the next step would be to
check the close Apple button to see if diagnostic
execution is selected by the operator. If diagnostic

•Increasing references through the disk controller DEVICE
SELECT' addresses leave all stepper phases on and drive 2 on
and configured for writing. This does not wipe out the disk in
drive 2 if phase 1 on forces write protection in your drive like it
does in the Disk II drive. Prudence dictates that you remove all
disks before recycling the diagnostics.

execution is selected, the first task is to verifyRav
Page 1 and Page 2, again in a routine thatdo^Z
utilize RAM except to verify it. This routine shouM
be executed many times to absolutely veriftr the
reliability of these critical pages. Failure of th^
Page I/Page 2 verification should be indicated bv
speaker beeps, and passage would enable diagnostic
contmuation with knowledge that indirect addressmg and the stack can be used.
Once Page 1 and Page 2 ofRAM are verified the

programmer has freedom to make all sorts ofchecks
including complete RAM, ROM, MMU, and lOU
checks. Complete diagnostics would certainly verify
auxiliary card RAM. theMMU memory configura-
tion capabilities, and the existence of 17030 cycles in
VBL. All pass/fail indications should be via speaker
beeps (Morse code?) in addition to video display so
the diagnostics could be interpreted when the dis-
play was malfunctioning. A diagnostic EO—PF
chip like this would isolate some problems that
might occur in an Apple He. At least they would
give you a decent indication before you warmed up
the oscilloscope.

The Peripheral Card Check
A cheek that should be made at an early point for

almost any persistent symptom is to turn off the

Apple, remove the auxiliary card and all peripheral
cards, turn the Apple on, and see if the symptom
disappears. If it does, you can find which card is

causing the fault by turning the computer on with
each card installed by itself. Then you can operate
the Apple, losing only the capabilities represented
by the malfunctioning card until it is repaired. Even
when a peripheral card or auxiliary card is known
to be malfunctioning, it is a good idea to check oper-

ation with all other cards removed. For example,
your disk controller may be loading down the

RESET' line and causing the printer card to misbe-
have. This procedure of isolating a problem to a

peripheral card will be referred to as the periph-
eral card check. Other than this most basic of

checks, your course of action will depend on your
symptoms. The most easily recognized symptom is a

completely dead Apple, normally indicating a power
supply problem.

Power Supply Problems
There are two symptoms you will normally en-

counter with power supply problems. The Apple is

dead and there is a low level clicking noise coming
from the power supply, or the Apple is dead and
silent too. If there is a clicking noise, the power
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Figure 105 A Power Supply WIfh ttie BoWom Off.

supply is quite likely g-ood, but a motherboard, pe-
ripheral card, or auxiliary card malfunction is caus-
ing an overload condition. IftheAppieisdead silent,

there may be a casualty in the power supply itself.

The clicking noise is the tinkerer's symptom.
Chances are very good that somebody was instal-

ling, removing, or modifying something in the

Apple. When any casualty symptom follows tinker-

ing, concentrate your investigations in the areas
that were tinkered with. If something was touched,
look it over.

When the clicking noise occurs, turn the computer
off immediately. If a component has just shorted, it

may be hot or show evidence of burning. Visually
inspect themotherboard and peripheral cards under
good lighting. Look for such things as ash or black
marks on the components. Touch al! the ICs lightly
to see if any are hot. Be careful or you might burn
your finger when you get to the right one. Check that
all cards, plugs, and ICs that may have been tin-

kered with are correctly installed , not reversed , and
with no shorted pins. Perform the peripheral card
check, but don't leave the computer on with the
clicking noise for any longer than necessary. The
peripheral card check will indicate whether the
motherboard or a peripheral card is the probable
cause. It can be further determined that the prob-
lem is not in the keyboard or numeric keypad by
disconnecting the keyboard plug and numeric key-
Pad plug (if there is one) from their motherboard
sockets.

K you were unable to isolate the exact problem
cause, It may be time for you to take your system to a
aealer for repair. At this point, you will be able to
describe the symptoms to the service technician on a
level which will be helpful to him. He will probably

verify a short to ground exists with a multimeter
and try to isolate the short by removing ICs from the
motherboard, peripheral card, or auxiliary card in

groups until the short goes away, You can do this
yourself, but beware. Even experienced technicians
damage ICs or install them incorrectly on occasion.
If you remove all the ICs from a card and put them
back in, you very well may create some casualties
that weren't there when you started. Also, the prob-
lem may be more difficult than a dead short, and you
might end up requiring a board replacement if it is

too difficult.

The second bad power supply symptom that can
be observed is a completely dead Apple with no
clicking noise. This can be verified to be a power
supply problem by measuring the +12, -12, +5, and
-5 volt lines at any peripheral slot with a multime-
ter. If the voltages are good, then a timing generator
problem is indicated. If incorrect voltages are pre-
sent, there is probably a power supply problem
which will require a swap out from a dealer. If no
voltages are present, a dealer may still swar) out the
power supply, but you may only have a bad switch.

In the event the power supply switch fails, you
have two options. You may take the computer to a
dealer who might verify the switch is bad and
replace it or who might insist on a power supply
swap out. You may also verify the switch is bad
yourself and replace it. Any Apple dealer will carry
the switch or can obtain it from Apple. Here is a
rough procedure for replacing the switch.

1. Turn the Apple off.

2. Remove the power cord from the power supply.

H. Disconnect the power supply plug from the

motherboard connector.

•1 Remove the power supply (four screws through

Apple base plate).

5. Remove five screws from both .sides of the power
supply and separate top from bottom.

6. Verify switch casualty with ohmmeter.
7. Replace switch.

8. Reassemble and reinstall the power supply by

reversing the dismantling procedure.

DO NOT APPLY POWER TO THE POWER
SUPPLY WHILE INTERNAL COMPONENTS
ARE EXPOSED. THE VOLTAGES INSIDE
ARE VERY HAZARDOUS WHILE POWER IS

APPLIED.

Peripheral Failures

It is sometimes fairly obvious that the problem

lies only in a peripheral or its interface card. If

everything else works, but a printer won't print, it's
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pretty cut and dried. Other peripheral failures are

less obvious. Cards that steal memory addressing

such as a firmware or RAM card are so integrated

into the overall operation that when one fails, symp-

toms can be the same as motherboard failures.

When you are certain that a fault lies with a pe-

ripheral, there are some steps you can take to try to

determine the exact cause. First, with the computer

off. remove all the other peripheral cards and the

auxiliary card to be certain that one of them isn't

somehow causing the problem. If that doesn't help,

turn the computer off, and give the suspect periph-

eral card a visual inspection. Assuming the ICs are

mounted in sockets, wiggle them all to make sure

that they're properly seated. Verify that any plugs

are properly installed. Clean the contacts of the

card's edge connector with a pencil eraser or with

alcohol and cotton swabs, preferably the latter.

Reinstall the card and verify that the problem still

exists. You can perform the same steps on any cards

mounted in the peripheral itself.

Just the act of removing a peripheral card and

installing it will often cure many problems, at least

temporarily. Some lower quality contact materials

will tend to make poor electrical contact when the

temperature rises. Just wiggling the card can cure

the problem, but be sure to wiggle it with the com-
puter turned off. Cards with gold plated contacts

are much less likely to cause this sort of trouble.

Another thing you can try is to run the peripheral

in a different slot than its ordinary one, assuming it

is not slot dependent. If it is slot dependent, try

running another peripheral in that slot, the object

being to prove there is nothing wrong with the slot's

signals or connections. If the problem persists, you
may as well start calling computer dealers to find

one who will work on your peripheral.

If you cause a malfunction by removing a card
with power applied, suspect that ICs connected to

the INHIBIT' line are burned out. This includes the

74LS09on a firmware card or a RAM card. You can
burn up these LS09s by removing any card from any
slot with the power on and accidently shorting pin

32 (INHIBIT') to pin 33 (-12V). If you are less

lucky, you might short pin 50 (+12V) to pin 49 (DO).

In the latter instance, you may possibly destroy

numerous ICs.

Here is one last tip for a special situation. I have
known the LS125 on the Disk II analog card to be
damaged on three separate occasions. On two of
those occasions, the LS125 failure was caused by a
person plugging the 20-pin ribbon cable connector
into the controller incorrectly. The symptom was

that the drive was always configured for writine
even when the controlling program was attemptini
to read data. Booting or cataloging a disk, for exam
pie, would clobber the disk. A typical operator wil
clobber several disks under these circumstance
before realizing what he is doing. He thinks he i

trying to read bad disks, but he is really makinj
disks go bad while trying to read them. If yoi
encounter these symptoms, try replacing the LSl2i
on the analog card of the offending drive or drives

Then verify operation with disks containing non
critical data. This tip also pertains to most seconc

source B-Vt inch drives available for the Apple. Thej
generally use an LS125 for the same functions as th<

one in the Disk 11 drive.

Other Symptoms
There are no error lights built into the Apple, bui

there are some very distinct error indications which

you can interpret if you understand the Apple.

First, does it beep when you turn it on? The beep

isn't made by some oscillator. It's made by pro-

grammed control of the speaker by the MPU. It

means that a power-up RESET was generated, the

6502 works and is capable of address bus and data

bus control and data bus reception, the EC—FF and

CI—DF ROMs work, timing works, page and 1 of

RAM work, the MMU works, a good portion of the

address decoding circuitry works, and the lOU is

capable of toggling the SPKR line in response to

address bus commands. In other words, if the

speaker beeps, the Apple is in pretty fair shape.

The second big indicator of the nature of a prob-

lem is the video display. The scanning of RAM for

video output is done independently of the MPU and

the address bus. The onlycommon bonds are timing

and the data bus. The address bus, MPU, MMU,
RAM, and Cl-DF and EO-FF ROMs can all be

burned to a crisp, and you will still have the display

window on the screen. The contents would be jibber-

ish, but the window would be there with its black

margins on all sides. The presence of the window

means that timing, the video scanner, and most of

the video generator are working.

The four possible combinations of the two opera-

tional indicators can greatly narrow the field of pos-

sible causes of a given problem. The following

interpretations of symptoms should help. In all

cases perform the peripheral card check, visually

inspect the motherboard, and verify all ICs are

properly seated. Refer to Figure 10.3 (color section)

to see which functional areas are affected by various

ICs.
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1. No beep, no display. This is one dead Apple and
power supply problems are the probable cause.
This can be verified by measuring the +5V,
-5V, +12V, and -12V supplies at any periph^
eral slot with a multimeter. If any of the volt-

ages is incorrect, read the Power Supply Prob-
lems section of this chapter for an indication as

to how to proceed. If the power supply voltages

are good, timing generator problems are indi-

cated. Verify the presence of the timing genera-
tor signals using a logic probe or oscilloscope. If

you have a second Apple lie or simply have
access to spare ICs, swap out the motherboard
timing HAL, LS125, LS109, and lOU one by one
to see if one of these ICs is causing the problem.

2. No beep, display window present. Timing is

good, but the computer does not execute a stored

sequential program. Many things cou!d cause

this symptom including the MPU, the lOU, the

MMU, a ROM chip, a RAM chip, or any bad
chip connected to the address or data bus. You
may try to get an indication from the firmware
diagnostics, but they probably will not run. Use
a logic probe or oscilloscope to verify whether or

not signals are normal at all pins, at one of the

peripheral slots, and at the auxiliary slot. Pay
particular attention to the address bus, the data

bus, INHIBIT', RESET', and other 6.502 con-

trol lines. The condition of the peripheral slot

signals should guide you to possible causes.

3. Beep, no display window. Most of timing is

good, butcheckLDPS' and VID7M with a logic

probe or oscilloscope. Also check the lOU out-

puts related to video generation and the PIC-
TURE' signal (see Figure 8.5). Verify that the

firmware diagnostics operate correctly by hold-

ing open and close Apple while pressing CON-
TROL-RESET and listening to the speaker.

Suspect the lOU if you don't hear the RAM test

speaker tones. If you have access to spare ICs,

you can replace the ICs and transistors pictured
m Figure 8.5 one by one to see if one of them is

causing the problem.

4. Beep, window present, programs crash. The
computer executes programs but gets into

trouble in certain cases. If they will operate, run
the firmware diagnostics with all peripheral
cards installed and again with peripheral cards
removed. Follow up any leads the firmware
diagnostics give you. If the diagnostics will not
run, suspect RAM or ROM. If the diagnostics
run and pass, recycle them for a longtime using

the procedure given in The Firmware Diag-
nostics section. Check all the signals on a peri-

pheral slot with a logic probe or oscilloscope.

Intermittent problems are the bane of all comput-
er servicemen as well as computer users. They are
often dependent on the temperature and the product
of a mechanical defect like imperfect electrical con-
tact. They are sometimes impossible to repair in a
cost effective way and the best thing that can be
done in this instance is to swap out the defective
assembly at a computer dealership. There are two
tricks which can be used to make the problems
become more regular so the causes can be identified.

One is to subject the equ ipment to asevere mechani-
cal jolt, like Humphrey Bogart in The Africirn
Qiu'oi. This will tend loproveor disprove the notion
that there is a mechanical problem, Lessdrastically,

you can flex the motherboard and reseat su.spect

peripherakardsandlCs. The second trick is to raise

and lower temperature to make the problem occur,
"('old problems" can be made toappear by spraying
cold spray, available at electronic stores, on sus-

pected areas. " Hot problems" can be made to apjjear

by directing a heat gun. or, less effectively, a hair

dryer at the suspected area.

There are no doubt many .symptoms not covered

by the guidelines that have been given here. The
intention was only to give .some helpful hints, not a

full blown maintenance aid. A serious reader of this

book, however, should be in a very good position to

correctly interpret the .sym|)toms of any malfunc-

tions which occur in his machine. In the absence of

sophisticated diagnostic aids, full understanding of

operation is the most important asset in isolating

faults in a digital computer. It is good for Apjjle

owners to possess this level of understanding, and it

is also good for them to locate comj]utcr dealerships

which employ service per.sonncl with this level of

understanding.

,1_
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Figure 104 Some People Just Shouldn't Handle ICs.





glossary

address bus. A multi-line electrical connection from the

MPU to various devices in a microcomputer by
which the MPU specifies the location with which it

will communicate. The address bus in the Apple He
is made up of 16 lines, and the MPU can specify
65536 different addresses for data transfer. See data
bus, R/W' line.

ampere, amp. The unit of measure of electrical current.

analog. Pertaining to quantities which vary through a
continuous range such as a voltage which ranges
from +5V to -6V. See digital.

AND gate. A logic gate from which the output will be
true if and only if all of its inputs are true.

Applesoft BASIC. The floating point BASIC interpre-
ter language written for the Apple II by Microsoft,
Inc. and distributed by Apple Computer, Inc.

ASCII, American Standard Code for Information
Interchani^. A code for representing numbers, let-

ters, and symbols in computers. ASCII is used in the
Apple He for representing text in the keyboard input,
text screen map, printer output, BASIC strings, and
DOS text files.

assembler. A program which converts an assembly
language source file into a machine language object
file.

assembly language. A language which specifies ma-
chine language commands on a one to one basis but
in which the computer manages many of the details
of generating machine language code.

auxiliary slot. The 60-pin receptacle located on the left

side of the Apple lie motherboard. The auxiliary slot

is designed to accept cards that support the Apple He
80-eolumn video and 64K auxiliary RAM capabilities

and functions related to video and timing generation.

bandwidth. A frequency range. Usually, the frequency
range of sinewaves that will be processed or passed

by an electronic circuit or signal path.

bank switching. A method of accessing more memory
locations than the normal addressing range an MPU
will allow. In bank switching, the MPU is allowed by

hardware to address more than one memory bank
using the same address range. An example is the

$D000—$FFFF range of the Apple He which is bank
switched between motherboard ROM, motherboard

RAM, and auxiliary card RAM.

BASIC, Beginners All-purpose Symbolic Instruction

Code. The primary high level language used in per-

sonal computers. It was originally developed at Dart-

mouth College as a training language, and has been

developed into a powerful and usable tool by the

microcomputer industry.

binary numbering system. A system based on powers

of 2, as opposed to powers of 10 in the decimal sys-

tem. The two symbols of the binary system are and

1. See hexadecimal.

bit. A 2-state unit of information. The information is in

one state or the other—on or off, for example.
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bomb, crash. When a program is bombed or when it

simply crashes, it loses control of the computer and

must be restarted and possibly reloaded. It is partic-

ularly likely for a program to crash when it is first

written and still has bugs in It.

bonding options. Optional characteristics of a custom

IC that are determined when the IC is manufactured

by bonding signal lines to low or high signal points.

For example, selection of Apple lie or Apple lie

operational characteristics is a bonding option of the

MMU and lOU.

bootstrap. The process by which a computer loads large

operating systems using a small firmware program,

buffer. (1) A temporary holding area in memory in

which data resides before, during or after transfer

operations. (2) Any hardware device which provides

electrical isolation between two electrical points or

sets of points.

bus. A multi-line electrical connection which distributes

an associated group of signals among two or more
communicating devices.

bus driver. A group of amplifiers which allow a group
of signals to control a heavily loaded bus. The driver

gives electronic leverage to the control signals so they

can "drive" many devices.

byte. A group of 8 bits. The 6502 is an 8-bit MPU and
therefore transfers and manipulates data one byte at

a time.

BYTE FLAG. A term used in this book to describe the

sync bit which leads groups of eight bits in Apple
DOS data formats.

card cage. A row of receptacles into which printed cir-

cuit cards with edge connectors are plugged. The
receptacles are wired in the back as is necessary to

implement the functions of the cage.

cathode ray tube, CRT. A device in which a screen

display is created by a high velocity stream of elec-

trons striking a phosphor coating. The impact point

on the screen is controlled by deflecting the electron

stream via an electromagnetic or electrostatic field.

The picture tube in a television is a CRT.

central processing unit, CPU. The electronic assembly
which performs the arithmetic and logical operations

of a computer.

chip. See integrated circuit.

COLOR BURST. In a television color video signal, a
short sample of the COLOR REFERENCE signal
which occurs just after the horizontal sync pulse.
From the COLOR BURST, a television or monitor
can reconstruct the COLOR REFERENCE.

compiler. A program which converts high level lan-
guage source programs into machine language object
programs.

complement. The complement of a binary number is a
binary number in which binary "l"s replace "0"s, and
"0"s replace "l"s in the original number. For exam-
ple. 11010 is the complement of 00101.

complementary colors. Pertaining to the Apple He,
colors produced by signals 180 degrees out of phase

with each other-HIRES40 green and HIRES40 vio-
let for example,

composite video. A complex video display signal con
taining horizontal and vertical sync, luminance and
chrominance signals, and a color burst The video
output of the Apple He can loosely be called comDo-
site video.

CSW, Character output SWitch, See I/O links.

current. The motion of charged particles due to voltage
Generally, in electronics, the movement of electrons
through conductive paths. Current is measured in
amperes.

custom IC. An IC which is manufactured to suit the
special needs of an equipment manufacturer. The
lOU and MMU are examples of custom ICs.

cycle stealing- DMA. Direct memory access from a
device other than the MPU which occurs while MPU
execution cycles are inhibited. Cycle stealing DMA
slows execution of the MPU program.

data bus. A multi-line electrical connection over which
data passes between the MPU and various devices in

a microcomputer. The data bus in the Apple He is

made up of 8 lines, so one byte can be transferred per
MPU cycle. See address bus, R/W' line.

debounee. To eliminate signal variations resulting from
the short period of unstable contact that occurs after

a mechanical switch is thrown.

debug. Do perfect a program by removing the bugs
(defects) from it.

decimal numbering system. The system by which we
normally represent numeric quantities. Ten symbols

(0—9) represent quantities, while the position of each

symbol in a number represents the significance or

weight of that symbol. The weight increases by pow-

ers of ten as position shifts right to left.

digital. Pertaining to quantities which vary in discrete

increments such as integer numbers. See analog.

DIIDD, Disk II Device Driver. The subroutine of

ProDOS that is called to read or write a 512-byte

block of floppy disk data. See RWTS.

DIP, Dual In line Package. A type of electronic com-

ponent structure in which pins run lengthwise in two

parallel rows. All ICs in the Apple lie are DIP ICs,

but there are some SIP (single in line package) resis-

tor networks.

disassembler. A program which attempts to interpret

data in memory as a machine language program and

converts it to an assembly language listing. A firm-

ware disassembler in the Apple lie can be called viJ

the monitor "L" command,

DMA, Direct Memory Access. Direct access to mem
ory from devices other than the MPU. In the Appk

He, data is directly accessed in memory by the vij«

scanner/video generator combination without MPL
participation. Additionally, a card in any periphera

slot can directly access memory and other mother

board devices by pulling the DMA' line low.

dot matrix. A method of forming displayed or printet

characters in which individual dots at fixed positioni
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in a matrix are displayed as necessary to form the
characters.

DOUBLE-RES mode. A term used in this book to refer
to the double horizontal resolution (motherboard and
auxiliary card map) display mode of the Apple He.
DOUBLE-RES mode is further categorized as the
TEXT80, LORES80. and HIRES80 modes. See SIN-
GLE-RES mode.

driver. (1) A program which manages specific hard-
ware or I/O functions, e.g. a printer driver. (2) A
hardware device that supplies signals at the voltage
and current required by other hardware devices, e.g.

the Apple He bidirectional peripheral data bus driv-
er.

Dvorak keyboard layout. An alphabetic keyboard lay-

out that is designed to allow faster touch typing
speed than the standard QWERTY layout. Dvorak is

available as an alternate layout in the keyboard ROM
of the American Apple He.

dynamic memory. Memory in which data will bleed off

and lose its validity if it is not regularly refreshed.
RAM in the Apple He is dynamic and must be re-

freshed every 2 milliseconds.

Easter egging. A troubleshooting method where possi-

bly failed components or assemblies are replaced
with known good units. Easter eggers can sometimes
repair equipment they know little or nothing about.

edge sensitive input. An electronic circuit input which
is sensitive only to changes in signal level. The 6502
NMI' input is an edge sensitive input which responds
only to negative voltage transitions. See level sensi-

tive input.

EPROM, Erasable Programmable Ftead Only Mem-
ory. A type of PROM that can be erased and repro-
grammed. Subtypes include UVEPROM (ultraviolet
light erasable PROM) and EEPROM (electrically

erasable PROM). See ROM, PROM.
exclusive OR gate. A logic gate from which the output

will be true if and only if at least one. but not all,

inputs are true.

firmware. Programs and data stored in ROM. Firm-
ware determines many of the operational features of
the Apple He.

flag. (1) A memory location used by a program to sig-

nify some sort of status. A common way to use a loca-

tion as a flag is to set or reset its most significant bit.

(2) A readable indicator of hardware status such as

_
the status flags of the 6602, MMU, and lOU.

flip-flop. A 1-bit storage device capable of storing data
in response to its logical inputs and a clockpulse.
Registers of older computers were comprised of a
number of flip-flops with a substantial amount of

associated logic gating.

float. If all devices capable of controlling the voltage on
an electrical conductor are isolated from the conduc-
tor, the conductor is said to float. In the Apple He, all

conductors on the address bus or data bus can be iso-

lated from control, so these buses sometimes float.

Logic which creates this condition floats the bus.

flux. Lines of force used to represent a magnetic field.

The lines of force provide a mental picture for visual-

izing the substance of a magnetic field. In theoretical

calculations, field strength is proportional to flux

density.

font, character. Patterns of ONEs and ZEROs stored
in memory which represent the dot image of dot
matrix text or graphics characters.

frequency response. The response of an electronic cir-

cuit or device as frequency varies. Good high fre-

quency response is required in video monitors used
with high resolution video computers like the Apple
lie.

gate. A logic circuit having one output and more than
one input. Like a gate in a fence, the logic gate allows
intelligence to pass when the inputs are correct. AND
gates and OR gates are two types of gates. When an
input activates a logic device, it is said to "gate" it on.

general purpose computer. A computer whose stored
program may be altered to change its purpose. This
is normally achieved by storing the program in ran-
dom access, read/write memory. See special purpose
computer.

hacker, hack, computer hack, A person who builds or
modifies computer electronic assemblies, mostly for

fun. More loosely defined, any person who thinks
computers are fun.

HAL, Hard Array Logic. An IC whose logical func-

tions, within a given framework, are fixed when it is

manufactured. HAL is similar to masked ROM ex-

cept that logical functions, instead of stored data, are
specified. See PAL.

handler. A program designed to handle a specific oc-

currence such as an interrupt or system reset.

hardware. The components and assemblies of which a
computer and its peripherals are marie.

Hertz, Hz. A unit of frequency measurement which
used to be referred to more sensibly as cycles per
second or cps.

hexadecimal numbering .system. A .system based on
powers of 16, as opposed to the powers of 10 in the

decimal system. The 16 symbols of the hexadecimal

system arc 0, 1, 2, 3, 4, 5, 6, 7, S. 9, A, B. C. D. E and
F.

high level language. A computer language whose com-
mands correspond to machine language routines.

High level languages are easy to use and powerful.

The predominate high level language of the Apple

He is Applesoft BASIC.

high RAM. A term used in this book to refer to RAM in

the Apple He that is addressed at gDOOO—$FFFF.

horizontal scan. The movement of the electron beam in

a television from left to right across the face of the

CRT.

impedance. The quality of hindrance of an electrical

device to current flow at a given signal frequency or

range of signal frequencies. Impedance, like resis-

tance, is measured in ohms. In computer 3-state logic,

the three states are high voltage, low voltage, and

high impedance (high isolation).
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I/O links, I/O hooks. Memory locations which contain

the addresses of the primary input and output rou-

tines of the Apple He. The output link is CSW (Char-

acter output switch, locations $36 and $37), and the

input link is KSW (Keyboard input SWitch, locations

$38 and $39),

I/O port. The conceptual entry point through which

data flows in I/O operations. For example, in the

Apple He, $C0OO is the address of the keyboard input

port, and keyboard data is loaded from address

$C000.

input/output, I/O. The process of moving- information

to and from a computer, as in keyboard input, video

outjiut, disk I/O. and printer output.

Integer BASIC. The original BASIC interpretive lan-

guag-e, supplied with the Apple II and Apple lie. It

was written by Steve Wozniak, the principle designer

of the original Apple II computer. Integer BASIC is

included on the DOS ,3.3 system master and can be

loaded to and run resident in Apple lie high RAM.
integrated circuit, IC, chip. An electronic component

into which the functions of many other components
are integrated. Ti'pically. a chip will be the equiva-

lent of thousands of diodes, transistors, and resistors.

interface. Communication circuitry between two de-

vices, such as the interface between an Apple lie and
a printer.

interlacing. A technique in which alternating televi.sion

vertical scans are displaced from each other. This in-

creases vertical resolution without introduction of

screen flicker.

interpreter. A program which interprets stored se-

quences of high level commands and executes them
via fixed machine language subroutines. The Apple
He is supplied with Applesoft BASIC interpreter in

ROM.
interrupt. A signal or instruction which, when active,

causes a computer to interrupt sequential program
execution and branch to an interrupt handling pro-
gram. The 6502 has four types of interrupts: RESET.
the Non-Maskable Interrupt, the Interrupt Request,
and the BREAK instruction.

lOU. Input/Output Unit. A custom IC in the Apple He
and Apple lie which performs logical functions re-
lated to video output and other I/O.

joystick. A device which converts the two dimensional
motion of a lever into measurable electrical equiva-
lents of the X and Y components of the motion. Nor-
mally an Apple lie joystick wilt be made of two
potentiometers, one which responds to y-axis motion
of the lever and one which responds to x-axis motion.

KSW, Keyboard input SWitch. See I/O links.

least significant bit, LSB. The bit of a binary word or
number which has the least weight or significance.
The rightmost bit of a binary number.

level sensitive input. An electronic circuit input that
responds to stable voltage levels, not just changes in
voltage levels. The 6502 IRQ' input is an example of a
level sensitive input. See edge sensitive input.

linear IC. A type of IC used in linear amplification and
other analog functions, as opposed to digital switch-
mg functions. Some linear ICs used in the Apple He

are 556 (on the disk controller) and 558 timers anri
the 741 cassette input amplifier.

LSTTL, Low powered Sehottky TTL. A type of TTl
which provides a good compromise of high speed and
low power consumption. Most Apple He TTL is
LSTTL. The name comes from Schottky-Barrier
clamping and coupling diodes inside the IC.

machine cycle. A clocked cycle of an MPU. The ma-
chine cycle of the 6502 in the Apple He is the period
between high to low transitions of the PHASE 2
clock.

machine language. The language of the central pro-
cessor, of a computer (6502 machine language in the
Apple He).

mainframe computer. When computers were physi-
cally large, the structure which held the central pro-
cessor was called the mainframe. Computers which
have such separate structures are mainframe com-
puters,

Megahertz, MHz. One million Hertz. One million
cycles per second.

memory cell. A portion of memory capable of storing
one bit of information.

memory mapped I/O. A method of I/O implementation
in which addresses are assigned to I/O functions. The
Apple lie uses memory mapped I/O, and Apple He
I/O device addresses are in the $C0O0—$CFFF range.

memory mapped video. A method of computer video

display generation in which a map of the screen dis-

play is placed in memory. In the Apple He, the MPU
builds the screen map in memory, and the memory
map is independently scanned for video processing

by video scanning circuitry in the lOU.

microprocessing unit. MPU, microprocessor. The 1-

ehip central processing unit of a microcomputer. This

definition is a good subject for an argument,

microsecond, ^usee. One millionth of a second. One thou-

sand nanoseconds.

millisecond, msec. One thousandth of a second. One
thousand microseconds.

MMU, Memory Management Unit. A custom IC that

manages overall response to MPU addressing in the

Apple He and Apple lie.

mnemonic. That which is intended to assist our memo-
ries. MPU op codes reside in memory as binary num-
bers, but they are referred to by mnemonic labels

such as LDA (LoaD Accumulator) in assembly lan-

guage programs.

modulate. To vary a high frequency signal as a function

of a lower frequency signal. The video output signal

of the Apple He can be used to amplitude modulate a

television frequency signal, and that modulated sig-

nal can be received by a television set. The high fre-

quency signal carries the video to the TV and is

called an RF carrier.

monitor. A program which provides for communication
with a computer at a very basic level. Common capa-

bilities include program start up, memory modifica-

tion, and monitoring of computer registers.

monitor, video. An electronic device which generates a

display from a video input signal. It is not capable of

television radio frequency signal reception.
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monochrome. Of one color. A name for black and white
television which accurately describes the fact that
there is only one color tone displayed.

MOS integrated circuit. A chip using metal-oxide
semiconductor technology. MOS ICs in the Apple He
include the 6502, ROM, RAM, the lOU and theMMU.

most significant bit, MSB. The bit of a binary word or
number which has the greatest weight. The leftmost
bit of a binary number.

motherboard. A printed circuit card into which small-
er printed circuit cards can be plugged.

multimeter. An instrument which can measure electri-
cal voltage, resistance, or current.

multiplex. Tb combine multiple sources of information
onto one tine. There are a number examples of time-
multiplexing in the Apple He in which several possi-
ble signals are switched onto a line, one after the
other.

NAND gate. A logic gate from which the output will be
false if, and only if, all of its inputs are true.

nanosecond, nsec. One billionth of a second.

negative logic. A system of logic analysis in which the
high voltage state is considered to be false or zero,
and the low voltage state is considered to be true or
one. See positive logic.

NOR gate. A logic gate from which the output will be
false if, and only if, any of its inputs are true.

NTSC, National Television Systems Committee. The
television system used in the United States and some
other countries. See PAL, SECAM.

NTSC motherboard. The version of the Apple He moth-
erboard that is operated in the United States and
other countries that use the NTSC standard televi-
sion system. See PAL motherboard.

object file. The result of an operation which processes a
group of data and stores the result elsewhere. In
assembly language processing, the assembly language
source file is assembled into a machine language
object file.

octal numbering system. A system based on powers of
8, as opposed to the powers of 10 in the decimal sys-
tem. The eight symbols of the octal system are 0. 1, 2
3, 4, 5, 6, and 7.

ohm. The unit for measuring electrical resistance and
impedance.

ohmmeter. A device which measures electrical resis-

m f'^x'^^'^^"^
resistance is measured with a VOM

'™t-Ohm Meter) or multimeter which performs
other functions besides resistance measurement.

op code, operation code. The part of a machine lan-
guage instruction which specifies the command which
IS to be performed. The op code of each 6502 instruc-
tion IS the first byte of that instruction.

open collector. A class of TTL IC outputs which are
tied only to an open transistor collector inside the IC.
Open collector outputs are useful for driving wire-OR
lines and interfacing to non-TTL devices.

operand. The entity operated on by a machine language
instruction. In "LDA $00", the operand is the con-
tents of memory location 0, In "SEC", the operand is

the carry bit of the 6502 Status Register.

OR gate. A logic gate from which the output will be
true if, and only if, any of its inputs are true.

oscillator. An electronic circuit that generates an out-
put signal that alternates between high and low vol-
tage peaks. The 14M signal is produced by a 14.31818
MHz oscillator in the 60 Hz Apple He.

oscilloscope, A test instrument which produces a cath-
ode ray tube display of a test voltage, plotted against
time.

page. (1) The 6502 memory addressing range of $10000
bytes is divided up into $100 pages of 1100 bytes
each. 1000—$OFF is Page 0; $100-$1FF is Page 1;

etc. (2) There are four RAM address ranges that can
be scanned for video output in the Apple He. These
are TEXT/ LORES PAGE 1, TEXT/LORES PAGE
2. HIRES PAGE 1, and HIRES PAGE 2. PAGE
1/PAGE 2 selection in the Apple He is performed via
programmed manipulation of the PAGE2. 80STORE
and HIRES soft switches.

PAL, Phase Alternating Line. The television system
used in most western European countries and some
other countries. See NSTC, SECAM.

PAL, Programmable Array Logic. An EC whose logi-
cal functions, within a given framework, can be pro-
grammed after the IC is manufactured. PAL is

similar to PROM except that logical functions, in-

stead of stored data, are programmed. See HAL.
PAL motherboard. The version of the Apple He moth-

erboard which is operated in countries that do not
use the NTSC television system. PAL motherboards
have a PAL color video encoder built in. See NTSC
motherboard.

parallel data transfer. Simultaneous transfer of n bits

of data on n lines, as in 8-bit parallel data transfer
between the MPU and memory in the Apple He.

peripheral slots, peripheral bus, Apple bus. The
seven slots in the back of the Apple He and their

associated electrical connections.

phase. The angular position of a cyclic event referenced
to some event of the same frequency. For e.'tample.

HIRES violet video is 180 degrees out of phase with
HIRES green video.

pipelining. A process by which program execution
speed is increased in the 6502. In pipelining, the next
instruction's op code i.-^ fetched during the last execu-
tion cycle of instructions which do not write to the

data bus.

poll. In programming, to repeatedly examine an ad-

dressed location or to examine a series of addressed
locations until a certain indication is given, e.g. pol-

ling the disk controller data register for an MSB set

indication.

positive logic. A system of logical analysis in which the

high voltage state is considered to be true or one, and
the low voltage state is considered to be false or zero.

The Apple He and most modern computers use posi-

tive logic. See negative logic.

potentiometer, pot. A mechanically variable resistor.

Typically, resistance will be proportional to the shaft

rotation of the pot. Apple He paddles are pots with

knobs on them.
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power supply. An electronic assembly which converts

an AC (alternating current) line voltage to usable DC
(direct current) power. The Apple lie power supply

converts household power to +12V, -12V, +5V, and
—5V referenced to ground.

printed circuit card, PC board, A thin card nnade of

an insulating material upon which electronic compo-

nents are mounted. The component wiring is "print-

ed" on the board. The printing process involves start-

ing with a card completely coated with conductive

metal, then etching away everything but the desired

conductive parts using photo-chemical methods,

program counter. A counter in a computer which con-

tains the memory address of the instruction being

executed. The 6502 has an internal 16-bit program
counter.

PROM, Programmable Read Only Memory. Read
only memory that can be programmed after it is

manufactured. See ROM, EPROM.
propagation delay. The time it takes for a signal or

voltage to travel between two points. In logic gating,

the time required for an output to respond to a

change in associated inputs.

R/W line, read/write line. The signal by which the

MPU indicates whether it will receive data from or

tran.sfer data to an addressed device. The R/W line is

best thought of as an extension of the address bus.

See address bus, data bus.

RAM, alterable memory, read/write memory. Mem-
ory in which a computer can store or access data.

random access memory. Memory in which any loca-

tion can be accessed at will, such as the RAM and
ROM in the Apple lie. See serial access memory.

raster. The pattern of scan lines produced on the screen

of a monitor or television. The 60 Hz Apple He raster

contains 262 lines with no interlacing.

read cycle. A machine cycle in which the MPU receives

data from the addressed location via the data bus.

read-modify-write instructions. A class of MPU in-

structions in which an operand is read from a mem-
ory location, then modified, then returned to the

same memory location. 6502 read-modify-write in-

structions include ASL, LSR, ROL, ROR, INC, and
DEC.

refresh. (1) The process of renewing data in dynamic
memory before it bleeds off. (2) The process of renew-
ing an image on a cathode ray tube by rescanning the

image before it fades away.

register. A temporary storage device which holds more
than one bit of information. It will normally serve
some special logic purpose. Examples include the
6502 internal registers and the data register of the
Disk II controller.

relocatable program. A program which does not have
to be in one specific memory range to be properly
executed. It can be relocated to different memory
areas for execution.

resistance. The quality of hindrance of an electrical
device to direct current flow. Resistance in a current
path may be controlled by installing fixed or variable
resistors. The unit of measurement of electrical re-

sistance is the ohm.

retrace. In electron beam scanning across the face of a
television or monitor picture tube, the very fast
return of the beam from right to left during which
the picture is blanked. See trace.

RF modulator. A device which varies a high frequency
signal as a function of a lower frequency signal. See
modulate.

ROM, read only memory, non-volatile memory, non-
alterable memory. A type of memory which the
computer cannot write to or otherwise alter. It holds
programs and data which are always available when
power is applied, such as BASIC and the monitor in

the Apple lie. See PROM, EPROM.
RWTS, Read or Write a IVack and Sector subrou-

tine. The subroutine of DOS 3.2 and DOS 3.3 that is

called to read or write the data field of a floppy disk
sector or to format a floppy disk. See DIIDD.

SECAM, SEquential Color And Memory. The televi-

sion system used in France and some other countries.

There are at least two versions of SECAM in use. See

NSTC, PAL.

serial access memory, Memory which can only be
accessed by sequencing through locations until the

correct location is found. High speed magnetic tape

and bubble memory are examples of serial memories.

See random access memory.

serial data transfer. Transferring data one bit at a

time over a single line, as in the shifting of text pat-

terns to the PICTURE signal.

serrations. Narrow horizontal sync pulses superim-

posed on the long vertical sync pulse in a video signal

that prevent televisions and monitors from becoming

horizontally unstable during the vertical sync pulse.

See Figure 8,2,

simultaneous DMA. Direct memory access from a de-

vice other than the MPU which occurs when the

MPU is not communicating with memory and which

does not slow execution of MPU programs. Video

scanner access to RAM is an example of simultane-

ous DMA in the Apple lie.

SINGLE-RES mode. A term used in this book to refer

to the normal horizontal resolution (motherboard

map only) display mode of the Apple lie. SINGLE-
RES mode is further categorized as the TEXT40,

LORES40, and HIRES40 modes. See DOUBLE-RES
mode.

SIP, Single In line Package, A type of electronic com-

ponent structure in which pins run lengthwise in a

single row. There are several SIP resistor networks

in the Apple He.

soft switch. A conceptual switch that can be turned on

or off by programmed references to its on or off

address. Soft switches are used for a multitude of

control functions in the Apple He including memory
management and display mode control.

software. Programs and data stored in RAM and on

storage media such as disks,

source file. A source of data for data processing. In

assembly language processing, the assembly langu^e
source file is assembled into a machine language

object file.
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special purpose computer. A computer whose function

cannot be changed by altering a stored program. The
functions of a special purpose computer may be hard

wired, or the computer may execute fixed programs

stored in ROM.

stack. In microcomputers, an area of memory set aside

for temporary storage and subroutine return link

information. In programming, the stack is conceptu-

ally similar to a stack of cards which can be drawn

from or discarded to, one card at a time.

static memory. Memory which requires no refreshing

to retain its data, such as the static ROM on the

Apple He motherboard or the static RAM on the IK

auxiliary RAM card.

status register. A register in a central processor which

contains control information. In the 6502, the status

register contains indicators of the logical results of

various executed commands.

strobe. A short pulse that performs a triggering or

clocking action. Strobes in the Apple He include

RAS', CAS', the C040 STROBE', and the keypress

strobe from the keyboard encoder.

SYNC (6502). A 6502 output signal that goes high

when the 6502 is fetching an op code. The 6502

SYNC signal is connected to pin 39 of the seven

Apple lie peripheral slots.

television sync. That part of the television signal which

synchronizes the scanning of the electron beam in the

CRT. It includes horizontal and vertical sync.

trace. In electron beam scanning across the face of a

television or monitor picture tube, the scan from left

to right during which the the picture is displayed.

See retrace.

tri-state logic, three-state logic. A logic system in

which there are three states: high voltage, low vol-

tage, and high impedance. Devices connected to the

Apple lie data bus have tri-state outputs so the var-

ious devices are able to share control of the data bus.

troubleshoot. To isolate and repair the casualties in a

failed piece of hardware.

TTL, IVansistor-TVansistor Logic. The logic family to

which most general logic ICs in the Apple lie belong.

Both the inputs and outputs of TTL chips are con-

nected to transistors inside the chip. As opposed to

MOS devices like RAM, ROM. and the 6502, TTL
circuits are made using bipolar technology.

underware. A substitute for firmware used by some of
Apple's competitors to cut costs.

vector. An address or jump instruction stored in a
memory location which contains program flow infor-
mation in case of certain events. An example is the
interrupt vectors stored in high memory in a 6502
based computer.

vertical scan. The movement of the electron beam in a
television down the face of the CRT. In the 60 Hz
Apple He, 262 horizontal scans occur during every
vertical scan.

video. A signal which can be used to control the energ\'
of the electron beam of a CRT. thus controlling dis-
play intensity, as in television video, radar video, and
oscilloscope video. In television processing, the com-
bination of picture, s.vnc. and color information is

commonly referred to as video.

video scanner, video scan counter. Terminolog>' used
by this book to describe a counter inside the lO'U that
controls memory scanning for video output in addi-
tion to controlling the television or monitor display
scan.

volt. A unit for measuring voltage. Voltages of +12. -12,

+5, and -5 volts are distributed throughout the
Apple He.

voltage, electromotive force, EMF. A forte of nature
which, when present, causes chai'ged particles to

move; the force which causes electric current. \'ol-

tage is measured in volts.

wetware. A gra\' matter found within the craniums of

most humans.

wire-OR, collector-OR. A low level OR gate formed by

wiring various signals together. The RESET', IRQ',

NMF, INHIBIT', and DMA' signals of the Apple He
are examples of wire-OR connections. Any peripheral

card may bring any of the wire-OR lines low, but

cards not bringing a line low must present a high

impedance to that line. If no peripheral card is bring-

ing a wire-OR line low. a 830(1 ohm motherboard re-

sistor will pull the line high.

write cycle. A machine cycle in which the MPU sends

data to the addressed location via the data bus.
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H'ademarks

The following is a list of Registered Trademarks referred to in the text of Understanding

the Apple lie.

Apple Apple Computer, Inc.

Apple II Apple Computer. Inc.

Apple 11 Plus Apple Computer, Inc.

Apple lie Apple Computer, Inc.

Apple lie Apple Computer, Inc.

Applesoft Apple Computer, Inc.

CP/M Digital Research, Inc.

Donkey Kong Nintendo

HAL Monolithic Memories, Inc.

PAL Monolithic Memories, Inc.

Microsoft Microsoft, Inc.

Softcard Microsoft, Inc.

TRI-STATE National Semiconductor Corporation

Z80 Zilog, Inc.
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6502/65C02 Data

In attempting to analyze Apple timing, it is dis-

couraging to find that the three 6502 nnanufactur-

ers have different specifications, even though the

MSC6502. R6502, and SY6502 should all perform

identiealiy. It is even more discouraging to find

that the specifications are well beyond the range

of typical operations, I therefore feel that Figure

4.5, which shows some measurements made of a

Synertek 6502 in an Apple He, is a more realistic

indicator of 6502 timing than the manufacturers'

data sheets. Nevertheless, a partial reproduction

of Rockwell International's data sheet is given

here. This data is reprinted with the permission of

Rockwell International Corporation, copyright

1981, all rights reserved.

Rockwell's timing specification charts are fol-

lowed by the author's compilation of the 2 MHz
timing charts of the Synertek, Rockwell Interna-

tional, and MOS Technology 6502 data sheets

(Table C.l). Every attempt was made to make the

data in this compilation faithfully represent the

data contained in each manufacturer's data sheet.

Table C.l is followed by a layout of the author's

which shows the execution periods of the various

6502 instructions CRible C,2).

Following the 6502 data is a partial reproduc-

tion of the NCR 65C02 data sheet. This data is

reprinted with the permission of NCR Corpora-

tion, copyright 1982, all rights reserved. The

65C02 data sheet is included here because a grow-

ing number of owners will be using a 65C02 in

their Apple lie's now that Apple has released the

firmware upgrade. Following the 65C02 data

sheet is a layout of the author's which shows the

execution periods of the various 65C02 instruc-

tions (Table C.3).
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0^ Rockwell
R6500 Microcomputer System

DATA SHEET

R6500 MICROPROCESSORS (CPU)

SYSTEM ABSTRACT

The 8-bit R6500 microcomputer system is produced with M

Channel, SiHcon Gate technologv- '« performance spWfls are

enhanced by advanced system architecture. This innovative

architecture results in smaller chips - the semiconductor threshold

is cost-eHectivitv System cost effectivity is further enhanced by

providing a family of 10 softv^are-compatible microprocessor

(CPU) devices, described in this document. Rockwell alio pro-

vides memory and microcomputer system- as well as low^-cost

design aid& and documentation.

R6500 MICROPROCESSOR (CPU) CONCEPT

Ten CPU devices are available. All are software-compatible.

They provide options o' addressable rnemory, interrupt input,

on-chip clock oscillators and drivers. All are bus<ompatible

with earlier generation microprocessors like the M6800 devices.

The family includes $iK micrpprpcessors with on-board dock
oscillators and drivers and four microprocessors driven by external

clocks, The on chip clock versions are aimed at high performance,

low cost applications where single phase inputs, crystal or RC
inp^jts provide the time ba$e. The external clock versions are

geared for multiprocessor system applications where maximum
timing control is mandatory. All R6S00 microprocessors are

also available in a variety of packaging (ceramic and plastici,

operating frequency 11 MHz, 2 MH? and 3 MHzl and temperature

(commercial and industrial versions.

MEMBERS OF THE R6500 MICROPROCESSOR
(CPU) FAMILY

Microprocessors with Internal Two Phase Clock Generator

Modtl AddrvsubJa Memory

R6502
FI6503

F16504

H6505
R650fi

R6507

64K Bytes

4K Bytes

SK Bytes

4K Bytes

AK Bytes

SK Bytes

Microprocessors with Exurnal Two Ptiase Clock Input

Mod*l AddrMMbl* Mtmwv

R6S12
R6513
R6514
R6S15

64K Bytes

4K Bytes

SK Bytes

4K Bym

FEATURES

• Single *-^\/ supply

• N channel, $i)icon gate, depletion load technology

• Eight bit parallel processing

• 56 Instructions

• Decimal and binary arithmetic

• Thirteen addressing modes

• True indexing capability

• Programmable stack pointer

• Variable length stack

• Interrupt capability

• Non-maskable interrupt

• Use with any type of speed memorv
• 3bit Bidirectional Data Bus

• Addressable n^emory range of up to 64K byt^t

• "Ready" input

• Direct Mennory Access capability

• Bus compatible with M6800
• 1 MHz, 2 MHz, and 3 MHz versions

• Choice of external or on<hip clocks

• On-thechip clock options

- EKternal single clock input

- Crystal time base input

• Commercial and industrial temperature versions

• Pipeline architecture

Ordering Information

OrdarNumb«r: R65XX

-Temperature Range:

NosuHix =0OCto+70OC

E = ^oc to +850C

{(rtdusiriaO

^^ Package: C-Caramic
P * Pl«tic

-Frequancv RAnga:

No suffix « 1 MHf
A - 2 MHz
B - 3 MHi

-Modtl Daftgnttor:

XX - 02, 03,04, ,..ie
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SPECIFICATIONS

Mwimum Ratingi

R*tin( Svmbal Valm Unit

Supply VolHflB

Input Voltage

Op«ritin»T«mper«ture

Commercial

Induitriel

Storage Temporatufe

;;cc

"in
T

Vg

-0.3 to tT.O

-0 3 to +7.0

to +70

-to to +B5

-55 to +) 50

Vdc

vac

°c

NOTE
Tftu device contains input protection againit dimage to high static voltages or electric fields;
should be taken to auoid application ot voltages higher than the maximum rating.

however, precautions

ElfCtrieal Charicttrjttict

(Vj.(.-5.0±S«.Vgg = 0l

«,, *2 •M'li« 'o 06612, 13, 14, 15, «gj;„) applies to R6502, 03. 04, OS, 06 and 07

ChirKtitristPC Symbol Min Max Unit

Input High VoUage ^H Vdc

•-^S'^- *olin) 2.0
^CC

*V">2 -0.3 V^C + 0,25

Input Low Voltage
^IL Vdc

''"''=
*o(ml -0.3 0.8

*r*2 -0.3 04

Input Leakage Current 1. pA
(V.^ = to 6.2SV, V^^ = 01

Logic (Excl, Hdv.S.O-l - 2.5

*r*2 - 100

*o(in(
- too

Three-State (Off Statel Input Current
'tsi MA

IV.^^ = 0.4to2.4V, V(,j, = 5.ZSV)

Data Lines - 10

Output High Voltage ^OH Vdc

"load ' -''°° *'*''= ^cc * '^^'

SVNC, Data.AO-AIS.Bm, 4>y *, ^SS^^*
-

Output Low Voltage ^OL Vdc

"load=^-S'^*<*'.V-*"^*
SYNC. Data, A0.A15,R/W, *,.«, ^SS^"'^

Power Disiipation
^D

mW
1 and 2 MHi - 700

3 MHz - 800

CapKjitance at 2S°C c pF

(V.^-0, f- IMHll

Logic
Cin

- 10

Data - 15

A0A15.R/W,SYNC
<=ou,

- 12

*o(in) '^^(inl
- 15

*t c*, - 60

j C*j eo

NOTE
IRQ a nd NMI require 3K pull-up resistor.

SOiCll;
*ill]fi«
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R65XX Timini)

ChvacWfjstic Symbpt

1 MHi 2UHi 3MHl

UnitIVIin Man Min Mix Min M<>

Rrt« EetLjp Tpone trws _ 255 _ 140 _ 110 ns

R^W HoldT<me Thriw 30 - 30 - 15 - ns

Adb^e^j Seiup Time Tads - 225 - 140 - 110 n»

Addiesi Hold Tme Tha 30 30 - 15 ~ rii

Head AcceH Time "fACC - B50 - 310 - 170 ni

Head Oao Selup Time Tdsu 50 - 40 - 35 - ft*

Re5d Data Hold Tpme Thh 10 - 10 - 10 - ni

Write Data Setjp Time Tmds 175 - lOo ^ 85 rt*

w.iTe Dare Hold Time Thiw 30 - 30 - 30 - n*

SVNC Hold T.me TSYM 30 - 30 - 15 - m
RDV Setup T.me- "''rov IDO - 50 - 35 - rtS

S,0. Settjp Time TSO 100 - 50 - 35 - ns

SVNC Setup Time TSYN - 225 - ns - 100 ns

RDV must nevdrsi^

LOAD = ISOpf +

MOTE
(tell states wit

TTL
titn Rroy to end of *2

meOX CPU ao^ Timing

Charaeurittie Symbol

IMHi 2MHi 3MHl

UnitMin Ma> Min M« Min Mw

Cytale Time

^ollnl '"°" Time

*3lln'
"*Tinie

*i;lln(
"'"'""' f'I'Ti™-

*, Pul.e Width

0^ Pulse Width

Delav Between «i ahd ^2
<^y lb-2 Rise and Pail Time"

Tcvc
Tl*o
THido

TPWH*!

1.0

480

420

4eo
430

10

10

35

0.5

240

240

23S

240

10

10

25

0,33

160

160

tss

160

10

10

15

rH

n*

nt

ni

nf

ni

ni

NOTE
• Measurod bcineen O.B and J.O poinu on luaviform load 1 30 pF + 1 TTL

B^
..tsrflSfi
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s
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Table C2 6502 Instruction Execution Periods In Mactilne Cycles.

IMP REL IM^ N3C 0PG 0PG
X

0PG
Y

AES ADS
X

ABS
Y

IMJ IND
X

IND
Y

ADC AND CT1P BOR
IDA ORA SBC

2 3 4 4 4* 4* 6 5*

ASL I£R BOL BOR 2 5 6 6 7

BO; BCS BEQ BMI

BNE Ba BVC BVS
2+p

CLC cm dJ CLV

DEX OEY INX INY
MOP SBJ SEB SEI
TAX TAY TSX TOA
TXE TYA

2

BIT 3 4

BRK 7

CPX CPY 2 3 4

DEC INC 5 G 6 7

JflP 3 5

JSE 6

ma 2 3 4 4 4*

LDY 2 3 4 4 4*

PHA PHP 3

PLA PLP 4

RTI 6

RTb fa

STA 3 4 4 5 5 6 6

STX J 4 4

STY 3 4 4

• +1 cycle if indexing crosses page boundary,

** p=0 i£ braidi does r»t occur.
p=l if branch within page occurs.
jf^2 if branch across page boundary occurs.
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• SIGNAL DESCRIPTION*
Address Bus <A0-A15)
A0-A15 forms a 16-bit address bus for memorv and I/O
exchanges on the data bus. The output of each address
line is TTL compatible, capable of driving one standard
TTL load and 130pF.

Clocks (Oo, Ol,and02)
Og is a TTL level input that is used to generate the inter-

nal clacks in the 6502, Two full level output clocks are

generated by the 6502. The 82 clock output is in phase

with Oo- The 01 output pin is 180° out of phase with Og.

(See timing diagram.)

DataBus(DO-07l
The data lines (O0-D7) constitute an 8-tait bidirectional

data bus used for data exchanges to and from the device

and peripherals. The outputs are three-stale buffers

capable of driving one TTL toad and 130 pF.

Interrupt Request (IRQ)

Th>5 TTL compatible input requests that an interrupt

sequence begin within the microprocessor. The IRQ is

sampled during 02 operation; if the interrupt flag in the

processor status register is zero, the current instruction

is completed and the interrupt sequence begins during

01. The program counter and processor status register

are stored in the stack. The microprocessor will then set

the interrupt mask flag high so that no further IRQs
mav occur. At the end of this cycle, the program counter

low will be loaded from address FFFE, and pro<iram

counter high from location FFFF, transferring program

control to the memory vector located at these addresses.

The RDY signal must be in the high state for any inter

rupt to be lecognized. A 3K ohm external resistor should

be used for proper wire OR operation.

Memory Lock |ML(
In a multiprocessor system, the ML output indicates the

need to defer the rearbitration of the next bus cycle to

ensure the integrity of read-modify -write instructions.

ML goes low during ASL, DEC. INC, LSR, ROL, ROR,
TRB, TSB memory referencing instructions, This signal

is low for the modify and write cycles,

Mon-Maskable Interrupt (NMD
A negative-going edge on this input requests that a non-

maskable interrupt sequence be generated within the

microprocessor. The NMI is sampled during 02; the cur-

rent instruction IS completed and the interrupt sequence

begins during 0i, The program counter is loaded with

the interrupt vector from locations FFFA (low byiel

and FFFB (high bytel, thereby transferring program con-

trol to the non-maskabte interrupt routine.

Heady (RDY)
This input allows the user to single-cycle the micropro-
cessor on all cycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (O1), will halt the microprocessor with the out-
put address lines reflecting the current address being
fetched, This condition will remain through a subsequent
phase two (Cj) in which the ready signal is low. This fea-

ture allows microprocessor interfacing with low-speed
memory as well as direct memory access (DMA).

Reset (RES)
This input is used to reset the microprocessor. Reset
must be held low for at least two clock cycles after

Vdd reaches operating voltage from a power down. A
positive transistion on this pin will then cause an initiali-

zation sequence to begin. Likewise, after the system has
been operating, a low on this line of at least two cycles
will cease microprocessing activi ty, followed by inilial-

iiation after the positive edge on RES.

When a positive edge is detected, there is an initialization

sequence lasting six clock cycles. Then she interrupt

mask flag is set, the decimal mode is cleared, and the pro-

gram counter is loaded with the restart vector from loca-

tions FFFC (low byte) and FFFD (high byte). This is

the start location tor program control. This input should
be high in normal operation,

Read/Write (R/W)
This signal is normally in the high state indicating that

the microprocessor is reading data from memory or I/O

bus. In the low state the data bus has valid data from the

microprocessor to be stored at the addressed memory
location.

Set Overflow (SO)

A negative transition on this line sets the overflow bit in

the status code register. The signal is sampled on the trail-

ing edge of 0i.

Synchronize (SYNC)
This output line is provided to identify those cycles dur-

ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during 9] of anOP CODE
fetch and stays high for the remainder of that cycle. It

the RDY line is pulled lov/ during the 0i clock pulse in

which SYNC went high, the processor will stop in its

current state and will remain in the state until the RDY
line goes high. In this manner, the SYNC signal can be

used to control RDY to cause single instruction execu-

tion.

Note; Since this interrupt is non-maskable, another NMI
can occur before the first is finished. Care should betaken

when using NMI to avoid this.

•These signal descriptions, taken directly from the NCR 65C02 specifications, are also accurate for 6502 signals.
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NCR NCR65C02

> GENERAL DESCRIPTION

The NCR CMOS 6S02 is an 8bit microprocessor which is soft-

ware compatible with the NMOS 6502. The NCR6SC02 hardware

Interfaces with all 6500 peripherals. The enhancements include

eight additional instructions, expanded operational codes and

two new addressing modes. This microprocessor has all of the ad-

vantages of CMOS technoiogy: low power consumption, increased

noise immunity and higher reliability. The CMOS 6502 is a low

power high performance microprocessor with applications in the

consumer, business, automotive and communications market.

FEATURES

Enhanced software performance including 27 additional OP codes
encompassing ten new instructions and two additional
addressing modes.

66 microprocessor instructions.

T5 addressing modes.

t78 operational codes.

IMHz, 2MHz operation.

Operates at frequencies as low
as 200 Hz for even lower power
consumption (pseudo-static: stop during 02 ^'9^)

Compatible with NMOS 6500 series

microprocessors.

64 K-byte addressable memory.

Interrupt capability-

Lower power consumption.
4mA @ IMHz.

+5 volt power supply,

8-blt bidirectional da!a bus.

Bus Compatible with M6800.

Non-maskable interrupt.
All [IRES!

40 pin dual-in-line packaging.
'"''

8-bit parallel processing

Decimal and binary arithmetic.

Pipeline architecture.

Programmable stack pointer.

Variable length stack.

PIN CONFIGURATION

NCR65C02 BLOCK DIAGRAM

OptionaMnternal pull ups for

(RDY, IRQ.SS, NMI and RES)

Specifications are subject to
change without notice.

Copyright ©1982 by NCR Corporation, Dayton, Ohio, USA
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NCR65C02
• ABSOLUTE MAXIMUM RATINGS: ( Vdd = 5.0 V + 5%. Vss = V, Tft = 0° to + 7crc)

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Vdo -0.3 to +7.0 V

INPUT VOLTAGE V,N -0.3 to +7.0 V

OPERATING TEMP. Ta to + 70 °c

STORAGE TEMP. TSTG -55 to + 1 50 °c

PIN FUNCTION

"This pin has an optional internal pullup for a No Connect condition.

> DC CHARACTERISTICS

PIN FUNCTION
A0-A15 AdcJress Bus

D0-D7 Data Bos

IRCl" Interrupt Request

RDY' Ready

ML Memory Lock

HMi' Non-Maskable Interrupt

SYNC Synchronize

FffS* Reset

SO" Set Overflow

IMC No Connection

R/W Read/Write

VDD Power Supply (+5V)

VSS Internal Logic Ground

00 Clock Input

fll.02 Clock Output

SYMBOL MIN. i TYP. MAX UNIT

Input High Voltage

OoMN)
Input High Voltage

RES, NMI, RDY. 1 RQ, Data, S.O.

Vm Vss + 2."

Vss + 2.0

- Vdd V

V

Input Low Voliaeje

Codwi
RES, NMI, RDY, IRQ, Data, S.O.

V,L Vss -0-3 - Vss +0.4

Vss + 0.8

V

V

Input Leakage Current

(V,fj ^ to 5.25V, Vdo = 5.25V)

With pullups

Without pullups

Un
-30 +30

+ 1.0

^A

Three State (Off State) Ifvput Current

IV|N = 0.4 to 2.4V, Vcc = 5.25V)

Data Lines Itsi
10 ^A

Output High Voltage

doH =-100 /<Adc, Vdd=4.75V

SYNC, Data, A0-A15, R/W) VOH Vss + 2.4 V

Out Low Voltage

(loi. = 1.6mAcic, Vdd = 4.75V

SYNC, Data, A0-A15, R/W) Vol Vss * 0-4 V

Supply Current f = 1MHz 'oo

'do

- — 4

8

mA
mA

Capacitance

(Vim =O.Ta =25°C,f = 1MHz)
Logic

Data

A0-A15, R/W. SYNC
00 (IN)

C

Cout

OJodN)

-
- 5

10

10

10

pF
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NCR65C02
AC CHARACTERISTICS Vdd = 5.0V t B%, Ta = 0°C to 70°C, Load= 1 TTL + 130 pF

1MHZ 2MHZ 3MHZ

Parameter Symbol Mlh Max Min Max Min Max Unit

Delay Time, 00 (IN} to 02 (OUT) ^DLY
- 60 - 60 20 60 nS

Delay Time, 0i (OUT) to 02 (OUT) ^DLYl -20 20 -20 20 -ZO 20 nS

Cycle Time tcYC 1.0 5000' 0.50 5000' 0.33 5000* MS

Clock Pulse W<dth Low tPL 460 - 220 - 160 - nS

Clock Pulse Width High tpH 460 - 220 - 160 - nS

Fall Time, Rise Time tF.tR - 25 - 25 - 25 nS

Address Hold Time tAH 20 - 20 - - nS

Address Setup Time tADS - 225 - 140 - 110 nS

Access Time tACC 650 - 310 - 170 - nS

Read Data Hold Time toHR 10 - 10 - 10 - nS

Read Data SelupTime tosu 100 - 60 - 60 _ nS

Write Data Delay Time tMDS „ 30 - 30 - 30 nS

Write Data Hold Time toHW 20 - 20 - 15 - nS

SO Setup Time tso 100 - 100 - 100 - nS

Processor Control Setup Time" tpcs 200 - 150 - 150 - nS

SYNC Setup Time tsYNC - 225 - 140 - 100 nS

ML Setup Time twL - 225 - 140 - 100 nS

Input Clock Rise/Fall Time tfOo.tROo - 25 - 25 - 25 nS

*NCR65C02 can be held static with

**Tbis parameter must only be met

2 high.

to guarantee that the signal will be recognized at the current clock cycle.

m MICROPROCESSOR OPERATIONAL ENHANCEMENTS
Function NMOS 6502 Microprocessor IMCR6SC02 Microprocsiior

Indexed addressing across page boundary. Extra read of invalid address. Extra read of last instruction byte.

Execution of invalid op codes. Same terminate only by reset. Results

are undefined.

All are NOPs (reserved for future use).

Op Code Bytes Cycles

X2 2 2

X3, X7, XB, XF 1 1

44 2 3

54, D4, F4 2 4

5C 3 8

DC, FC 3 4

Jump indirect, operand = XXFF. Page address does not increment. Page address increments and adds one

additional cycle.

Read/modify/write instructions at

effective address.

One read and two write cycles. Two read and one write cycle.

Decimal flag. Indeterminate after reset. Initialized to binary mode (D=0) after

reset and interrupts.

Flags after decimal operation. invalid N, V and Z flags. Valid flag adds one additional cycle.

Interrupt after fetch of BRK instruc-

tion.

Interrupt vector is loaded, BRK vector
is ignored.

BRK is executed, then interrupt is

executed.

MICROPROCESSOR HARDWARE ENHANCEMENTS
Function NMOS 6502 NCR65C02

Assertion of Ready ROY during
write operations.

Ignored. Stops processor during 02-

Unused input-only pins (IRQ, NNII,

ROY, Utii.SG).

Must be connected to low impedance
signal to avoid noise problems.

Connected internally by a high-

resistance to Vdd (approximately 250

K ohm.l



6502/65C02 Data C-11

NCR65C02
• TrMrNG DIAGRAM

81

82

ADDR, R/W

READ DATA

WRITE DATA

SYNC

ML

ROY, FRq

NMi, RES

SO

T 'R»o ^h--'F9a

/
-'0

X

"V

pu-

h^t.

h-'R
y

:>:

>
1
;£!:

1

^

s

j(

H-«A

)C

Bm«
h-lr

X

Note: All timing is referenced from a higii voltage of 2.0 volts and a low voltage of 0.8 volts.

NEW INSTRUCTION MNEMONICS
HEX MNEMONIC
80 BRA
3A DBA
1A INA
DA PHX
5A PHY
F=A PLX
7A PLY
9C STZ
SE STZ
64 STZ
74 STZ
IC TRB
14 TRB
OC TSB
04 TSB

ITIONAL

HEX

INSTRUCTIC
MNEMONIC

72 ADC
38 AND
3G BIT
34 BITm CMP
S2 eoR
?C JMP
02 LDA
12 ORA
F2 S8C
92 STA

oescniPTiON
Branch relative always IRelativel

Decrement accumulator [Accum)
Increment accumulator (Accum!
Push X on stack [Implied)

Push Y on stack [Impliedl

PuH X from stack [Implied)

Putt Y from stack [Implied)

Store zero [Absolute]

Store zero [ABS, X]
Store zero [Zero page)

Store zero [ZPG.X)
Test and reset memory bits with accumulator [Absolute)

Test and reset memory bits with accumulator (Zero page)

Test and set memory bits with accumulator (Absolute)

Test and set memory bits with accumulator (Zero page)

DESCRIPTION

Add memory to accumulator with carry [{ZPG))

"AND" memory with accumulator HZPG))

Test memory bits with accumulator (ABS. X)

Test memory bits with accumulator (ZPG, X)

Compare memory and accumulator !(2PG))

"Exclusive Or" memory with accumulator ((ZPG)i

Jump (New addressing mode) [ABS(IND,X)i

Load accumulator with memory (IZPG))

"OR" memory with accumulator HZPG)]

Subtract memory from accumulator with borrow i(ZPG()

Store accumulator in memory [(ZPG)!

*^''i»ii,tt -
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NCR65C02
ADDRESSING MODES

Fifteen addressing modes are available to the user of the

WCR65C02 microprocessor. The addressing modes are

described in the following paragraphs:

Implied Addressing llmplied]

In the implied addressing mode, the address containir)g

the operand is implicitiv stated in the operation code of

the instruction.

Accumulator Addressing lAccum]
This form of addressing is represented with a one byte

instruction and implies an operation on the accumu-

lator.

Immediate Addressing [Immediatel

With immediate addressing, the operand is contained in

the second byte of the instruction; no further memory
addressing is required.

Absolute Addressing f Absolute!

For absolute addressing, the second byte of the instruc-

tion specifies the eight low-order bits of the effective

address, while the third byte specifies the eight high-order

bits. Therefore, this addressing mode allows access to the

total 64K bytes of addressable memory.

Zero Page Addressing [Zero Page]

Zero page addressing allows shorter code and execution

times by only fetching the second byte of the instruction

and assuming a 7ero high address byte. The careful use

of zero page addressing can result in significant increase

in code efficiency.

Absolute Indexed Addressing iABS, X or ABS, Y]
Absolute indexed addressing is used in conjunction with
X or Y index register and is referred to as "Absolute, X,"

and "Absolute, Y." The effective address is formed by

adding the contents of X or Y to the address contained

in the second and third bytes of the instruction. This

mode allows the index register to contain the index or

count ualue and fhe instruction to contain the base

address. This type of indexing aliows any location refer-

encing and the index to modify multiple fields, resulting

m reduced coding and execution time.

Zero Page Indexed Addressing [ZPG, X or ZPG, Y]
Zero page absolute addressing is used in conjunction
with the index register and is referred to as "Zero Page,

X" or "Zero Page, Y," The effective address is calculated

by adding the second byte to the contents of the index
register. Since this is a form of "Zefo Page" addressing,

the content of the second byte references a location in

page zero. Additionally, due to the "Zero Page" address-

ing nature of this mode, no carry is added to the high-

order eight bits of memory, and crossing of page boun-
daries does not occur.

Relative Addressing [Relative]

Flelative addressing is used only with branch instructions;

it establishes a destination for the conditional branch
The second byte of the instruction becomes the operand
which s an "Offset" added to the contents of the pro-
gram counter when the counter is set at the next in-

struction. The range of the offset is -128 to -1-127

bytes from the next instruction.

Zero Page Indexed Indirect Addressing [(IND, Xl]
With zero page indexed indirect addressing (usually re-

ferred to as indirect X) the second byte of the instruction
is added to the contents of the X index register; the
carry is discarded. The result of this addition points to a

memorylocation on page zero whose contents Is the low-
order eight bits of the effective address. The next mem-
ory location in page zero contains the high-order eight

bits of the effective address. Both memory locations

specifying the high- and low-order bytes of the effective

address must be in page zero.

'Absolute Indexed Indirect Addressing [ABSIIND, X)]
(Jump Instruction Only)
With absolute indexed indirect addressing the contents of

the second and third instruction bytes are added to the

X register. The result of this addition, points to a memory
location containing the lower-order eight bits of the

effective address. The next memory location contains

the higher-order eight bits of the effective address.

Indirect Indexed Addressing i(IMDI, Y]
This form of addressing is usually referred to as Indirect,

Y. The second byte of the instruction points to a mem-
ory location in page zero. The contents of this memory
location are added to the contents of the Y index regis-

ter, the result being the low-order eight bits of the effec-

tive address. The carry from this addition is added to the

contents of the next page zero memory location, the

result being the high-order eight bits of the effective

address.

'Zero Page Indirect Addressing [(ZPGII
In the zero page indirect addressing mode, the second

byte of the instruction points to a memory location on

page zero containing the low-order byte of the effective

address. The next location on page zero contains the

high-order byte of the effective address.

Absolute Indirect Addressing [(ABS)l

(Jump Instruction Only)
The second byte of the instruction contains the lomtorder

eight bits of a memory location. The high-order eight

bits of that memory location is contained in the third

byte of the instruction. The contents of the fully speci-

fied memory location is the low-order byte of the effec-

tive address. The next memory location contains the

high-order byte of the effective address which is loaded

into the 16 bit program counter.

NOTE: * = New Address Modes
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NCR65C02
• INSTRUCTION SET - ALPHABETICAL SEQUENCE

AOC AdfJ Memory to Accumulgior wJtrt Carry
AMD "AND" Memory with Accumulaiar
ASL ShitiOne Brt Left

BCC Branch on Carry Clear

BCS Branch on Carry Set

SEO Branch on ResuU Zero
SIT Test Memory BiTS with Accgmufator
BMl Sramch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus

'BRA Branch Always
BRK Force Break
BVC Branch an Oyerilovw Clear

BVS Branch on Otferflovw Set

CLC Clear Carry Flag

CUD Osar Decimal Mode
CLI Clear IntetruptQi^bie Bit

CLV Clear OwrUow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and fndex X
QPy Compare Memory and Index V

" DEA Decrement AccumuJator
DEC Decremeni by One
D£X Decrement Index X by One
OEV Decrement Index V by One
EOR "Exclusive- or" Memory wiih Accumularof

• JNA Increment Accumuistor
five rncrement by One
(NX Increment Index X by One
INY Increment Index V by One
JMP Jump to New Location
JSR Jump to New Location Saving Return Address
LDA Load Accumulator with Memory

Note: * - r^Jew Instruction

> MICROPROCESSOR OP CODE TABLE

LDX Load Index X wth Memory
LDY Load Index ¥ with Memory
LSR ShifiOne Bit Right
NOP No Operation
ORA "OR" Memory with Accumulator
PHA Push Accumu^ato< on Stack
PHP Push Processor Status on Stack

'PHX Push Index X on Slack
" PHV Push Index Yon Slack
PLA PufI Accumufator from Stack
PLP Pull Processor Status from Slack

' PLX PuH Index X from Slack
PLY Pull Index Y fram Stack
ROL Rotate One Bit Left
ROR Rotate One Bn R»ghi
RTI Return Uom Interrupt
RTS Return from Subroutine
SBC Subtraci Memory from Accumulistor wth Barrow
SEC Set Carry F!ag
SED Set Decimal Mode
SEI Set Interrupt Disable Bit

STA Store Accumulator in Memory
STX Store Index X m Memory
STY Store Index Y m Memory

* STZ Store Zero m Memnry
TAX Transfer Accumulator to Iridex X
TAY Jfsmiir Accumulator to Index Y
TRB Test anci Reset Memary Bi's with Accumulator

' TSB Test and Set Memory Bii5 with Accumulator
TSX Transfer Stack Pointer to fndex X
TXA Transfer fndex X to Accumulator
TXS Transfer index X to Stack Pointer
TYA Transfer Index Y to Accumulator

s

D 1 2 3 4 5 6 7 s 9 A B c D E F

BRK ORA
ind, X

TSB-
ipg

ORA
!P9

ASL
;pg

PHP ORA ASL
A

TSB-
abs

ORA
abs

"~ora"
abs, X

AND
abs

ASL
abs

"asl^
,ib5. X

ROL
abs

1 BfL
rel

ORA
ind, Y

ORA't
Upgl

TRB*
zpg

ORA ASL
zpg, X

CLC ORA
Jljs, V

rNA'
A

TRB-
abs

1

2 JSR
abs

AND
ind, X

aiT

2pg

AND
!0g

ROL
zpg

PLP AND
imm

ROL
A

BIT

abs

2

3 BMl
rel

AND
ind. Y

AND-t
(Jpg)

BIT-

;pg-X
AND

;P9. X
ROL

zpg, X
SEC AND

Sl)5, V
OEA-
A

BIT-t
,ihs. X

AND
abs. X

ROL
abs. X

3

4 RT( EOR
ind, X

EOR
zpg

LSH
zpg

PHA EOR LSR
A

JMP
dhs

EOR
,ibs

LSR
abs

LSH
Ji)s. X

4

6 BVC
rel

EOR
mtJ, Y

EOR-t EOR
iP9, X

LSR
zpg, X

CLI EOR
abs. Y

PHY- EOR
abs. X

5

6 RTS ADC
ind, X

STZ-
rpg

ADC
iP9

ROR
zpg

PLA ADC
imrn

ROR
A

JMP
(absl

AOC
abs

ROR
iibs

6

1 evs
rel

AOC
md, Y

ADC-t
llPSl

STZ-
ipg, X

ADC
ipg. X

ROR
zpt>. X

SEI ADC
al)5, Y

PLY- JMP-t
abs (irid.XI

ADC
3»i. X

ROH
alas. X

7

6 BRA* STA
ind, X

STY'
zpg

STA
ipg

STX
zpg

DEY BIT-

irtirri

TXA STY
abs

STA
abs

STX
abs

I 3

9 BCC
rs

STA
ind, Y

STA-t STY
;pg. X

STA
log. X

STX
ZP9, Y

TYA STA
3b5, Y

TXS STZ-

abs

STA
abs, X

STZ-
abs. X

9

A LDY
imm

LDA
nd, X

LDX LDY
!P9

LDA
ipg

LDX
zpg

TAY LDA
imfTi

TAX LDY
abs

LDA
abs

LDX
abs

A

a

c

BCS
re,

LDA
ind, Y

LDA-t LOV
2pg, X

LDA
zpg, X

LDX
zpg. Y

CLV LDA
abs, Y

TSX LDY
3bs. X

LDA
abs. X

LOX
abs. y

B

cpy
ifnm

CMP
ind, X

CPY
zpq

CMP
zpg

DEC
zpg

INY CMP
iitim

DEX CPY
abs

CMP
abs

EC
abs

C

D BNE
rel

CMP
md, Y

CMP-t
<'pgi

CMP
zpg, X

DEC
zog, X

CLO CMP
jbs, Y

PHX- CMP
abs, X

DEC
abs, X

E CPX
imm

SBC
ind. X

CPX
zpg

SBC
zpg

INC
zpg

r^x SBC
imm

NOP CPX
abs

SBC
abs

irjc

abs

E

P BEQ
rel

SBC
ind, ¥

sect SBC
zpg, X

INC

ZP9, X
SED SBC

abs, Y

PLX- SBC
aOs, X

INC
abs. X

F

1

1 2 3 A 5 6 ? a 9 A B C ^ F

Note;

Note:

* ' New OP Codes
t = New Address Modes
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OPERATIONAL CODES, EXECUTION TIME, AND MEMORY
REQUIREMENTS

NCR65CQ2

IMME
DIAT

ABSO
E LUT(

iERt
PAGE

1

ACCU
IM

M PLIE
IIND

3 X)

. UNO
V 2Pf3 X ZPG.

V

A8S X ABSY
RELA
TIVE (ABS

ABS
IIND.

PROCESSOR
c izPGi STATUS cooes

~

MNE OPERATION OP n 1 OP n # OP n f DP n * OPn * OP n *0P n *0P n *0P n * OP r * OP n « OP n < QP h * OPn * Of n

' 6 6 4 3 3 1 n

WNE* N V
. e D 1 I c

ADC
AND
ASL
see
8CS

AtM*C*A £1.31

AAM-A £11

(B-^ «•<> £11

Branch .ICO £11

granch il CO £71

69 5

29 2

! 6D 4

2 2D 4

OE 6

3 65 3

3 25 3

3 £16 5

2

2
2 OA 2 1

61 6

21 6

2 71 5

2 31 S

2 75 4

2 34 4

16 G

2

2

2

7D4
30 4
IE 6

3 79
3 39

3

4 3

4 3

90
60

2 2

2 1

72 5

JI S
IN V . . . ZC
2 N I
N 2C

ADC
AND
AS I.

KC
ecs

BEO
BIT
BUI
BNE
afL

Bfaftch.(Z=l £71

A A U 14. 5t

Branch il NO £71

Br^rtChilZ^O 131

Bfancn.lN-0 131

as 2 2 2C 4 3 24 3 2 34 4 2 3C 4 3

FO

30

DO
10

"•»,. '. 'i '.

sea
BIT

BMI

BNE
BPL

BRA
BBK
BVC
BVS
CLC

Branch A^wayt 12)

Break

Branch if V=Q 121

Branch .IVM 121

0*C

00 7

IS 2

1

1

SO

60
70

11..

.0

BRA
BRK
6VC
8VS
CLC

CID
CLI

CH/
CMP
CPX

0*0
O'l
a *v
A M 111

X M
C9 2

EO 2

2 CD 4

Z EC 4

3 C5 3

3 E4 3

2

2

092

iiS 2

1

1

1

CI 6 2 D1 5 2 D5 4 2 DO 4 3 09 4 ; 03 5

.
. . .

- .

3 N IC
N ZC

CLD
CLI
CLV
CMP
CPX

CPY
DEA
DEC
DEX
DEV

Y M
A 1 'A
M 1 -M 111

X 1
' X

y 1 -V

CO 2 2 CC 4

CE 6

3 C4 3

3 C6 5

2

3A 2

2

1

CA2
88 3

1

06 6 2 DE6 3

N J C
N

. . Z
^ Z
N 2
(y

. . . 5

CPV
DEA
DEC
DEX
DEV

EOR
INA

INC
IhlX

INY

A y Al *A
A r 1 *A
M . 1 -"W 111

X + 1 *X
Y * 1 -Y

49 2 2 40 4

EE $

3 45 3

3 E6 5

2

lA 2

2

EB 2

1

ce 2

41 &

1

1

2 515 2 &5 4

P6 6

2

2

&D 4

FE 6

3 59

3

4 , 65 5 2 N ..... 2 .

N . . . 2 .

N 2 .

N . . . Z .

N Z

EOR
INA
INC

INK
INY

JMP
JSR
LOA
LOK
LOV

Jump lo now lot

Jump Su&fOuline

M-A 111

M -X 111

M-V [11

A9 2

A2 2

SO 2

4C 3

20 6

2 AD4
2 AE 4

2 AC 4

3

3

3 A5 3

3 A6 3

3 A4 3

2

2

3

Al 6 2 Bl 6 2 85 4

84
4^

3

3

4

BD 4

Bt:4

3 B9

ae
3

4

4

EC 6 3 7C 6 3

BJ 5 2 N Z .

N - . Z .

N ..... Z .

JMP
JSR

LDA
LDX
LDV

LSfl

NOP
ORA
PHA
PHP

D -[? *-Lv: 111

PC . 1 -PC
A V M *A [11

A-M, SI'S
P*Mi S 1 -S

9 2

IE 6

2 OD 4

3 46 5

3 05 3

2 4A 2

2

1

EA 2

4a 3

OB 3

1

01 5

1

1

3 115

S6 6

1 16 4

2

2

56 6

10 4

3

3 19 4 13 6

z c

1 rt
..'.'.'. z \

LS«
NOP
ORA
PHA
PHP

PHX
PHY
PLA
PLP

PLK

X "M^ S 1 -S
v*Mj 5 1 -S
S • 1 5 M, • A
S^ 1 'S M^*P
S. 1-S M,»X

DA 3

5A 3

63 4

28 4

FA 4

1

1

1

1

N . . -
. , z

N V 1 1 ZC
N Z -

PHX
fHY
PLA
PLF

PLX

PLY
ROL
RQR
RTI
RTS

S+ 1 -S Mj^*v
.(. tl-itl-' III

i.:c|.;. (1- 111

Reiurn liom Inter

RAtitrn l*oni Srjbr

JE e
EE e

3 26 5

366 5

2 2A 2

2 6A 2

TA d

1

1

4D S

60 5

1

1

1

36 6

76 6

2

2

3e 6
7E 6

3

3

N . . Z
N . Z C

N . . . Z C

N V . 1 D 1 Z C

PLY
nOL
HOft

BTI

BIS
SBC
SEC
SED
5E
STA

A M C'A It, 3!

1 -C
1
-Q

1 »l

A *M

£9 2 2 ED 4

SD 4

3E5 3

3 95 3

2

2

38 2
fa 2
IB 2

El 6
1

Bl 5

3 Fl 5

2 91 6

2 F5 4

2 95 4

2

2

FD4

9D 5

3 F9

3 99

4

5

S

J

F2 5

92 5

3 N V . . . . Z C

. . . 1

. . . 1 .

3 ...

sec
SEC
SED
SEI

STA
STX
STY
st;
TAX
TAV

X *M
Y+M
OQ-M

A'Y

SE 4

BC 4

9C 4

3 BE 3

3 34'

3

3 64 3

3

3

7

AA7
AS 2 1

94 4

74 4

9B
2

2

4 7

9E 5 3

N ..... Z
N Z

STX
STY
STZ
TAX
TAV

TRB
TSB
TSX
TXA
TXS

A/\M*M £il|

A V M * M 14]

s-x
X -A
X -5

IC 6

OC 6

3 14 5

3 04 5

1

2

8A2
8A 2

9A 2

1

1

1

M ..... Z -

A . . .
, Z

TRB
TSB
T5X
TXA
TXS

TVA Y*A 98 2 1 J 2 TYA

Notes

1. Add 1 to

2. Add 1 to

AiJd 2 to

3. Add 1 to

4 V bit equ

it page bpurdary is crossed,

if branch occurs to same page-
it branch occurs to ditfereni page
if decirvial rnode.

V bit equals memorv bit 6 prior to execution.
N bit equals memory bit 7 prior to execution.

The immediate addressing mode of the SIT innruciion leaves bits 6*7
(V & N) in the Procewof Status Code Register unchanged.

Index X
Index Y
Accumulator
Memory per etteciive address

Ms Memory per stack pointer

Add
Sublract

And
Or
Exclusive or

n No. Cycles

No. evtas

Mg Men^ory bit 6

M7 Memory bit 7

';,«

i^w f\M
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6502/66C02 Data C-15

Table C3 65C02 Instruction Ex»ciiflon Periods In Machine Cycles.

IMP REL IHM ACC 0PG 0PG
X

0Pa
Y

ABS

1

"

ABS
X

ABS
Y

ABS
IND

0PG
IND
X

0PG
IND
Y

0PG
IHD

ABB
IHD
X

RRr.

M)C AND CMP EOR
LDA ORA SBC »**

' 3 4 4 4* 4* 6 5* 5

ASL LSK ROL BOR
DEC IMC

2 5 6 6 6*

BBRn BBSn**** 5+p
• *

BCC BCS BEQ BMI
BNE BPL BVC BVS
BRA

..

2+p

CLC CLD CLl CLV
MX DEY INX INY
NOP SEC SED S£I
TAX TAY TSX TXA
TXS TYA

2

BIT 2 3 4 4 4*
1

BRK 7

CPX CPY 2 3 4

JMP 3 e 6

JSR 6
1

LDX 2 3 4 4 4*
I-

—

LUY 2 3 4 4 4*

PHk PHP PHX PHY 3

PLA PLP put PLY 4

RMBI) SMBn**** S

RTI 6

RTS 6

STA 3 4 4 5 5 6 b 5

STX > 4 4

STY 3 4 4

STZ 3 4 4 5

TRB TSB 5 6

NOT£b:
* +1 cycle if indexing crosses page boundary.

** p=0 if branch does not occurs
p=l if branch within page occurs.
p-2 if branch across page boundary occurs.

*** Add 1 cycle to AQC ana SBC if decimal mode.
»**» BBRn, BBSn, RMBn, and SMBn instructions are

available in Rockwell 65C02 but not NCR 65C02.

Boldfaced type inaicates difference between 65C02 and 6502.

Unused op codes:
502, $22, S42, ¥62, 582, SC2, SE2 => 2 bytes, 2 cycles
5X3, $XB => 1 byte, 1 cycle
5X7, 5XF => 1 byte, 1 cycle (NCR only)
544 »> 2 bytes, 3 cycles
554, 5D4, SF4 => 2 bytes, 4 cycles
55C «> 3 bytes, 6 cycles
$DC, SPC => 3 bytea, 4 cycles

*Sjift



appendix D

BASIC Program Listings

The following pages contain the BASIC program listings which produce Figures B.8 and 5.9.



BASIC Program Listings D-2

RW

REM
RBI HIRES MEMORY MRP - DISPUYED SCAN ONLY
RW
RBI

"3", "4", "5", "6", "7"

READ HXS(A)4 NEXT A

PACE 2

TOP SCREEN/
FIRST 40

LIN# PACE 1 UANCr

TO 7:PPiSE -

DIM HXS(IS)
DATA "3","1","2

FOR A = a TO 15:

TEXT : HOME

PRINT "

PRINT "

PRINT " PACE 1

K REM

91 REM

1C0 FOR A = e TO 7: TOR n =

110 LNS = "S":PEC = BASE
190 Rra

191 REM

200 DECS = STRS (BASE): IF LF.N (HIKS)

210 LNS = LN5 t " " + DECS + " S"
220 DEC = BASE + 8192: OOSUB 5OB0 : REM GET PAGf
230 LNS = EN$ t " " + STRS (DEC) t " "

290 REM

291 REM

380 SCAN = B * A t R: GOSUQ 6800
310 DEC = BASE: GOSUB 5(?S0

320 LNS = LNS t "-S"

9","A","B","C","n","E","F"

MIIIDLE SCREKN/
SEirONn 40

LINI PAGK 1 RANGE

BOTTOM SCREEtl/"
THIRD 40

LINI PAGE 1 RANGE
UNUSED B"

PAGE 1 RANGE"

+ H * 1824 + 8192
GOSUB 5000: REM GET PAGE 1 HEX

5 TIIKM LNS = LMS +

RF.-^ GET SCAr; NLIMREP

330 DEC = BASE * 39: GOSIIR 5000
340 LNS = LNS + "

390 REM

391 REM

400 SCAN = SCAN * 64 : OOS(.IEI snas)

410 RBC ' EASE + 4K: GOStJR 5003
420 UJS = LNS + '"-$"

«0 dk; = BASE + 79: GOSUB 5000
440 LMS = LN$ + '

" «

490 REM

491 RIM
500 SCAN =^ SCAN 1- 64-

; GOSUR eonfl
510 DEC = BASE + 80: GOSUB 5000
520 LNS = LNS + ''-S"

530 DEC = BASE + 119:1 COSUB 50««
590 REM

591 RKM
609 LNS = LNS + ' S"
610 DEC = BASE + 120;: GOSUB 5000
620 LNS = LNS + ''-S"

630 DEC = BASE t 127:: GOSUB 5000
640 PRINT LNS: NEXT B: NEXT A
650 PRIOT ; PRINT
660 PRINT "FIGURE 5..a - HIRES DISPLAYED MEHORY WP.
670 GST BS: END
409^ REM
4091 RZM
4092 REM
4093 REM SUBROUTINE 5000 (CONVERTS THE DECIMAL ADDRi
4094 REM HEXADECIMAL AND iCONCATINATES THE HEX numb:
4095 REM
4096 REM
4097 REM

PAGE 1 AND PAGE 2 ARE EACH WDr !.:P OF 64 12R-nY7

50m H4 = DEC / 4n96:H<l% = H4
5010 H3 " (H4 - H4%) * I6:H3% = HI
5020 H2 = (H3 - H3*) • 16:H2» = H2
5038 Hl% = (K2 - H2%) * IS + .5
5040 LNS = LNS + HXS(H4I) + HXS(H3%)
5050 RBIDRN

REM5190

5191

5192

5193

5194

5195

5196

60^0

6010

REM

REM

RBI
REM

REM

REM

SUBROUTINE 6000 ADDS LEADING 3ER0ES TO THE SCAN #

IF SCAN < 100 THEN LNS ' LNS + "0"

till
IF SCAN < 10 THEN LNS = LNS + "0"

S'^.S"^^ STRSI^A.)... S"

Figure D.I BASIC Listing: Program that Produces Figure 5.6.
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e REM
3 Rm FOUR PACG HIRES MEMORY MAP - INCLUDES VBL f. HBL.

6 REM
La DIM HXS(L5)

20 EftTA "0","i","2","3","4","5","6","7","B","9","A","B","C","a","E","F"

33 TOR A = TO 15; RKAD HXS(A) : NEXT A

48 SCAN = - 1

193 REM
182 PRINT TAB! S6)"SCREEN TOP": PRIMT : PRINT

ua GosuB ime: rem PBit^ headings

123 FOR A = B TO 7: TOB B = e TO 7:BASf; = A * 128 + B • 1024 + 8192

133 GOSUB IBM; REM DO LINE

14a NEXT B: NEXT A

IM GOSUB 5006: GET AS

2Hfl REM *..**•..*.•.••*"***

282 PHIMT : PRINT : PRINT TAB ( 55)"SCHPra dinner": opiMT : PRINT

218 GOSUB Mm
228 FOR A = B TO 7: TOP P = n TO 7;1A.=;f = A * 128 n * 1024 + B232

230 GOSUB 1003

240 NEXT B: NEXT A

258 GOSUB maCI: GET AS

3n8 REM •-•**""••*•••••••

301 PPIMT : PRINT : PRINT TAIU 5?)"a;PFEN RnTIO'" : i'l'INT : PPINT

310 GOSUB 4000
320 POR A = TO 7: FOh' n = fl TO 7;HASI = A 1/B t r. * 1(124 t R272

330 GOSUB 1000
34{» MEXT Pt NEXT A
3'>e cosuR 5000; GET a;
4C1t? REM ********************

'\?\ PRINT ; PRIST : PRINT TA" ( llil 'VkrIICAI. W.nNKlHf: PIlHinil (WL)"; DPINT ; PPIMT
413 CCStJB 'lOOa

420 FOP A = TO 7: FO? P. = TO 7:|JASF ' A 12S t " * 1074 t R1L2
4 33 GOSUB man
4<3 NFXT P: NFXT A
4''itl FDR B = 2 TC 7:HASF = 92l!B + P, * 1024: PE.-: 7*12R>8312-m* 1IS24

46(1 GOSUB IHBH

47(1 NEXT n

4Sv' OnSUP SaOO; GET AS

499 ENn
1808 REM
lnP2 HEM PRIM f, LINK
1984 RF.M

IflKl LNS = "":SCAN = SCAN + 1 : IE SCAN < 111 THEN I,NS = EN.S * " "

102C IF SCAN < 180 THEM LMS = LNS + " "

1325 WIS " LNS * STRS (SCAN) + " "

103(1 WW, = BASF - 24: IF IKT (HBL / I2S1 < > It.T (BASF / 128) THEN HBL = HBL + 12R
1048 DEC - HEL: GOSUB 3000: REM TO PAGE 1

1050 DBC = HBL * 8192: GOSUB 30OB: REM no PAGE 2

106C SYMBOLSS = "t++t* + f t + **+ ": IE SCAN > 223 ANI5 SCAN < 228 THEN SVMBOLSS = "»t«»»*lf »»•»• "

1365 LNS = LMS + "*t + + ***4-t«(|H" t SV.MDOLSS

1078 DEC = BASE: GOSUB 300K: REM ttO PAGE 1

1088 OEC = BASF + S192: GOSUB 3800; F!F.>1 00 PACE 2

1098 SYMROLSS - " + + f +++++++++++»++ +t + t^tt++^ + ^ + tf f+t+++++"

UaC IF SCAN > 223 AND SCAN < 22S THEN SYMBOLSS = "tttti Kim tt»«#*«imti#IK*t»t##t»»f »##tt»"
1118 LNS = LNS + SVMBOLSS: PRINT LMS
1128 RETURN
3008 REM
3002 REM GET HEX t. DBCIMAL STRINGS

3004 REM
3005 H4 ' DEC / 4H96:H4» = H4

3016 K3 = (H4 - H41S * 16:H3% - H3
3020 H2 = (H3 - H3%1 * 16;H2i = H2

3030 HU = (H2 - H2%) * 16 + .6

3040 LNS = LNS + "S" + HX5(H4%1 + HXS (H3*) t HX5 (H2») + HXS(H14) + " "

3050 DECS = STRS (DEC): IP LEN (DECS) < S THEN LNS = LNS + " "

3060 LNS = LNS + DECS + " "

3070 RETTURN

4000 REM

4002 HEM PRINT HEADINGS
4084 REM
4010 PRINT " HORIZONTAL BLANKING (HBL) HORIZONTAL DISPLAY ENABLE"
4815 PRINT
4023 PRINT "LINE 11111111 11111111111111U222S22SJ"
4030 PRINT "NUH PAGE 1 PAGE 2 0012J456789A8CDEF91234567 PAGE 1 PAGE 2 [)123456739ABCDEF01534S6789ABCDEF0123«S67'
4843 RETURN
5000 REM

5002 REM PRINT FIGURE NUMBER
5004 REM
5005 PRINT : PRINT
5010 PRINT "FIGURE 5.9 - THIS HIRES SCANNING MAP SHOWS THE ADDRESSES SCANNED (XIRING DISPLAV PESIODS AND BLANKING PERIODS."
5020 HETOHN

Figure D2 BASIC Listing: Program that Produces Hgure 5.9.



appendix E

A Logic Circuits Primer

Bits of information in a computer are generally
represented by voltages. In positive level logic like

that used in the Apple, a high voltage (about 3
votts) is considered to be true, and a low voltage
(about volts) is considered to be false. The elec-

tronic circuits in the Apple are designed primarily
to treat signal voltages as true or false indications
and to process them logically. In studying the
Apple, it is advisable to concentrate on the logical

function of the components rather than their elec-

tronic function.

The most basic functional building blocks are
simple logic gates. For example, a 2-input AND
gate will bring its output high if and only if both
inputs are high. In other words, both input A
AND input B must be true if the output is to be
true. The two input AND gate is represented in

logic diagrams as follows:

INPUT A

INPUT B

OUTPUT

This AND function is identical to the 6502 AND
instruction, except that the 6502 instruction is

performed on eight bits simultaneously and is log-

ically equivalent to eight 2-input AND gates.

A way of demonstrating a logic function is a

truth table. The truth table shows the state of an
output for every possible combination of inputs.

The true state can be represented by T or 1 or H
(for high assuming positive logic), and the false

state can be represented by F or or L. We will

use H and L because this usually eliminates possi-

ble ambiguities. The truth table for the positive

logic AND gate is;

INPUT A INPUT B OUTPUT
L L L
L H L
H L L
H H H

This clearly demonstrates that both inputs of the

positive logic AND gate must be high before the

output will go high. Table E.l shows the truth table,

schematic representation, and equivalent 6502 in-

struction, where applicable, of some simple logic

gates used in this book.
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The little circles on the gates represent the con-

cepts of inversion and active-when-low signals.

The two concepts are closely related and some-

times impossible to separate. Inversion is the pro-

cess of turning a signal into the logically opposite

signal. When a signal is low, its inversion is high,

and vice versa. When examining a logic gate, the

absence of circles can be read as active-when-high

and the circles can be read as active-when-low.

For example, the NAND gate has a circle on its

output, meaning both inputs must go high to make
the output go low. This can be stated in a second

way. If either input goes low, the output will go
high. This results in a second way of representing

the NAND gate, as an OR gate with little circles

on the inputs. The circles take a little getting used

to and are used in some pretty unusual ways in

some drawings. Just associate the circle with the

word "low" and you should get the message.

The tri-state amplifiers of Table E.l represent a

different sort of logic device. In addition to the nor-

mal binary states of high and low voltage, the tri-

state device has a third state, high isolation or high

impedance. The line coming in from the side is the

output enable line and it controls the isolation. When
the output enable is not active, the device is isolated

from the output line, so another device can control

the output line. In electronic terms, the device pre-

sents a high impedance to the output line. In the

truth tables ofTable E.l. the high impedance state is

represented by a "Z". A more detailed discussion of

tri-state logic is contained in the chapter on bus
structure.

A building block of equal importance to the logic

gates is the clocked flip-flop. This is a 1 bit storage
device which will respond to its logic inputs when it

senses an active transition on its clockpulse input.

Figure E.l shows a diagram of a D type flip-flop and
its truth table. The flip-flop shown is clocked by a
low-to-high transition of its clockpulse input, and is

like the 74LS74 flip-flop pictured in Figure 6.13.

The Q output will follow the D input every time the
clockpulse rises, and the Q' output will be the inver-

sion of the Q output. The CLEAR and PRESET
inputs cause the flip-flop to change states without
requiring a clock, and actually override the clocked
D input. Bringing PRESET low forces Q high and
Q' low. Bringing CLEAR low forces Q low and Q'

high.

The clockpulse adds synchronization to logic. If
the same clockpulse triggers a hundred different

actions, then the actions all occur simultaneously
This clockpulse synchronization is common to ali
digital computers. Certain devices react to the
clock. Other devices react to those clocked devices
and so on. After a given period of time, all reac-
tions are complete and the logic signals are all

stable, waiting for the next clock. The computer
thus operates one cycle at a time.

As an example of clocked operation, Figure E.2
shows a logic function similar to the 6502 AND
instruction. In the AND instruction, the value in
the accumulator is ANDed with a different value
to get the new accumulator value. In Figure E.2
the fiip-flop represents one bit of the accumulator!
When the flip-flop clock rises, the flip-flop goes to

a state determined by its old value ANDed with a
second value.

Most logical circuitry is made up of some com-
bination of simple logic gates and flip-flops or
their equivalents inside an integrated circuit. In

modern computers, many complex functions are
available packaged in integrated circuits. Typical
of such complex functions are comparison, count-

ing, coding, decoding, and shifting. Even more
complex are the functions of chips like the 6502,
RAM, ROM, the MMU. and the lOU in the Apple
He. A good way to familiarize yourself with the

variety of logic functions available is to peruse the

data books published by manufacturers. Of par-

ticular help in the Apple is a TTL data book, TTL
(Transistor Transistor Logic) is the name of the

logic family to which most of the Apple's general

purpose chips belong. National Semiconductor is a
company which is very good at making their data

books available to the public at reasonable prices,

Their TTL data is contained in the Logic Data-

book, priced at $9.00 as of March, 1982. Books can

be obtained by writing:

National Semiconductor Corporation
ATTN: Literature Distribution MS/14208
2900 Semiconductor Drive
Santa Clara, CA 95051

Understanding the Apple He uses logic equations

to describe the logical makeup of certain signals.

A typical logic equation is

GR = (TEXT + MIX • V4 • V2)',

which is equivalent to GR = NOT (TEXT OR (MIX
AND V4 AND V2)). The dot represents the AND
function, the plus sign represents the OR function,

i^JiiL-
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Table E.I Basic Logic Gates.

NAME REPRESENTATION SECONDARY
REPRESENTATION

TRUTH TABLE
B A OUT

6502

EQUIVALENT

AND A- S
B- >-OUT JZ^~^OUT

L L L

L H L

H L L

H H H

AND XXXX

on

bT^"'' B^^
>-0^T

L L L

L H H
H L H
H H H

ORA XXXX

NANO

bI y^^T B^ >-OUT
L L H
L H H
H L H
H H L

AND XXXX
EOR «$FF

NOR

bJZX"'" b:: >-
L L H
L H L

H L L

H H L

ORA XXXX
EOR #$FF

EXCLUSIVE
OR

B^r>-
L L L

L H H
H L H
H H L

EOR XXXX

AMPLIFIER A-[>^OUT A-c^>o-OUT L L

H H
NOP

INVERTER A-^^;>o-OUT A -< ^^>^ OUT
L H

H L

EOR #SFF

TRI-STATE

AMPLIFIER

HIGH

ENABLE

8

A-[j>-OUT

L L Z

L H 2

H L L

H H H

TRI-STATE

INVERTER

HIGH

ENABLE

B

A - px:^ OUT

L L Z
L H Z

H L H
H H L

TRI-STATE

AMPLIFIER

LOW
ENABLE

B

A - "^y^ OUT

L L L

L H H

H L Z
H H Z

TRI-STATE

INVERTER

LOW
ENABLE

B

A~[^]>o- OUT

L L H

L H L

H L Z

H H Z

''ffii.:
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TRUTH TABLE

INPUTS OUTFITS

PRESET CLEAR CLOCK Q

L H X X H L

H L X X L H

L L X X H H

H H + H H L

H H + L L H

H H L X HID HLD

H H H X HLD HLD

CLOCK

D

CLEAR

PRESET

Q

Q'

TYPICAL OPERATION

\

t
Figure E.I A D-Type Flip Flop.

and the prime symbol represents the NOT or

INVERSION function.* This selection of symbols
makes the equation look like an equation of com-
mon algebra, and it's no accidental coincidence.

The manipulation of such equations has parallels

in the field of algebra and is, in fact, referred to as

Boolean algebra, after the symbolic logic pioneer,

George Boole.

Other functions besides AND, OR, NOT, and
parenthesis grouping can be represented in logic

equations, but only these basic functions are rep-

resented in logic equations in this book. The pur-
pose in using such equations in Understanding the

Apple Ik is only to describe some details of signal

generation in a concise way. No algebraic manipu-

lations are described, and none are required on the

part of the reader.

In representing the NOT function with a prime symbol, this

book is following the sensible lead of the Apple II R^erenee

Manual for He Only. The more common convention is to over-

score the term or terms to which the NOT function is applied.

The overscore is not a particularly workable representation

because it is not a common typographical symbol and, more

importantly, there is no code for it in standard computer text

coding systems such as ASCII. Engineering and manufactur-

ing printouts normally use an asterisk or prime symbol after a

term to which the NOT function is to be applied. Apple s.hould

be commended for taking the lead in using this notation in

published documents.

<,ff-
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COMPARISON
INPUT

Figuie E2

—ZD Q

>
CK

n npK to

1/8 OF THE
ACCUMULATOR

The Circuil Equivalent of the 6502 AND Instruction.

"^jj

.
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appendix F

A Number System Primer

In our daily lives, we represent numerical quan-

tities in the base 10, or decimal, numbering sys-

tem. For example, by 359 we mean the sum of 9 x

(10 EXP 0) plus 5 X (10 EXP 1) plus 3 x (10 EXP
2). This use of the decimal numbering system

gives us some unusual biases that would occur

only to mathematicians if we used a different base

for our numbering systems. For instance, we place

special significance on numbers like 1,000,000 (10

EXP 6) but not on 2.985,984 (12 EXP 6, equal to

1,000,000 in the base-12 or duodecimal numbering
system). Mathematicians have studied number sys-

tems for years, but now, because of the growing
influence of computers, knowledge of numbering
systems other than base 10 is becoming very com-
mon indeed.

You see, the electronics of digital computers is

based on hundreds of thousands of 2-state, or

binary, electronic switches which can be on or off.

The on or off state of each binary switch can be
represented numerically as a ONE or a ZERO,

and the information as to whether the switch is on

or off is a bit of information. The simultaneous

states of eight binary switches can be combined

into an 8-bit binary word such as 10011110. Be-

cause of the 2-state nature of digital computer

building blocks, digital analysis and design has

been performed since day one using the base 2, or

binary, numbering system. In this system, there

are two digits— 1 and 0. The binary number 110

represents the sum of x (2 EXP 0) plus 1 x (2

EXP 1) plus 1 X (2 EXP 2), which is equal to 6 in

decimal.

Actual performance of binary arithmetic is very

unwieldy, particularly if you consider fractions.

Addition and subtraction of 6502 addresses would

require 16 digits. For example, subtracting dec-

imal address 35000 from 35003 looks like this;

1000100010111011
- 1000100010111000

11

.^^4
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If that looks clumsy, you should try multiplying
J.40 A ^r* i 4

11110111
X. 10001111

11110111
11110111

11110111
11110111

11110111000
1000100111111001

To prevent carrying out operations like this, com-
puter programmers use other number systems
based on powers of two, such as octal (base 8) and
hexadecimal (base 16). Arithmetic is much easier
to perform in these systems and conversion to and
from binary is so easy that you can do it on sight
with a little practice. For example, the above
product can be read as hexadecimal 89F9 or octal

104771.

Conversion between binary and octal consists of

dividing the binary number into groups of three,

from right to left:

1 000 100 111 111 001 = 104771 (base 8)

These patterns of three digits can each be con-
verted to one of eight octal digits from Table F.l.

With exposure, these patterns become very famil-
iar. As you would guess, there are eight symbols in

the octal system, 0—7.
The hexadecimal system has 16 digits, 0—9, A,

B, C, D, E, and F. The use of letters to represent
numbers is sometimes confusing, but that's the
convention we're stuck with. When converting be-

tween binary and hexadecimal, the binary num-
ber is divided into groups of four digits starting
from the right:

1000 1001 nil 1001 = 89F9 (base 16).

6502 programming convention calls for use of
the hexadecimal numbering system for represent-
ing addresses, machine language code, and much
data. Convention further calls for preceding hexa-
decimal numbers with a dollar sign ($89F9) and
binary numbers with a percent sign (%10001001),
to distinguish them from decimal numbers. Fol-
lowing convention, the Apple monitor represents
all numbers in hexadecimal. As a result, some
skill in hexadecimal arithmetic and hexadecimal/
decimal conversion is very desirable for Apple
programmers. In addition, the well rounded com-
puter programmer will be familiar with the bi-

nary and octal systems.

Here are two numerical facts of life about 6502
based microcomputers like the Apple. First, there
are 16 address lines connected to the 6502. 16 lines

can be in 65536 different possible combinations of
states (0—65535, $0—$PFFF, or %0—%1111 1111
nil 1111). Second, there are eight data lines con-

nected to the 6502. Eight lines can be in 256 dif-

ferent possible combinations of states (0—255,
$0-$FF, or %0-%llUllll). These numerical fea-

tures of the 6502 account for some limiting num-
bers which occur in the BASIC language like

65535, 255, 32767, and 127.

Addresses are normally referred to in hexadeci-

mal in Undcrsta ridhifj the Apple lie. This is because

the hexadecimal representations make sense and

Table F.l Number System Equivalent Representa ions.

DECIMAL BINARY HEXADECIMAL OCTAL
0000

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 8 10

9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100 C 14

13 1101 D 15

14 1110 E 16

15 1111 F 17

fe^>A
"*._
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are easy to remember. Numbers like $10000, $C000,

and $2000—$3FFF are much more to the point than

65536, 49152. and 8192-16383 when representing

the number of Apple addresses, the start of I/O

addressing, and the address ran^e of the HIRES
PAGE 1 memory map. It is also far easier to

remember that the cassette output port can be

toggled by a reference to any address in the range

i5C02X ($('020—$('02P') than the range 49184—

49199. Dear reader, the effort you spend learning

your binary and hex systems will be well worth it.

If this is your first exposure to number systems
then you have just scratched the surface. It is

highly recommended that you spend some time
with mathematics or computer arithmetic courses
solving problems and familiarizing yourself with
this sort of numerical manipulation. You need to

get a little used to thinking like a computer. Prob-
ably the best exercise possible for you would be to

write some 6502 assembly language programs.
You'll sink or swim in hexadecimal and binary
number systems.

v,i.^



appendix G

Revisional Information

The Apple lie computer was released in 1983
with its 820-0064-A (Revision A) motherboard.
This event had been weil anticipated, but there
was a little surprise for new purchasers of the
Apple lie and 64K RAM card. The RAM card
manual described 560-point HIRES graphics that
were only available on a Revision B motherboard
with a 64 RAM card installed in the auxiliary slot.
^vision B? Improved capabilities? Available soon?
Why do they do these things to me? Why do they
do these things to themselves?
Revision B was released a few months later,

^™^»I1 the Revision A inventory had been clear-
ed. Relatively few Revision A Apple He's were
sold and most of those that were sold were traded

tI V,*'"
*=°"^^''*^^d *^o Revision B Apple He's,

inere has been no operational change to the moth-
erboard since Revision B, so Revision B effectively
's the Apple He.
The primary operational improvement of Revi-

sion B IS the addition of the DOUBLE-RES graph-
ics capability. This was achieved by rewiring 1/3

of the C,^> LSIO NAND ^ate so that pullin^r pin f,r^

of the auxiliary slot low forces TP^XT processing
at the timing HAL instead of disabling mother-
board ROM as it did in Revision A (.see P'igures 8.9
and 6.1). The nomenclature of pin 55 was appro-
priately changed from KNFIRM to FRCTXT'.
Changes in the timing HAL and MMU were

required to make the new FRCTXT' wiring work.
The Revision B timing HAL treats pin 12 as
GR+2' wherea.s the Revision A timing HAL treats
pin 12 as C.R+2. The MMU was changed so that
ROMENl'and R0MEN2' are gated by INHIBIT',
a necessity since the ROM inhibiting function had
been performed by the NAND gate which now
performs the forced text function.

It is my understanding that the video timing
relationships were different in the Revision A tim-
ing HAL from what they are in Revision B. 1 have
never examined the .signal outputs of a Revision A
HAL, so I'm not positive what the differences are.

I have noticed that the VID7M/LDPS' relation-

ship depicted on page 159 of the Apple II Rafi-rem-e
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Manual for lie Only is incorrect for the Revision B
HAL, and I speculate that it may show the Revi-

sion A timing. In any case, wiring and component

changes were made to the video summing ampli-

fier in Revision B, and these would be necessary to

realign COLOR REFERENCE to the PICTURE
signal if video timing in the HAL were changed.

Another area of change in Revision B was in the

functions of motherboard configuration jumper

pads. Two new jumpers were added (X3 and X7),

and the functions of XI and X2 were changed. The

functions of all Revision A and B jumper pads as

well as the functions of the jumper pads on the

PAL motherboard are given below.

The revisional history of the PAL motherboard

is very similar to that of the NTSC motherboard.

Its Revision A version was released (with no

DOUBLE-RES graphics) at the same time as the

Revision A NTSC motherboard. The Revision B
version with DOUBLE-RES graphics was released

soon afterwards, and Revision B is still current.

An additional change that was incorporated in

Revision B to the PAL motherboard was the inclu-

sion of the color killing switch in the production

motherboard. This late addition did not get into

the Revision A production board, but it was added

to the Revision A boards in a separate production

step.

In summary, the characteristics that truly rep-

resent the Apple He are those of the NTSC and
PAL Revision B motherboards, and the primary
change of Revision E was the addition of DOU-
BLE-RES graphics modes. Differences between

the NTSC and PAL motherboards were noted in

Chapters 3 and 8. Essentially, the PAL mother-

board is identical to the NTSC motherboard with

the exceptions of PAL video generation, alternate

language character set selection, 14M frequency,

and lOU vertical scan rate.

APPLE lie JUMPER PAD FUNCTIONS
Most Apple lie owners never need to solder or

break any of the motherboard or keyboard config-

uration jumper pads. On the other hand, readers

of this book are just the type of people who would
go in there and reconfigure the computer. Des-

criptions of the jumper pad functions follow here.

Xi , X2-Character Set Switctiing

(NTSC Revs A and B, Figures 7,4, 8.5, 8.6)

Strictly for the purpose of character set switch-
ing, there really is no reason why there should be
any jumper pads in this area, and there are none

on the PAL motherboard. The PAL motherboan
contains two language sets in the keyboard ROfc
and in the video ROM, and a mechanical switcl
connected to J19 will switch between video anc
keyboard sets simultaneously via the ALTCHF
line.

The keyboard ROM on the NTSC motherboard
contains two character sets, but the video ROM
contains only one. In Revisions A and B, the nor-

mal configuration is for only the standard key-

board set to be enabled. This configuration can be

changed via XI and X2.

In NTSC Revision A, X2 is normally open, and
the keyboard ROM alternate set selection line is

normally connected to ground through XL By
opening XI and closing X2, the owner can remove
the ground and connect AN2 to the keyboard

ROM alternate set selection line. This enables

programmable switching of keyboard sets via

AN2. To connect a mechanical switch, leave X2
open and open XI. J19 does not exist in NTSC
Revision A, but the select wire from the switch

can be soldered to XI or X2 or to pin 19 of a

separate socket installed between the keyboard

ROM and its motherboard socket.

In NTSC Revision B, the keyboard ROM alter-

nate set selection line is connected through the

normally closed X2 jumper pad to the ENVID'
line and through the normally open XI jumper

pad to ground. In this configuration, the alternate

keyboard set is selected any time the video ROM is

disabled via ENVID' high. To leave the standard

set selected when ENVID' is high, open XI and

close X2. To select the alternate set via a mechani-

cal switch without disabling the video ROM, open

X2 and leave XI open. As with Revision A, the

switch can be soldered to XI or X2 or to pin 19 of a

separate socket installed between the keyboard

ROM and its motherboard socket.

X3-AN2 Control of ENVID'
(NTSC Rev B. Figure 8.5)

In all versions of the Apple lie, pulling the

ENVID' line high disables the motherboard video

ROM. One would only expect this to be done in

conjunction with an auxiliary card that substi-

tuted an alternate picture signal on the ALTVID'
line. An auxiliary card can pull ENVID' high

itself, but there are two other options in the Revi-

sion B NTSC Apple He. The owner can install a

jack and switch at J19 to give mechanical switch

control over ENVID', or the owner can solder the

X3 jumper so that programs can control ENVID'
via AN2. As noted above, the X2 jumper should be

Ui'^
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opened if it is desired that ENVID' be brought
high without selecting the alternate keyboard set.

X4,X5-Performing DMA Without Stopping
ItieMPU Clock
(All Apple He's, Figure 4.2)

With X4 and X5 normally configured, the
PHASE clock of the 6502 is prevented from ris-

ing when the DMA' line is held low by a peri-

pheral card. PHASE continues to alternate
throughout the rest of the motherboard and peri-

pheral slots, but it stays low at the MPU. This is

fine for DMA peripheral cards which only need to

steal a cycle or two of bus access from the 6502,
but it means that peripherals which steal upwards
often cycles in a row may cause the 6502 data reg-

isters to lose their values.

The owner can change this situation by opening
X5 and closing X4. PHASE will then continue to

alternate at the 6502. even when DMA' is low.

Care, however, must be taken by peripheral card
designers wishing to use this feature because the

6502 will attempt to execute programs while not
controlling the bus during DMA unless it is put
into a wait state by pulling the READY line low.

Tb perform long duration continuous DMA. pull

READY low in conjunction with DMA'. To force
feed the 6502 a program by addressing one area of

memory while the 6502 is addressing another, pull

DMA' low but leave READY high.

X6-Shift Key IVIod
(AltApple He, Figure 7.2)

The SHIFT key mod is an improvised way of

inputting upper and lower case characters on the
upper case only Apple II. It consists of connecting
a wire jumper between the SHFT' line and the
PB2 game I/O input. PB2 then reacts to the
SHIFT key, and text handling programs can read
the keyboard ASCII and interpret it as upper or
lower case depending on PB2. The SHIFT key

mod is built into the Apple He through the X6
jumper pad. Just solder X6, and you will connect
SHFT' to PB2, effectively installing the SHIFT
key mod.
The SHIFT key mod is not a necessity on the

Apple He unless you want to run an old Apple II

program that works only with the SHIFT key mod
and does not interpret direct upper and lower case
ASCII from the keyboard. It is also advisable to

solder X6 if you have no device connected that
makes use of PB2 so you will have a convenient
means of exercising PB2 if a program requires it.

X7-GR+2 Connection to Slot 7, Pin 23
(NTSC Rev B, PAL Rev B, Figure 7.6)

Pin 23 of Slot 7 was not connected to anything in

Revision A. In NTSC and PAL Revision B moth-
erboards, it is connected to GR+2 from pin 2 of the

lOU through normally open jumper pad X7. The
installation instructions of Slot 7 peripheral cards

that require GRAPHICS/TEXT lime identifica-

tion will tell you to solder XT.

Keyboard COh4TROL Required for

Reset Jumpers
(All Apple lie. Figure 7.4)

You must normally press CONTROL and RK-
SET simultaneously to reset the Apjile He. This is

a design precaution that [irevonts accidental resets

by mutinous or otherwise uncontrollable fingers.

The precaution is not really necessary since the

RESET key is recessed and separated from the

rest of the keys (solitary confinement for crimes
committed in the late 1970s), and it is inoperable

for many handicapped persons. To change this so

the RESET key generates a reset without the

necessity of pressing CONTROL, remove the key-

board to gain access to its two unmarked jumper
pads. Close the normally open pad and open the

normally closed pad to make C'ONTROL not re-

quired for reset.
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Historical Notes

The original Apple was designed in late 1975 by

Steve Wozniak, a talented college dropout who
designed computers for fun. At some point in time,

Wozniak entered into a partnership with his friend

Steve Jobs, named the machine after a fruit, and
sold a few hundred of these Apples. This original

Apple had a 6502 microprocessor, 8K of RAM, no

motherboard ROM beyond the screen text ROM, a

motherboard power supply, and a single slot into

which a cassette interface board plugged. The
Apple was sold only as a circuit card, but enclo-

sures and keyboards were available.

Of central importance to the first Apple was the

6502 microprocessor, which was then brand new.

The 6502 was simple, powerful, and available for

$20.00 over the counter to all comers. This acces-

sibility made it an inviting MPU for an independ-
ent designer like Wozniak. Steve was a pioneer in

building hardware around the 6502 and in pro-

gramming the 6502. His BASIC interpreter was
probably the first BASIC written for the 6502.

This program was written directly in machine

code, as were the system monitor and Wozniak's

other early programs for the Apple.

In fall of 1976, Wozniak completed the design of

the Apple II. This new computer far surpassed its

predecessor in sophistication with HIRES and

LORES graphics capability. 48K of RAM, BASIC
and system monitor in ROM, built-in cassette I/Or

and eight peripheral expansion slots with mother-

board decoded slot control signals. The Apple II,

no doubt, borrowed many features of hardware

and program structure from the 1976 Apple, but

most people would not recognize the older com-

puter as an Apple.

While developing his Apple designs, Wozniak

was not a lone talent working in solitude at his

cerebral pastime. He was a member of the Home-

brew Computer Club, the club to end all clubs,

from whose membership rolls have come several

microcomputer industry leaders. His friends were

very interested in Steve's Apple and made sub-

stantial contributions to the Apple. Steve gives

Allen Baum much of the credit for the peripheral
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slot structure. In his "Apple II: System Descrip-
tion,"* he mentions Baum for originating- the
Apple II debug software, Doug Kraul for helpful
suggestions on I/O structure, and Randy Wigging-
ton and Chris Espinosa for testing Apple BASIC.
The contributions of Steve Jobs to the Apple II

were of a different nature. Jobs was not very
interested in designing computers, but he was
very interested in selling the Apple. It was Jobs
who thought big, who thought the Apple could be
sold, and who pushed Wozniak in his development
of a computer which was getting better and bet-

ter, It was Jobs who talked big to people who
counted: to Rod Holt who came over from Atari to

help with electronic engineering tasks such as

power supply design; to suppliers who were giving
them components at discount prices with 30 days
credit; to Mike Markkula who gave the new com-
pany business leadership and a quarter of a mil-

lion greenbacks in seed money.
The Apple computer company officially came

into existence in January of 1977. Company lead-

ers included Markkula, Jobs, Wozniak, Holt, and
Mike Scott who came over from National Semi-
conductor to be company president. Wozniak has a
recollection of Scott answering phone calls to

Apple while dubbing cassette tapes on a string of

tape recorders. The company shipped its first

Apple II in June of 1977 and had paid off all its

debts by December of the same year. Growth of

Apple II sales never stopped increasing as long as

it was manufactured.
While the original Apple II was produced by a

small group of talented and lucky individuals,

more recent Apple products, including the Apple
He, were produced by corporate Apple. Ideas for

future products ebb and flow in a corporate entity

for years, and so it was with the concept of an
improved Apple II, more powerful, but cheaper to

manufacture. Steve Wozniak was the force behind
the original idea. He worked with Synertek on an
early project (Apple code name Annie, circa 1978)
that used custom ICs to perform many Apple func-
tions. Annie was never developed into a final pro-

'BYTE Magazine, May 1977

duet, and I know nothing of its architecture or

capabilities.

At some point after Annie was shelved, Apple
engineer Burrell Smith began work on a different

improved Apple II. Smith built an Apple II (code
name Diana) in which many logic functions were
performed by PALs. Like Annie, Diana never
made it to production. Its development was side-

tracked by Smith's assignment to the Macintosh
project and by the fact that a custom IC approach
to an improved Apple 11 seemed more promising.
However, some of Diana's architecture, including
the timing HAL and video ROM, was borrowed by
the Apple He. In my opinion, the video ROM is the

cleanest improvement in the design of the Apple
He over that of the Apple II. I'm not sure who
originally came up with the idea, but it may have
been Smith or longtime Apple engineer Wendel
Sander.

The engineer in charge of project Annie at Syn-
ertek was Walt Broedner. Walt left Synertek in

1981 and went to work for Apple, first on the
Apple III, and later on the Apple II. At Apple
Broedner continued to support the concept of

using custom ICs as the basis for improving the

Apple II design. To bring his point home, he de-

signed the the MMU and the lOU, reworked the

Diana video timing to make it support DOUBLE-
RES graphics, and built a working prototype of

the Apple lie. In doing this. Broedner also de-

signed the Apple lie. because his prototype oper-

ated like an Apple lie if you threw some switches.

It is certain that others besides Walt Broedner*

had a hand in Apple lie development. Engineer-

ing manager Peter Quinn oversaw the entire pro-

ject. Gary Baker incorporated his Eurocolor card

into the PAL motherboard and designed the video

amplifiers of the NTSC and PAL motherboards.

The new Apple lie firmware was written by Rick

Auricehio. As was mentioned previously, Burrell

Smith's Diana work was significant. Wozniak. of

course, was most influential since it was his com-

puter that was being redesigned.

*After desijrninjT the Apple He and lie, Walt Broedner left

Apple to form a new company. Video-7 !nc.
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appendix I

Apple ll/lle

Difference Notes

Most Apple users are aware of the primary
operational differences between the Apple II and
the Apple lie, and in fact, these differences have
been well described in various writings. However,
the magnification power of Understanding the

Apple lie is turned up a little hig-her than most
Apple lie writings, and examination at this level

turns up differences too obscure to be noted in

more general descriptions. So, for those who like

the view of the trees from inside the forest, here
are some notes on differences between the Apple
11 and lie. These differences are listed under the
chapter in which their related area is covered so

the reader may know where to look for further
explanations.

Chapter 1—Overview
As noted in Chapter 1. the Apple lie is opera-

tionally compatible with a 48K Apple II with 16K
RAM card in Slot 0, 80-column card in Slot 3, and
an enhanced keyboard. The major improvements
beyond this consist of motherboard support for

64K of auxiliary RAM (an auxiliary 48K plus an
auxiliary Slot RAM card) and the DOUBLE-
RES graphics modes. Additionally, there are nu-
merous minor operational differences between the

two computers pointed out under Chapters 2—10
below.

The difference in hardware implementation be-

tween the Apple II and the Apple He are greater

than the operational differences. Basically, the

Apple II motherboard was rebuilt from the ground
up using custom ICs, the timing HAL, bigger

RAM and ROM chips, and redesigned logic struc-

tures to achieve and improve upon old features in

simpler ways, In addition to motherboard hard-

ware changes, a few changes were made to the

case and base plate structures including a rede-

sign of the back structure so that it is less conve-

nient to string peripheral slot cables out the back,

but so that the outside world is better protected

from Apple RFI emission.

Chapter 2- Bus Structure

Distribution of the address bus and data bus in

the Apple II and Apple He is, of course, similar.

This is dictated by the nearly identical MPU,
peripheral slot pin assignments, and operational

features of the two machines. There are, however,

numerous differences in the bus distribution de-

tails, most notably in the RAM area. The main
reason for these differences is that packing the

(•,'dtiiEi
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logic functions of many small ICs into the two
large custom ICs required things to be done in

new and different ways. Also, the larger RAM and
ROM chips and auxiliary slot of the Apple He
result in some differences.

1. RAM Address Multiplexing—In the Apple
II, the address bus and video scanner provide
inputs to a 4 to I multiplexor which outputs
VIDROW, VIDCOL, MPUROW. and MPU-
COL addresses in turn to RAM on seven lines.

The 4 to 1 multiplexor does not have tri-state

outputs, so the multiplexed RAM address bus
never floats. In the Apple He, the MMU and
lOU drive the 8-line RAM address bus with
tri-state outputs. While the MMU presents a

high impedance, the lOU places the VIDROW
then VIDCOL addresses on the RAM address
bus. While the lOU presents a high imped-

ance, the MMU places the MPUROW then

MPUCOL addresses on the RAM address bus.

The MPUROW address is input to the lOU as

well as to RAM. The RAM address bus is dis-

tributed to auxiliary card RAM in addition to

motherboard RAM, and there is a short period

of time just before the VIDROW and MPU-
ROW addresses when the RAM address bus

floats.

2. RAM Output Data Distribution—In the Ap-
ple II, RAM output data is latched and dis-

tributed to the RAM/keyboard data multi-

plexor and to the video generator. The RAM/
keyboard data multiplexor places either the

latched keyboard data or the latched video

data on the data bus when a read is made in

the $0000—$CO0F range. In the Apple He,

motherboard RAM output data goes directly

to the data bus for reading by the MPU and
saving in the motherboard video latch. Auxil-

iary RAM data input and output lines are

connected to the auxiliary video latch and to a

bidirectional driver. The bidirectional driver

passes data between auxiliary RAM and the

data bus when the MPU is reading from or

writing to auxiliary RAM. The auxiliary video

latch saves video data from auxiliary RAM
and gates the video data to the video data bus
at the correct time for processing in the video

generator. The keyboard circuits in the Apple
He have their own tri-state connection to the

data bus.

3. The Bidirectional Bus Driver—In the Apple
II, there is a bidirectional driver between the

MPU and the data bus. This enables the MPU

to drive the data bus during write cycles, even

with all the motherboard and peripheral card

devices connected to the data bus. In the Apple
He, the bidirectional driver is situated be-

tween the peripheral slots and the data bus.

The MPU must therefore drive the heavy
motherboard data bus load during write cy-

cles without the aid of a driver. This load is

constant and does not vary with peripheral

card installation. An advantage of the Apple
He implementation is that motherboard devi-

ces like RAM and ROM have more driving

power when supplying data to the peripheral

cards during DMA read cycles. Also, the

Apple He design tolerates more peripheral

card data bus loading than that of the Api^ile

II.

Chapter 3—Timing Generation and
the Video Scanner

The primary timing signals of the Ap|)le 11 and
the Apple IIe-14M, 7M, COLOR RKFP:RE-;N('L,

RAS', AX, CAS', Q8, PHASE 0. and PHASK 1-
are nearly identical. The fretiuencies. seriuences.

and the long cycle are the same in the two com [ni-

ters. The video scanner is also functionally identi-

cal in the Apple II and He with i"i cycles ])vr

horizontal scan, 2fi2 horizontal scans per \-ertical

scan in the 60 Hz Apple, and IU2 horizontal scans

per vertical scan in the 50 Hz Apple.

Some notable differences:

1. CAS' is gated by CASKN" from the MMUdtir-
ing PHASE in the Apple He. This is the \\'ay

motherboard RAM is enabled or disabled, in

the Apple II, CAS' always falls after AX falls,

and CAS' from the timing generator is gated

to one of three octets of HAM chips during

PHASE by $00OO-$;^FFF, $.10()()--i?7FFF.

or $8000-$BFFF addressing.

2. CAS' in the Apple II rises simultaneously with

RAS'. RAS' rising latches RAM read data,

and CAS' rising causes the RAM chips to

bring their data outputs to high impedance

after a short delay. In the Apple He, RAM
read data is not latched by RAS' rising so

CAS' rising had to be moved back closer to the

end of the 6502 cycle. CAS' rises one 14M

period after RAS' rises (simultaneousl.v with

PHASE or PHASE 1 rising).

3. In the Apple II, the long cycle occurs at a hori-

zontal scan count of 0000000. In the Apple He,

the long cycle occurs 1 ';. scan counts later.

straddling horizontal states 1000000 and
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1000001. The reason for the difference is that

there is a greater lag between RAM address-

ing and video output in the Apple He timing

generator. In the He. the long cycle had to be

pushed back so it would not interfere with the

last video output cycle of each horizontal scan.

4. An Apple He auxiliary card can monitor the

timing signals and substitute its own signals

for the motherboard timing signals. There is

no similar capability in the Apple H.

5. The flash counter, which is an extension of the

video scanner, does not exist in the Apple H.

The Apple II uses analog timers to produce

time references for flashing text, the keyboard

repeat function, and the power-up reset.

6. The video timing signals, LDPS' and LD194 in

the Apple II and LDPS' and VID7M in the

Apple lie, are entirely different. These differ-

ences are due to the differences in the video

generator hardware and the 80-column dis-

play capability of the Apple He.

7. The hardware implementation of the timing

generator and video scanner in the Apple He
is different from that of the Apple II, but the

difference is mainly in the use of state-of-the-

art ICs to achieve the same functions. (There

is still an underlying similarity in the hard-

ware.) In both machines, the timing generator

is made up of a 14.31818 or 14.25045 MHz
oscillator whose output is divided and process-

ed to make up the same timing signals. Also in

both machines, the video scanner is a 262/65

or 312/65 state counter whose outputs address

display memory and trigger events related to

television scanning.

Chapter 4—The MPU
Both the Apple II and the Apple He use 6502

microprocessors, and most 6502 related infornia-

tion in the two computers is identical. This in-

cludes 6502 programming, speed of program exe-

cution, interrupts, and the control signal connec-

tions between the 6502 and the peripheral slots.

However, there are numerous minor differences in

6502 connections and related circuits. Some of

these differences are listed here.

1. The Apple II uses the 1 MHz 6502 while the

Apple He uses the 2 MHz 6502A. The Apple

He MPU is therefore tested to operate with

shorter delays between events.

2. The Apple II 6502 is connected to the data bus

through an external bidirectional bus driver

whose direction is controlled by R/W and

6502 PHASE 1. The Apple He 6502 is con-

nected directly to the data bus. 6502 PHASE 1

in the Apple He is not connected.

3. The 6502 SYNC signal is connected to pin 39
of the peripheral slots in the Apple lie. 6502
SYNC is not connected in the Apple H.

4. The 6502 SET OVERFLOW input is ground-

ed in the Apple II, but it is open in the Apple
lie.

5. Wire-OR control inputs from the peripheral

slots are pulled up with 1000 ohm resistors in

the Apple II and 3300 ohm resistors in the

Apple He. This results in slower low to high

switching speed in the Apple He which can be

offset, when necessary, with parallel pull-up

resistors on peripheral cards.

6. The X4 and X5 jumpers of the Apple He allow

peripheral slot DMA operations which do not

stop the PHASE clock to the 6502. In an

unmodified Apple II, pulling DMA' low al-

ways inhibits the 6502 PHASE clock.

7. In the Apple lie, CAS' is pre-gated (CASEN'
gating occurs prior to 14M clocking), and

CAS' is applied directly to the RAM chips. In

the Apple II, CAS' is post-gated (RAM SE-

LECT' gating occurs after 14M clocking) be-

fore application to the RAM chips. As a result,

in relation to PHASE and 6502 PHASE 2,

CAS' in the Apple He falls typically 21 nano-

seconds (32 nsec max) before CAS' falls at the

Apple II RAM chips. 6502 write data must,

therefore, be set up earlier in the Apple lie

than in the Apple II. This is one good reason

for the use of a 2 MHz 6502A (100 nsec write

data setup) instead of a 1 MHz 6502 (175 nsec

write data setup) in the Apple He.

8. Because of long address bus to multiplexed

RAM address bus propagation delay in the

MMU, DMA peripherals must set up the ad-

dress bus earlier in the Apple He than in the

Apple H.

9. NMI', IRQ', and BREAK handlers in the Apple

II with Autostart Monitor and the Apple lie are

identical. Reset operations are similar in most

aspects, including disk autostart, the power-up

byte, and the RAM reset vector. The Apple He

reset handler also supports open Apple and

solid Apple resets, and its video initialization

routines support the improved Apple lie video

features.

10. The Apple He can operate with a 65C02 micro-

processor but an Apple II cannot. I think that

this is because RAM read data in an Apple II is

set up too late for the 65C02. 1 have verified that
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NCR 65C02S do not work reliably in the Apple
II, but I have not verified this for Rockwell
65C02S.

Chapter 5—RAM and
Memory Management

No area of the Apple 11 and He computers is

more different in hardware implementation than
RAM and memory management. This is in spite of

the fact that the Apple He is operationally similar

to a 48K Apple II with a 16K RAM card installed

in Slot 0. Differences center around the use of 64K
RAM chips in the Apple He and the more versatile

memory management features of the Apple He.

1. The Apple II has 48K of motherboard RAM in

24 16-kilobit chips. The Apple He has 64K of

motherboard RAM in eight 64-kilobit chips.

2. The 16K RAM card is not affected by RESET'
falling, is not inhibited by the INHIBIT' line,

does not support reading of the configuration

soft switches, and steals $F800—$P"FFF ad-

dress response for its F8 ROM when its RAM
is disabled for reading. Apple lie high RAM is

disabled for reading and enabled for writing

when RESET' fails and is inhibited when
INHIBIT' is low. The state of the HRAM-
READ and BANKl soft switches can be read

at$C012and$C011.

3. Apple He memory management fully supports

access to 64K of auxiliary card RAM. There is

no equivalent capability in the Apple II.

4. The RAM address multiplexor of the Apple II

is a 4 to 1 multiplexor made up of a number of

TTL chips driving seven 2-state RAM address

lines. The RAM address multiplexor of the

Apple lie is a 4 to 1 multiplexor made up of

the 2 to 1 video multiplexor in the lOU and
the 2 to 1 MPU multiplexor in the MMU
which together drive eight tri-state RAM
address lines. The overall multiplexing func-

tions are very similar including identical cor-

respondence between displayed video address

and MPU address in the two computers.

5. HBL scanned addresses in TEXT/LORES
scanning in the Apple II are $1000 higher
than HBL' scanned addresses. This effect of

HBL resulted from the Apple II scheme of

refreshing memory in a computer that would
accept 16K or 4K RAM chips. HBL gating is

not included in the Apple He RAM addressing
so HBL scanned addresses overlap the HBL'

scanned addresses in the Apple lie.

6. Since HBL is not a RAM address input in the

Apple He, SUM A4 and SUM A5 are ade-

quate refresh signals and VC does not have to

be used for RAM refresh as it is in the Apple
II. As a result, the refresh period in the Apple
He never exceeds 2 milliseconds. In the Apple
II, the refresh period slightly exceeds 2 mil-

liseconds in HIRES mode during a portion of

VBL.

7. Motherboard RAM is connected to the data
bus through buffering devices in the Apple H
but is connected directly to the data bus in the

Apple He. This affects data bus management
in all MPU communication in that you don't

have the RAM/keyboard data multiplexor
jumping on the Apple He data bus right after

PHASE 1 goes high.

8. Details of MPU/RAM communication timing
are different in the two comjuiters utMi genej--

ally less critical in the Ajiplo He. A notable

exception is that the (>r)()2 ha.s about 21 nano-

seconds less time to set uji RAM write data in

the Apple He than it does in the .Aitiilc 11 (see

Chapter 4. item 7 aijove). Also, liecause of long

address bus to mvi!tii)lexe() R.AM address bus

propagation delay in the MMU, DMA periph-

erals must set up the address bus earlier in the

Apple lie than in the Apple II.

9. The MMU and most of its cai)abilities do not

exist in the Apple il. Of the M.Ml.^ softsu'itches,

80STORE, RAMRD. UAMWHT, INTCXROM,
SLOTC;^R()M, INTC^ROM. and ALTZl' and

the memory management functions of l'A0E2
and HlRESdonot exist in the Apple 11. Addition-

ally, HRAMRI), PANKl. PRE-WRITK, and

HRAMWRT' exist only on a IGK RAM card in

an Apple II. not on the molherboar<l. MMU
functions that do not exist on the motherboard

of an Apple II include auxiliar.\- RAM manage-

ment, high RAM,'ROM management. $C1IH)—

$CFFFsvvitching between 1/Oand ROM. inhib-

iting of RAM via INHIBIT'. MPU reading of

soft switch states, disabling of high RAM at

RESET', and management of a jK'i'ipheral data

bus driver. MMU functions that do exist in the

Apple II include RAM address multiplexing

and address decoding of RAM. ROM, I/O, and

keyboard enabling signals.

10. The capability of resetting the MMU from a

program that was noted in Chapters 4 and 5

applies only to the Apple He. There is no equiva-

lent capability in the Apple II.
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Chapter 6-ROM
The function of ROM is so basic and the contents

of Apple II and lie firmware are so similar that

not much can be said to have changed in this area.

There are a few basic differences.

1. The Apple II has 12K of firmware residing in

six 2K ROM chips compared to 16K of firm-

ware residing in two 8K ROM chips in the

Apple He. The nature of the extra firmware is

noted in Chapter 6. Basically, it supports the

80-column, upper/lower case capabilities and

other extended features of the Apple lie. Not-

able firmware improvements include extra

control and escape sequences when 80-column

firmware is active and the optional forced boot

reset (open Apple reset).

2. Motherboard ROM response to $C100—$CFFF
addressing is not a capability of the Apple II,

li MPU/ROM communication timing details are

very similiar although Apple He ROM timing

lags Apple II ROM timing because of long

MMU propagation delay.

4. ROM in the Apple H is not pin compatible

with EPROM except for the text ROM of

Revision 7 and later motherboards. All ROM
on the Apple lie motherboard is pin compati-

ble with EPROM.

a. The Apple lie firmware upgrade improvements
noted in Chapters 4 and 6 are not available in

the Apple II.

Chapter 7-I/0
The I/O features and structure of the Apple lie

are compatible with those of the Apple II to a very
great extent. Nevertheless, there are 1001 itsy bitsy

differences. Here are a few of the 1001.

lOU Soft Switches:

1, The lOU does not exist in the Apple II but most
lOU capabilities and soft switches do.

2, The window for toggling a soft switch in the

Apple II is a period equal in duration but
slightly lagging PHASE 0. The window for

toggli ng the equivalent lOU soft switches in the

Apple He is a period slightly lagging <i>0» Q3'»
RAS".

3, The ALTCHRSET, 80STORE. and 80COL soft
switches do not exist in the Apple II. The Apple
II only has modes equivalent to ALTCHRSET'*
80STORE' • 80COL'.

4. There is no equivalent to the capability of
reading VBL' and AKD in the Apple II.

5. TEXT, MIXED. PAGE2, and HIRES exist in
the Apple II, but their states cannot be read
by the MPU as they can in the Apple He.

6. Read access to $C01X in the Apple II resets

the keyboard strobe flip-flop. Read access to

$C01X in the Apple lie passes the state of

AKD, VBL', or an MMU or lOU soft switch to

MD7 of the data bus and passes keyboard
ASCII to MD6— of the data bus. Read access

to $C010 also resets the KEYSTROBE soft

switch in the Apple lie. Write access to $C01X
resets the equivalent of the KEYSTROBE soft

switch in either computer.

7. The KEYSTROBE auto repeat feature of the

Apple lie does not exist in the Apple II.

8. AN0-AN3. PAGE2, and HIRES are reset

when RESET' falls in the Apple He but not in

Apple II.

9. The timing of Apple lie output signals origi-

nating in the lOtf is generally similiar to, but

slightly lags due to lOU propagation delay,

the timing of same signals in the Apple II.

This includes ANO—3, SPKR, and CSSTOUT
timing.

Serial I/O:

1. The 9-pin game I/O extension jack in the back

of the Apple lie does not exist in the Apple H.

2. PBO and PBl are tied to open Apple and close

Apple and pulled low through 470 ohm resis-

tors on the keyboard in the Apple He but not

in the Apple H.

3. In the Apple lie, but not the Apple II, the

SHIFT key mod can be installed (PB2 con-

nected to the SHFT' line) by soldering a moth-

erboard jumper pad.

4. The open collector outputs of the quad timer

have IK pull-up resistors in the Apple lie but

not in the Apple II.

5. A self-test LED is connected across the speak-

er jack in the Apple He to give a firmware

diagnostic pass indication when the mother-

board is powered up with no keyboard or

speaker connected. This LED is not present in

the Apple II.

Keyboard:

1, Early Apple II keyboards cannot input ASCH
for lower case alphabetic and some control

characters. Later Apple II keyboards can
input lower case alphabetic characters if the
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user installs a switch, but the lower case key-

board input is not supported by Apple 11 firm-

ware. The Apple He keyboard can input all

128 ASCII codes and there is some degree of

firmware support for lower case keyboard

input.

2 There are a number of keys on the Apple lie

'

keyboard that are not on the Apple II key-

board including DELETE. TAB, CAPS LOCK,

open and close Apple, up and down arrow, and

several special character keys.

3 The layout of Apple II special character keys
'

is similar to that of a teletype. The layout of

Apple He special character keys is similar to

that of an IBM Seledric typewriter.

4 The Apple He keyboard ROM with dual key-

'

board layout enables the user to switch be-

tween keyboard layouts or reprogram the two

layouts. There is no similar capability m the

Apple II. -If
5 The Apple He motherboard contains a jack lor

'

a numeric keypad. The Apple 11 motherboard

does not have such a jack although later Apple

H keyboards have holes meant for installation

of a keypad jack. ,^ti c n
6 See also items 4, 6, and 7 under lOU Soil

Switches and item 2 under Serial I/O above.

Peripheral Slotsi

1 There are only seven peripheral slots (1-7) in

the Apple lie compared to eight penpheral

slots (0-7) in the Apple II. The Apple H Slot

DEVICE SELECT' range, $C08X, is used to

configure high memory in the Apple He.

2. The bidirectional data bus driver in the Apple

II is situated between the MPU and other data

bus devices. The bidirectional data bus driver

in the Apple He is situated between the peri-

pheral slots and serial input multiplexor and

the other data bus devices.

3. An Apple He Slot 1 peripheral card can dis-

able motherboard timing or the keyboard cir-

cuits via CLKEN' and ENKBD' respectively.

These lines do not exist in the Apple II.

4. Pin 39 is connected to the USERl line in the

Apple H and the 6502 SYNC signal in the

Apple He. Any peripheral card m the Apple ii

can disable all $CXXX I/O decoding by pul-

ling USERl low. A similar capability m the

Apple He is that any program can disable

$C100—$CFFF I/O decoding by manipulating

INTCXROM, SL0TC3R0M, and INTC8R0M,

$COXX I/O decoding cannot be disabled in the

Apple He.

5 The INHIBIT' line of the Apple II inhibits

motherboard ROM but does not affect RAM.

The INHIBIT' line of the Apple He inhibits

motherboard and auxiliary card memory (RAM

and ROM).

6 Pins 19 of Slots 0—6 and pins 35 of Slots0—b are

connected together but not connected to any

signal in the Apple II. Pins 19 and 35 of Slots

2—6 in the Apple He are not connected.

7 Peripheral slot wire-OR lines are pulled up by

IK motherboard resistors in the Apple II and

by 3.3K motherboard resistors in the Apple

He.

Auxiliary Slot:

I The auxiliary slot and the capabilities asso-

ciated with it exist only in the Apple He, not

in the Apple II.

Chapter 8—Video Generation

Apple He video output is compatible with Apple

II video output to a very great extont. bYNO,

COLOR BURST, and blanking logic equations in

the Apple He are identical to those of the later

Apple II (RFI Revision), and SINGLE-RES Apple

He displays are identical to Apple II displays pro-

duced by the same memory map (exept as noted in

item 7 below). The big operational ^hangem video

generation is the addition of the DOUBLE-RES

modes. But the most striking change to a student

of Apple II hardware is the cleanup of the video

generator design.

The differences:

1 The double horizontal resolution d'splay modes

(80-character TEXT. 80-block LORES and

560-point HIRES) of the Apple He do not exist

in the Apple H. Neither do the high speed tim-

ing and auxiliary memory which are required

to support the double resolution modes.
_

2 The design of the video generation circuitry is

much cleaner in the Apple He than it is m the

Anple H. In addition to integrating many

video logic functions into the lOU, the teg

nattern ROM, text shift register, HIRES/

LORES configurable graphics shift register,

picture selection multiplexor, and synchroniz-

ing flip-flop in the Apple II are replaced by

Z video ROM and one shift register in the

^ aSdIc He displayed text characters and graph-

'
fcs cha acter'istL can be changed by rep ac-

ng the video ROM. Displayed text characters

can be changed by replacing the text ROM in

Revision 7 and later Apple Hs.
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4 A standard Apple II motherboard can be con^

figured for PAL video output by making the 5U

Hz jumpers, installing a 14.25 MHz crysta on

the motherboard, and installing a "Eurocolor

PALencodinKcard in Slot 7. With the Apple lie,

different NTSC and PAL motherboards are

used depending on the television system of the

country they are operated in.

5 The Apple He can display 96 text characters.

The Apple II can display only 64 text charac-

ters although this can be increased to 96 by

changing the text ROM of Revision 7 and later

Apple lis.

6 The Apple lie can switch between Apple 11

compatible inverse and flashing video and full

ASCII inverse via the ALTCHRSET soft switch.

The Apple II can operate only in ALTCHR-

SET' mode.

7. In Apple II HIRES40 mode, delayed patterns

at the far left extend undisplayed dots onto the

screen, and delayed patterns at the far right

can be cut off by following undisplayed pat-

terns. In Apple He HIRES40 mode, delayed

patterns at the far left extend the left hand

blanking margin, and delayed patterns at the

far right are always cut off.

8. The Apple He capabilities of monitoring and

disabling video signals and injecting an alter-

nate picture signal from an auxiliary card do

not exist in the Apple II.

9. Low-high propagation delay is significantly

shorter than high-low propagation delay on

the PICTURE signal of the Apple II. This

causes bright spots to be about 24 nanoseconds

wider than equivalent dark spots. No such

effect is noticeable in the Apple He.

10 At the signal sources, the PICTURE signal

(referenced to COLOR REFERENCE) of the

Apple II lags that of the Apple He by one 14M

period. COLOR REFERENCE is delayed more

in analog shaping circuits in the Apple II than

the Apple lie, so at the video summing ampli-

fier, the PICTURE signal/COLOR REFER-
ENCE relationship is identical in the two com-

puters.

11. HIRES40 colors can be instantly switched

between delayed and undelayed colors via

FRCTXT' in the Apple He. There is no equi-

valent capability in the Apple H.

12 The abnormal LORES mode resulting from

resetting 80COL and bring FRCTXT' low in

the Apple lie does not occur in the Apple II.

13, Video generation timing in the Apple 11 and

He have similarities but are very different in

detail. Apple lie timing is delayed by video

ROM access time, and DOUBLE-RES timing

exists only in the Apple He.

Chapter 9—The Disk Controller

There is no difference in floppy disk I/O be-

tween the Apple II and Apple lie. The controller.

disk drive, and operating systems are not built

into the Apple and therefore evolve separately

from the computer. Advances made since the re-

lease of the Apple He include the development of

several Disk II compatible drives, the introduction

of ProDOS, and the development of the IWM (In-

tegrated Woz Machine) which is a custom IC that

emulates the Disk II controller and may be used in

future Apple Il/IIe controllers.

Chapter 10—Maintenance and Care

Much that can be said about maintenance and

care of Apple computers is valid for either the

Apple II or the Apple He. In the Apple He, peri-

pheral slots, tinkering users, and the power supply

remain as reliability weak links, and basic prob-

lem troubleshooting steps like removing periph-

eral cards and evaluating the video display are the

same. Some things have changed, to be sure and

generally, for the better. Most notably the Apple

He is more reliable, as has been amply verified by

this world class tinkerer.

Apple lie reliability improvements include

stronger motherboard mounting near the periph-

eral slots and a reduced number of motherboard

ICs. Additionally, the verification and fault isola-

tion capabilities represented by the firmware diag-

nostics and the auxiliary slot are not present in the

Apple II.
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RAM control 5-2 to 5-5, 5-32 to 5-37

CASKN' 3-20 to 3-22, 5-3. 5-30 to 5-38, 7-24 to 7-25, 7-27 (also see
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(also see timing diagrams; peripheral data bus)

data fields, DOS 9-2, 9-27 to 9-28, 9-39 to 9-42

data register 9-10, 9-11, 9-14 to 9-15

debounce 4-29 to 4-30. 7-10 to 7-12. gl-2

decimal number system e!-2, F-1

DEVICE SELECT 7-2, 7-4, 7-18 to 7-20, 7-24 to 7-26

digital computer gi-2, P-1 to F-3

Digital Research 4-11, B-1

DIIDD (Disk II Device Driver) 9-4, 9-40, 9-42 to 9-45

data formats 9-25 to 9-27

DIIDD/RWTS differences 9-42 to 9-45

head positioning 9-8, 9-13, 9-43 to 9-44

disk controller 2-17, 9-10 to 9-34

Bootstrap ROM 9-1,9-10 to 9-12

command decoder 9- 1 1 to 9- 14

data register 9-14 to 9-15

drive ENABLE' 9-6,9-11.9-12

drive off delay 9-13.9-36

drive off/on 9-12 to 9-13. 9-36 to 9-38, 9-43

drive select 9-12

head positioning commands 9-11 to 9-13

logic state sequencer (see logic state sequencer)

power-up reset 9-13

read pulse processing 9-1 5, 9- 16, 9-29 to 9-35

READ/WRITE 9-13, 9-14, 9-21 to 9-25

SH IFT/LOAD 9-13 to 9-14, 9-2 1 to 9-24

WRITE PROTECT signal 9-7 to 9-8, 9-21

WRITE RE(JUEST' 9-7, 9-8. 3-13

WRITE signal 9-7, 9-23, 9-24

(also see disk topics; logic state sequencer; RWTS)
disk drive 9-1 to 9-9

analog card 9-2, 9-6, 9-16

apparent momentum 9-13

enabling 9-5,9-13

erase head 9-6 to 9-8

motor speed up time 9-38, 9-43

power supply 9-5, 9-36

read interface chip 9-8 to 9-9

read pick up signal 9-9

read pulse 9-8 to 9-9

read/write head 9-5 to 9-8

reliability and repair 10-2, 10-5

speed 9-2,9-43.9-45

stepper motor 9-2. 9-5 to 9-7, 9-13, 9-38

stepper motor response time 9-7. 9-38, 9-44

write protect bypass switah 9-46 to 9-48

write protect switch 9-6 to 9-8

writing to disk 9-5,9-7

(also see disk topics; logic state sequencer; RWTS)
disk I/O 1-10. 2-17, 9-1 to 9-48

booting 4-15, 7-22, 9-12, 9-38

bypassing write protection 9-46 to 9-48

controller (see disk controller)

data formats (see DOS data formats)
datapaths 9-1 to 9-5

DIIDD (see DIIDD)
DOS (see DOS)
drive {see disk drive)

formatting 9-4, 9-39, 9-43, 9-45

hard sector 9-3

head positioning 9-5 to 9-7, 9-13. 9-38, 9-43 to 9-44

programming 9-12 to 9-15, 9-21 to 9-26, 9-34 to 9-46

read process 9-4, 9-5, 9-39 to 9-45

RWTS (see RWTS)
soft sector 9-2

write interval 9-9, 9-15, 9-21 to 9-26
write process 9-4 to 9-5, 9-39 to 9-46
write protection 9-6 to 9-8, 9-21

(also see disk topics; logic state sequencer)
display, video (see video; screen; menwry)
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D MAnual controller 4-2S to 4-32, 7-19

DMA (Direct Memory Access) !-4, 2-IT, 4-11 to 4-14, gl-2

and data bus direction 4-11, 5-29, 5-31, 5-34

and maximum PHASE hold off 4-12, 4-22

and MMU propagation delay 4-13, 5-32

and MPU 1-4, 2-17, 4-2 to 4-4, 4-11 to 4-14

and READY 4-12, 4-22. G-3
and X4, X5 jumpers 4-14, 4-22. 7-18. G-.3, 1-,3

cycle stealing 4-11 to 4-14, 4-29, )rl-2

direct bus access 1-4.2-17

DMA IN/OUT signals 4-14, 7-18, 7-20

DMA' signal 4-3,4-11 to 4-14, 5-29 to 5-34. 7-19

from video scanner 4-11.8-1 to 8-3

priority chain 4-14, 4-31, 7-18. 7-20

simultaneous DMA 2-9, 4-11, (rl-6

(also see video scanning)

DOS 9-1 to 9-5, 9-26

and 1/0 links 7-22 to 7-23

ProDOS 7-22 to 7-23, 9-4, 9-26, 9-42 to 9-45

3 9-2,9-26

3.2 9-26,9-36

3.3 7-22 to 7-23. 9-4, 9-26, B-34 to 9-42

DOS data formats 9-2 to 9-5. 9-25 to 9-28, 9-33

address field 9-2. 9-4. 9-26 to 9-28, 9-39 to 9-42

blocks 9-4,9-43

bootstrap incompatibility 9-26, 9-34

checksum 9-26, 9-28. 9-4 1 to 9-42

data field 9-2, 9-26 to 9-28. 9-.39 to 9-42

data field misalignment 9-41, 9-42. 9-44

field identifiers 9-26 to 9-28, 9-32 to 9-.34

half/quarter track 9-13

read syncing leaders 9-25, 9-27, 9-28, 9-30

restrictions 9-26

sector 9-2 to 9-4

sector interleaving 9-,39, 9-42, 9-43, 9-45

track 9-2, 9-7

track to track synchronization 9,39, 9-43

write tables 9-2B
4-4 coded data 9-41.9-42

(also see RWTS programming examples)
DOSHOSS 6-12 to 6-18

DOS Protjm m mer 'x Miiiiiml fn r 11. Ih. II, 9-34

DOS TOOLKIT 3-29,8-41
'

DOUBLE-RES display modes 1-7 to 1-8, 5-7, 8-19 to 8 24

Dvorak keyboard layout 1-10, 7-14, 7-16 to 7-17, 7-37

dynamic RAM 1-3, 5- 1 to 5-4. g!-3 (also see RAM)

ENFIRM signal 6-2. 6-3, 7-28

enhanced firmware 4-18 to 4-20. 6-8 to 6-10, 1(V6

ENKBD' 7-11,7-13,7-18,7-19

ENTMG' signal 3-18, 3-20, 7-26, 7-27

ENVID' signal 7-U, 7-27, 7-37. 8-10. 8-11. G-2
EN80' signal 5-3 to 5-5, 5-.TO to 5-38, 7-27

EPROM el-3

adaptor 6-11. 7-38. 8-19, 8-42

compatibility with ROM 6-2

creation for system monitor 6-10 to 6-11

DOSHOSS 6-12 to 6-18

keyboard 7-9 to 7-10, 7-37 to 7-38

programmins screen cliaracter sets 8-40 to 8-43

Espinosa. Chris H-2
Eurocolor 8-17

European/export Apples (see PAL motherboartlt
exdusive-OR gate g!-3, E-3
expMsianROM 6-4 (see also E/0 STROBE' ROM)

fan, cooling 10-3 to 10-4

FCC regulations 8-3

FILER program 9-4. 9-42 to 9-43

firmware 1-3, 2-6, 6-6 to 6-9
and 1/0 7-20 to 7-23
bootstrap 4-15, 9-9 to 9-12
diagnostics 6-10, 10-6 to 10-8
interrupt handling 4-15 to 4-21
upgrade 4-18 to 4-20, 6-8 to 6-10, 10-6
40-column firmware 6-8, 8-14, 8-40

80-column 6-8,6-9,7-21,7-23.8-14
(aiso see Applesoft; Autostart; BASIC; Integer; monitor; ROM)

firmware peripheral card 4-14, 6-7, 7-20
and DMA Controller 4-31to4-32
DOSHOSS 6-12 to 6-18

FIRST/SECOND/THIRD 40 5-8 to 5-19, 5-41

Fischer. Dan 4-17

FLASH signal 3-14,3-17.8-10,8-13
flash counter 3-14. 3-17 to 3-19

flashing text 1-8. 3-!7. R-S, 8-13 to 8-14

flip-flop gl-3, E-2

floating bus 4-9, 5-32 to 5-38, 5-40, 7-24 to 7-26

floatinK point routines 6-6,6-7

floppy disks 9-2. 9-25

Fourth Dimension 9-48

FRCTXr signal 3-18, 6-2. 7-27. 7-28. 8-19 to 8-21

frequencies. Apple 3-4 to 3-5, 3-!7, 3-28

game t/0 extension jack 1 - 1 i , 7-5 to 7-7, 7-33

Sfame I/O socket 1 - 1 1 , 7-S to 7-7. 7-33 to 7-36

Kates (logic) 2-10, gl-3. El to E-5

tiencral Instrument 6-5. 7-12

(;ETLN 7-22

CrRAPHlCSmode 1 -7 to 1-9. 8-7. 8-27 to 8.!7 [also see LORES;
HIRES)

graphics pad 1-11

CRAPHICS time 8-] 1 to 8 13

gated r.R+2' signal 3-18 to 3-22, 8-1 1 to 8-12, 8-19 to S-21

(;R, (;R+1. (;R+2 siKnal.s 7-27, 8-10 to 8-12, 8-.S7 to 8-39

(;TE MicrocircuiLs 4-22

HAL (Hard Array IjOgic) 1-5. 3-20 to 3-22. gl-3 (also .we PAL; timinc
generator)

Hardware Ajiplications

Aceessinf^ tlie alternate keyboard set 7-37 to 7-38

Applesoft emulator for the timing HAL ,3-29 to 3-32

D MAnual t:ontroller 4-29 to 432
Disk drive write protect bypass switch 9-46 to 9-48

DOSHOSS 6-12to6-lH
Extendinfr the game I/O socket 7-33 to 7-36

Modifying: the system monitor 6-10 to 6-11

Programming screen character sets in EPROM 8-40 to 8-43

HBL (Horizontal BLankinft) 3- 15 to 3-16. 8-3 to 8 6. 8-10

and memory scanning 5-10 to 5-19. 5-41 to 5-42, 1-4

HIRES40rightsidecut<iff 8-34

m i xed mode sw i tch i ng 8-37 to 8-39

head po.sit:'oning (see disk 1/0)

Hertz (Hz) 1-2. gl 3

hexadecimal number system gl-3, F-2to F-3

high level language 4-10 to4 ll.gl 3

high RAM 1-3. 5-20 to ,'>-24, gl-3

HIRES graphics 1-7 to 1-9, 8-31 to8-37

character sets 3-29.8-41

colors 1-8 to 1-9.8-7. 8-32 to 8-.37

deiaved video 1-9. 8-9, 8-22 to 8-24, 8-32 to 8-35

HIRKS40 mode 1-7 to 1-9, 8-32 to 8-35

HIRES80 mode 1-8 to 1-9, 8-.35 to 8-37

i nterference 8-33 to 8-35

memory representation 8-8 to 8-9

memory scanning 5-11 to 5- 19. 5-40 to 5-42

resolution 18 to 1-9, 8-32 to 3-37

right side cutoff .3-29. 8-22. 8-24, S-33 fo8-35

(al.sosee LORES; video)

HIRES lOU Softswitch 7-3 to 7-6, 8-19 to 8-21

HIRES MMU Softswitch 5-22, S-25 to 5-27, 5-,30to5-33

HIRES TIME 5-6, 8-37 to 8-39

and memory scan 5-6. 5-7, 5-13 to 5-19

history 5-20. 6-6 to 6-9, H-1 to H-2

Holt, Rod 9-16. H-2

Homebrew Com puter C 1 ub HI
horizontal

blanking (sec HBL)
counter 3-13 to 3-16

period 8-11,8-16

retrace 3-12.3-13,5-13,8-5,8-6

scan 3-13 to 3-17, 8-5,8-6, 8-16,8-17

sync 3-12, 3-16. 5-15 to 5-18, 8-4 to 8-6, 8-10
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4 Understanding the Apple He

HPE' (hnrizontal preset) 3-13. 3-14. 5-19

HRC(J (HIRES Character Generator) 3-29. 8-41

HO 3-5 to 3-7. K-21. 3-22. 7-27. 8-lZ. 8-38

I/O (Input/Output) 1-7 to 1-11, 2-14 to 2-19, Chapters 7-9
and address decodiriK 2-in to 2-16, 7-1 to 7-4

and bus structure 2-14 to 2-19

and firmware 7-21 to 7-23

Apple Il/Ile differerioes 1-5 to I -0

pame socket 7-5 to 7-7

links (CSW and KSW) 7-21 to 7-23

memory nnapp^d 2-14

serial I/O 1-10 to Ml?. 2-18. 7-1 lo7-9, 1-5

speaker 7-3 to 7-fi. 7-9

timiniT 7-23 to 7-26

(also see auxiliary slot; cas.sette: disk: DMA; peripheral slots: video:

kc.vbnard)

I/O SELEfT' (i-4, 7-2. 7-4. 7-18 to 7-20

and disk fontroller 9-11. 9-12

I/O STROBE' fi-l. 7-2. 7-4. 7-18 to 7-21

protocol 4-19.4-20.7-21

I/O STROBE' ROM B-4. 7-20, 7 21

IC Isee intCErated circuits)

impedance 2-1 to 2-2. eI-3. E-2

IN#n 7-20 to 7-23

imlired addressing 4-S

INHIBIT' 5-24 to 5-34. 6-2 to B-4. 7-18 to 7-20. G-1

input iHiffer, f.ETLN 6-6, 7-22

Inptil/Output Isee I/O)

INTCXROM soft switch 5-22. 5-28 to 5-34. 7-19 to 7-21

INTD^ROM .soft switch 5-20, .i-22. 5-Z« to 5-34, 7-19 to 7-21

IntcKcr BASIC 4-11. 6-6 to 6-8. g\-A

andDOSHOSS fi-12to6-ia

iriteerated circuiLs 1-2, 1-1(1. jr!-4. E-2
lOU 1-5.1-6,5-6,7-4,8-10

MMU 1-5.5-30,5-31

troubleshooting 10-4 to 10-11

1«R8 HAL/PAL .3-18 to 3-22

2365 ROM 6- 1 to 6-6

34 70 flopp.v read in terface 9-8 to 9-9

3600 keyboard encoder 7-10 to 7-13

558 quad timer 7-6 to 7-8

6309 PROM 9-11.9-21

650 demodulator 8-17. 8-lS

6502 MPU 4-1 to 4-28. CI to C-7

65C02MPU 4-21 to 4-28. C-7 to C-I5
6664 dynamic RAM 5-1 to 5-4, 5-34 to 5-38

74LS148 priority encoder 4-29 to 4-30

74LS74 dual D flip-flop 8-18, E-2, E-4
74S109 3-18,3-19

741 op amp 7-6,7-8

Intel 4-12.6-2

interlacing

freqt;ency 8-6, 8-48

television scan 3-16, 8-6, 8-16, gI-4

internal registers, 6502 4-9 to 4-10, 4-15 to 4-20

internal ROM 5-28

interpreter 4-11, g;l-4

interrupts, 6502 4-2 to 4-4, 4-14 to 4-21

in/out priority chain 4-16 to 4-17, 7-18, 7-20

(also see IRQ'; NMI': RESET': BREAK)
inverse text 1-8, 8-8, 8-13 to 8-14. 8-26

inversion, logical 1-4, 4-6, E-2, E-4

lOU (I/O Unit) 1-5,1-6

address decoding 2-12, 7-2. 7-4

AO—A6, A7 address latch 5-6

diagrams 1-6,5-6.7-4,8-10

flash counter 3-14.3-17 to 3-19

keyboard support 3-14, 3-17, 7-3, 7-4, 7-12, 7-15

power-up reset 2-6,3-14,3-17,4-2

RAM address multiplexing 2-7, 5-5 lo 5-7

serial I/O functions 2-18, 7-3 to 7-5

soft switches 5-7, 7-3 to 7-5, 8-19 to 8-21

tiining signals 3-11

video generator 2-9, 8-2, 8-9 to 8-16

video scanner 2-7 to 2-9, 3- 13 to 3-17

4-bit adder 5-6, 5-9

50/60 Hi 3-4to3-5, 3-16tq3-17,8-iato8-17

IRQ' (Interrupt ReQuest) 4-2 to 4-4. 4-15 to 4-21, 7-18, 7-19

Jobs, Steve H-lU)H-2

joystick 1-11, 7-6, 7-33to7-36,Kl-4 (also see paddles; timers)

jumpers 10-3, G-2 to G-3
alternate characters (XI, X2) 7-11, 7-37 to 7-38. G-2
Apple 1! Eurapple 8-17, 1-7

DMA (X4. X5) 4-14, 4-22. 7-18. G-3. 1-3

ENVID' (X3) 7-37, 8-10, 8-11, G-2
GR^2(X7) 7-lS, 7-20, G-3

keyboard CONTROL/RESET 7-10, 7-11, G-3
SHIFT key mod (X6) 7-6, 7-7, 7-35. G-3
IK auxiliary RAM card 5-39

Kane, Gerry 4-12

Kaypro 7-38

keyboard 1-9 to 1-10, 2-16, 7-9 to 7-17

alternate characters 7-13 to 7-17, 7-37 to 7-38

AKD line 2-16. 6-11, 7-3, 7-4, 7-12, 7-15

A ppSe I I/IIe di fferenees 1-6

ASCII MO, 7-3, 7-9 to 7-17

auto repeat feature 2-!6, 3-17, 7-!5

AUTOSTRB signal 3-!4, 3-17, 7-4, 7-15

close/open Apple keys 1-10, 4-15, 7-7, 7-10

CTRL required for RESET 7-10, 7-11, G-3
Dvorak/QWERTY layout 1-10, 7-14. 7-16 to 7-17, 7-37

encoder 7-10 to 7-13

input buffer 6-7,7-22

KBD' signal 2-16, 5-28 to 5-33, 6-4 to 6-6. 7-11

keyboard ROM 7-9 to 7-17, 7-37 to 7-38, 8-18

keybciunce mask 7-10 to 7-12

KEYSTROBE Softswitch 2-16, 7-3 to 7-5. 7-15

KSTRB signal 3-14, 3-17, 7-3. 7-4, 7-11, 7-12, 7-15

numeric keypad 7-10, 7-11. 7-16 to 7-17, 7-37

operational summary 7-14 to 7-15

SH I FT key mod 7-6,7-7, 7-35, G-3
special function keys 1-9 to I-IO, 7-10. 7-11

timing 6-4 to 6-6, 7-12

KEYSTROBE Softswitch 2-16, 7-3 to 7-S, 7-15

Kraul, Doug H-2

KSTRB signal 3-14. 3-17, 7-3, 7-4, 7-11, 7-12, 7-15

KSW ( Keyboard input SWitch) 7-21 to 7-23

Language card (see RAM card)

LDPS' 3-4 to 3-11, 3-20 to 3-22, 7-27, 8-10, 8-14, 8-21 to 8-39

Lechner, Pieter 9-1, 9-34

LED, self lest 7-6. 7-9, 10-8

links, I/O 7-21 to 7-23

Ux)ir Dntnhmk E-2

logic equations (Boolean algebra) E-2 to E-4
timing HAL 3-20 to 3-22, 3-29 to 3-32

logic levels 1-2 to 1-4, 1-11, E-1

logic state sequencer 9-5. 9-11, 9-14 to 9-35

commands 9-15

decoding the contents 9-15 to 9-18

listings 9-19,9-20

P6PR0M 9-11, 9-14 to 9-17

QAWAIT 9-29 to 9-31, 9-35

read pulse input 9-1 1. 9-15 to 9-16, 9-30

READ sequence 9-5, 9-19, 9-20, 9-27 to 9-35

sequencing flip-flops 9-11, 9-14 to 9-15
WRITE PROTECT sequence 9-19 to 9-21

WRITE sequence 9-14 to 9-15, 9-19 to 9-25

logic symbols E-1 to E-5

long cycle 3-2 to 3 7, 3-19

and Apple frequencies 3-2

and disk I/O 9-25

and timing loops 3-28

and 6502 commun ication 4-5 to 4-6

in Apple II 1-3

reason for 3-7, 3-19

LORES graphics 1-7 to 1-8, 8-27 to 8-31

abnormal 7 MHz LORES mode 8-22, 8-24
colors 1-8, 8-7. 8-28 to 8-31, fig 8-11

cyclic patterns 8-28 to 8-30, fig 8-11

HO/VO variations 8-12, 8-27 • :

LORES40mode 1-7 to 1-8. 8-28 to 8-29 ' '•-'

LORESSOmode 1-7 to 1-8, 8-29 to 8-31 Vi:st!;=

memory representations 8^-8
.iiv'

memory scanning 5-10 to 5-12. 6-40 to 6-4Z »"

!^
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resolution 1-8, 8-31

(also see HIRES: video)

LSTTL 1-10. 3-19, 5-S2.jrl-4 (alsoseeTTLl

luminance siRnai 8-6 to 8-7, 8-17 to 8-19. 8-47 to 8-48

machine cycles 3-4 to 3-10. 4-5 to 4-9. s?1-4 (also see ionft cycle)

machine language 4-9 to 4-10, (fl-4

machine state byte 4-19

maintenance and care 10-1 to 10-11, 1-7

Markkula, Mike 9-1. H-2

McGraw-Hil!. [nc. 4-12

MC6800MPU 4-5

MD IN/OUT signal 2-16, 2-18. 5-28 to 6-31. ,'5-34, 7-15. 7-18 7-24

to 7-26

MDO—MD7 (see data bus)

memory 1-3. 2-6

cell 2-7.5-2. Kl-4

display areas 1-7

display representations 8-8 to 8-9

inhibiting 5-24 to 5-34, 6-2 to 6-4. 7-19

location 2-7.5-2

management 2-10 to 2-12, 5-20 to 5-34

pages 4-5, gl-5

scanning 1-7 to 1-8. 5-5 to 5-20, 5-40 to 5-42

scanning maps 5-11 to 5-!9, 5-41

6502 usage 1-2 to 1-3. 4-5

(also see RAM: ROM; MMU: DMA)
memory mapped I/O 2-14. 4-5. gl-4 (also see address decoding:)

memory mapped video 1-7, 8-1 to 8-2, 8-8 to 8-9, gl-4

microprocessing unit (see MPU)
Microsoft 4-12,4-31.6-6,8-1

Mini-Assembler G-6to6-7

MIXED mode 1-7,8-11.8-19

scanning 5-7, 5-J3 to 5-19

switching 3-15 to 3-16. 5-7, 8-37 to 8-39

MIXED soft switch 7-3 to 7-5, 8-19 to 8-21

MMU (Memory Management Unit) 1-5. 5-20 to 6-34, i-4

address decoding 2-10 to 2-12. .5-30, 7-2

aux/motherboard RAM management 5-24 to ,5-27

data bus management 2-10 to 2-12. 5-21 to 5-.33. fi-2

diagram 5-29 to 5-32

high memory management 5-20 to 5-24. 6-2 to 6-4

I/O (SCXXX) management 5-28, 6-2 to 6-4

propagation delay 4-12. 4-13, 5-.32

RAM address multiplexing 2-7. 5-5 to 5-7

Rev A/ Rev B G-1
soft switches 2-!2. ,5-20 to 5-.34, 10-6 to 10-7

timing signals 3-11

modulation 1-7. 8-3, 8-17. 8-47, g!-4 (also see RF modulator)

monitor, system 1-3, 4-15, S-6 to 6-11, g!-4

Autostart 4-15.6-7,6-8
in ROM 1-3, 2-6, 6-6 to 6-7

modifying 6-10 to 6-11

old Apple II monitor 6-6 to6-7, 7-21

monitor, video 8-3, 8-7, 8-9, 8-33, gl-4

Monolithic Memories 3-20, B-

1

MOS integrated circuit 1-10, 5-,32, 6-1. gl-5

MOS Technology 4-1, 4-6 to 4-7. 4-12. C-1

most significant bit (MSB) 2-2. gl-5 (also see BYTE FLAG)
motherboard 1-1, gl-4

I/O l-10tol-ll,7-lto7-9
part number G-1
revisions G-1 to G-3
(also see revision)

Motorola 4-5,4-12.9-8

mouse text 6-9, 8-25. 8-41

MPU (Microprocessing Unit) 1-2, 2-6, gl-4

MPU. 6502 4- 1 to 4-32, C- 1 to C-7
advantages/disadvantages 4-10
and Apple I HI
and bus structure 1-2, 2-6, 2-20
and DMA 4-11 to 4-14
and peripheral slots 1-3 to 1-4, 4-3, 4-4, 7-18, 7-19

Apple Il/IIe differences 1-3

bugs 4-21

clock pulses 3-4to3-10. 4-2, 4-5to4-9
connections 2-20, 4-3, 4-4, 7-18

data sheet C-1 to C-7
instruction details 4-23 to 4-27. 9-23. C-6
internal registers 4-9 to 4- 10. 4-14 to 4-20

interrupts 4-2 to 4-4, 4-14 to 4-21

machine cycle ,3-4 to 3-10. 4-5 to 4-9

manufacturers 4-1, C-1
maximum clock holdoff 4-12, 4-22, C-5
memory usage 1-2 to 1-3, 4-5

programming 4-9 to 4-11, F-2 to F-3
related signals 4-2 to 4-4

signals 4-2 to 4-4

stack 4-5, gl-7

timing 4-6 to 4-9, C-1 to C-6. 1-.3

(also see DMA: interrupts: timing diagrams)

MPU, 65C02 4-21 to 4-22

datasheet C-7toC-15
instruction details 4-26 to 4-28

multiplexed RAM address (RA0-RA7) 2-7, 2-20, ii-4 to 5-7, 7-

27 (also see RAM addrcs.s multiplexing)

multiplexing gl-5

data bus 2-9

RAM address 2-7. 5-2 to 5-9. 1-2

serial inpuLs 2 18, 7-5 to 7-7

NANDgate gl-5.E-2. E-3

National Semiconductor B-1, E-2. H-2

NCR eorp. 4 21 to 4-22. 4-27 to 4-28. C-I. C-7 to C-14. 1-4

Nintendo \i-l

NMI' (Non-Maskable Interrupt) 4-2 to 4-4, 4-15 to 4-17, 7-lK, 7-19

NMOS integrated circuits 4-21. 6-1

NOR gato gl-5, E-3

normal text 1-8, 8 8, 8-13, 8-26, H-40

NTSC television 1-7, 8-3. 8-6 to 8-7

number systems F-1 to F-3

numeric keypad 7-10, 7-11, 7-16 to 717, 7-37

object program 410 to 4-1 1. gl-5

octal number system gl-5, F-2

Ohio Scientific 4-1

Oki Semiconductor 4-9

op code 4-9 to 4-!(l, 4-23 to 4-28. gl-5

op code fetch 4-4

open Apple key 1-10, 4-15, 7-7. 7-11. 10-7

open collector 4-4

operand 4-9 to 4-10. gl-5

OR gate Kl-,5, E-2, E-3

Osborne. Adam 4-12

IMuiriH' i &• n Bit Mii-ri,iiroiT!ixi>r Hiiiiilli-iitl: 4-12

output enable 2-2 to 2 3. E-2. E-3 (also see tri-stale; data bus

management)

paddies Ml, 7-5 to 7-7

and game socket extender 7-33 tt) 7-36

programming 7-24 to 7-27

quad timer 7-6 to 7-8

pages, di.splay 1-7, 5-7, 8-19 to 8-21, gl-5

pages, memory 4-5. gl-5 (also see memory scanning)

PAGE2 lOU soft switch 1-7. 5-7. 7-3 to 7-5, 8-19 to 8-21

PAGE2 MMU soft switch 5-22, 5-25 to ,5-27, 5-30 to 5-33

PAL (Programmable Array Ijogic) 3-20 to 3-22, gl-6 (also see

HAL: timing generator)

PAL motherboard 1-7, 8-16 to8-19

alternate characters 7-14, 8-41, G-2

PAL TV system 1-7, .3-4 to 3-5, 8-16 to 8-19

signal frequencies 3-4 to 3-5, 3-17, 3-28

revision A/B G-1 to G-3

parallel data transfer 1-10, g)-5

PEEK 4-25

peripheral address decoding 2-10 to 2-12, 7-1 to 7-4

peripheral card check 10-8

peripheral card failures 10-8 to 10-10

peripheral data bus (D0-D7) 7-6. 7-!5, 7-18, 7-24 to 7-26
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periphera] data bus driver 2-16, 7-15, 7-18. 1-2

timinp and control 5-29, 7-24 to 7-26

write cycle isolation 2-16, 7-24, 7-25

(also see MD IN/OUT')

peripheral slots 1-3 to 1-4, 7-15 to 7-26, 1-6

and address decoded si^rnals 7-2, 7-4. 7-18 to 7-20

and bus structure 1-.? to 1-4. 2-16. 2-20, 7-15, 7-18

and I/O links 7-21 to 7-23

connections 2-20, 4-S. 7-2, 7-4. 7-15 to 7-20

reliability 10-2

(also see auxiliary slots, I/O)

Periteljack 8-17

phase relationships, color 3-7, 3-10, 3-19, 8-27 to 8-37. 1-7

PHASE 3-2 to 3-10, 2-20 to 3-22, 4-2 to 4-9, 7-18, 7-27 (also see

timing diagrams)

PHASE 1, Apple 3-2 to 3-10, 3-20 to 3-22, 4-6, 7-18. 7-27

PHASE 1,6502 4-2 to 4-8, 1-3

PHASE 2 4-2 to 4-9 (also see timinifdiaKrams)

phases, stepper motor 9-5 to 9-8, 9-11 to 9-13

PICTURE, PICTURE' sisnais 7-27, 8-3, 8-7 to 8-17, 8-24 to 8-36

piffeonhole computer 2-^

POKE 4-25

positive ioKic 1-3, ftl-5. E-1

potentiometer (pot) 1-11,7-7 (also see paddles)

power supply l-ll,f^l-G

reliabilit.v 10-3

to disk drive 9-5.9-6

to peripheral slots 7-15, 7-18

troubleshootinsr/failures 10-8 to Ifl-9, 10-11

power-up byte 4-15,6-12

power-up reset 2-6, ,3-14, 3-17, 4-2, 6-12, 9-13

on disk controller 3-17, 9-11. 9-13

PR#n 7-20 to 7-23

PREAD 7-29 to 7-30

prime (') notation 1-4. E-4

priority chains 7-18, 7-20

DMA 4-14, 4-30 to 4-32

interrupt 4-16

processor status rcRister 4-9 to 4-10, (fl-7

ProDOS 7-22 to 7-23, 9-4. 9-26, 9-42 to 9-45

PrnDOfi Tt'chnimt Refercme Maiiml 9-34

program counter 4-9 to 4-10, 4-15, 4-19, frl-6

projrramminsr 4-9 to 4-1

1

(also see memory seanniiiK maps; software applications)

propaKation delay 3-7, gl-6

CAS' 1-3

in timing generator 3-7, 3-8, 3-20

MMU signals 4-12.4-13,5.32

(also see timinK diagrams)

pull-down resistor 7-7, 7-10, 7-19, 7-34

pull-up resistor 4-4. 4-32, 7-10, 7-19, 8-11

pushbutton inputs 1-1 1, 7-5 to 7-7

and ganne I/O ex ten sion 7-33 to 7-36

and open/close Apple keys 7-7, 7-10. 7-11

and SHIFT key mod 7-6,7-7

P5 PROM (see Bootstrap ROM)
P6 PROM (see logic state sequencer)

quad timer 2-20. 7-6 to 7-8, 7-29 to 7-32 (also see paddles: timers)

Quality Software 9-1. 9-34

(fuiKLoader 6-18

Quinn, Peter H-2

Q3 signal 3-4 to 3-U , 3-20 to 3-22, 7-18, 7-27

and auxiliary RAM 5-3, 5-35 to 5-38

R/W 1-2. 2-6 to 2-7, 7-18, 7-27

and address bus 2-2, 2-6 to 2-7. 4-2 to 4-4

and address decoding 7-2

and RAM 5-3 to B-5. 5-34 to 5-37

and ROM 6-4

MPU connection 4-2 to 4-4

(also see timing diagrams)

R/W'80 5-4. 5-5, 5-36 to 5-38, 7-27

R.H. Electronics 10-3

radio frequency (RF) 1-7, g-3, 8-47 to 8-48

Radio Shack 10-6

RAM (read/write memory) 1-3, 2-20, 5-1 to 5-44, g|-6
and Apple bus structure 2-6 to 2-10, 2-20
and MPU communication 5-3 to 5-5, 5-32 to 5-38
and 6502 memory usage 4-5

Apple Il/IIe differences 1-4

auxiliary card 5-1 to 5-5, 5-24 to 5-27, 5-39
CAS' ,3-4 to 3-11, 5-2 to 5-5

chip organization 2-9,2-20,5-3,5-4

connectiotis 2-20. 5-3 to 5-5

data distribution 2-9 to 2-10. 5-3 to 5-5, 1-2

dynamic RAM chip 5-1 to 5-4, 5-34 to 5-38

early write cycle 5-34

inhibiting 5-24 to 5-34, 7-19

R/W 5-,S. 5-4. 5-34 to 5-35

R/W'80 5-4. 5-5, 5-36 to 5-38

RAM bus 2-2

RAS' .3-4 to 3-1 1, 5-2 to 5-6

reading video data from program 5-40 to 5-44

refreshing of 1-3, 5-3, 5-19 to 5-20. 1-4

scanning (sec memory scanning)

static RAM chip 5-38

TCAC/TOFF 5-35, 5-37

timing 5-32 to 5-38

video data latches 2-9 to 2-10, 2-20, 5-2. 5-3

RAM address multiplexing 2-7, 5-2 to 5-9, 1-2

address assignments 5-6 to 5-10, 5-19 to 5-20

and bus structure 2-7

circuit diagram 5-6

FIRST/SECOND/THIRD 40 5-8 to 5-19, 5-41

high RAM bank control 5-5 to 5-7. 5-24

HIRES scanning 5-11 to 5-19. 5-40 to 5-42

MIXED mode .scanning 5-7, 5-13 to 5-19

offset generation 5-8 to 5-9

RA0-RA7 2-7, 2-20, 5-4 to 5-7, 7-27

TEXT/LORES scanning 5-10 to 5-12. 5-40 to 5-42

UNUSED 8 ,5-8, 5-1!, 5-14, 5-19, 5-41

RAM card, 16K 5-22 to 5-24, 6-8, 1-4

RAMRD/RAMWRTsoft switches 5-22 to 5-33

random access memory 1-3, 6-1. gl-6 (also see RAM; ROM)
RAS' 3-4 to 3- 11 , 3-20 to 3-22. 5-2 to 6-6

RAS'CAS'/RAS' only refresh 5-3

raster 3-12, gl-6

RAO—RA7 (see RAM address multiplexing)

RA9,RA10 signals 7-27, 8-9 to 8-14

read cycle 2-5, 2-6, 5-34 to 5-38. 7-24 to 7-26

read pulse (see disk topics)

READ sequence (see logic state sequencer)

read-modify-write instructions 4-22 to 4-28, gl-6

read/write control (see R/W)
read/write memory (see RAM)
READY 4-3, 4-4, 4-21, 7-18, 7-19, G-3
and DMA 4-12, 4-22, G-3

refresh i ng RAM 1 -3. 5-3, 5- 19 to 5-20, 1-4

reliability, Apple He 10-1 to 10-4, 1-7

repair, Apple He 10-4 to 10-11

RESET' 2-6, 4-2, 4-3. 4-14 to 4-15. 7-11

and Autostart monitor 4-15,6-11,9-12
and disk controller 9-12. 9-13

and high RAM 5-23, 5-24, 6-8

and lOU 3-14, 3-17, 4-2. 4-3, 7-3, 7-4

and MMU 4-14 to 4-15. 5-29

and peripheral slots 1-4.7-18,7-19
and soft switches 5-29. 5-30, 7-3. 7-4, 7-37
and 6502 4-3, 4-4, 4-15 to 4-16
handler 4-15, 5-28. 6-11, 7-37

hard vector 2-6. 4-14 to 4-15
keyboard jumpers 7-10, 7-11, G-3
modified handler 6-11

power-up (see power-up reset)
priority 4-20

soft (RAM) vector 4-15

revision A/B G-1 to G-3
alternate characters 7-11, 7-13. 7-37 to 7-38. 8-11
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ENFIRM/FRCTXr 6-2, 6-3, 7-28. 8-19 to 8-20
timing HAL 3-20

X3 jumper 8-10,8-11

X7 jumper 7-18

RF leakage 8-3,1-1

RF modulator 1-7.8-3,8-47

Rockwell International 4-1, 4-6 to 4-7, 4-12. 4-21 lo 4-22 4-27 to 4-

28, C-ltoC-5, 1-4

ROM (Read Only Memory) 1-3, 6-1 to 6-18, gl-6

and BASIC 1-3, 2-6, 6-6 to 6-7

and bus structure 2-6. 2-20

and I/O SELECT' 6-4,7-20

and monitflr 1-3, 2-6, 6-6 to 6-7

andR/W 6-4

and 6502 memory usage 4-5

Bootstrap (P5) 9-9 to 9- S2

checksum 6-11.10-7

chip selects 6-2

connections 2-20. 6- 1 to 6-4

CI—DF and EO—FF ROMS 2-20, 6-1 to 6-6, 6-8

f i rmware 1-3. 2-6, 6-6 to 6-9

1/0 STROBE' ROM 6-4, 7-20, 7-21

inhibiting 5-28, 6-2 to 6-4. 7-19

keyboard ROM 7-9 to 7-17, 7-37 to 7-38, 8-18

ROM bus 2-2

timing 6-4 to 6-6

video ROM 8-9 to 8-14, 8-18, 8-26. 8-40 to 8-43

write cycle (just kidding)

(also see firmware: nionitor)

ROMEN)', R0MEN2' signals 5-27 to 5-33, 6-2 to 6-6, 7-27

ROW address 2-7,5-2 to 5-7. 5-19 to 6-20

RWTS 9-4

data formats 9-25 to 9-27

flowchart 9-37

programming examples 9-34 to 9-42

RWTS/DIIDD differences 9-42 to 9-45

write tables 9-26

Sander. Wendel H-2

scan counter (see video scanner)

Scott. Mike H-2

screen display 1-7 to 1-9

mapping 1-7 to 1-8,8-1 to 8-2, 8-8 to 8-9

memory display areas 1-7

memory maps 5-1 1 to 5-19. 6-4

1

modes 1-7 to 1-9. 8-19 to 8-21

pages 1-7, 5-7. 8-19 to 8-21

screen splitting 3-23 to 3-27, 5-40 to 5-44

soft switches 7-3 to 7-5, 8-19 to 8-21

(also see memory; video; LORES: HIRES: TEXT)
SECAM (sequential color and memory) 8-17, gl-6

secondary buses 2-7

SEGA. SEGB, SEGC signals 7-27, 8-10, 8-12. 8-21. 8-37 to 8-39

serial data transfer 1-10. gl-6

serial I/O MO to 1-11, 2-18, 7-1 to 7-9. 1-5 (also see I/O)

serial input multiplexor 2-18, 2-20. 7-5 to 7-7

serrations 8-4, gl-6

SET OVERFLOW 4-4.1-3

SHIFT' signal 7-6. 7-7. 7-10, 7-1

1

SHIFT key modification 7-6, 7-7, 7-35. G-3

Shagart 9-2.9-16,9-43

Siemens 9-48

simultaneous DMA 2-9,4-11, gI-6

SINGLE-RES display modes 1-7 to 1-8, 8-19 to 8-24

slot ROM 6-28,6-4

SL0TC3R0M soft switch 5-22. 5-28 to 5-34, 7-!9 to 7-21

Smith. Burrell H-2

soft switches 1-6. gl-6
and RESET 5-29, 5-30. 7-3. 7-4. 7-37

disk controller 9-1 1 to 9-U
display mode 7-3 to 7-5, 8-1 9 to 8-21

lOU 5-7, 7-3 to 7-5. 8-19 to 8-21, 1-5

MMU 2-10 to 2-12, 6-20 to 5-34

reading 5-20. 5-22, 5-30. 7-3 to 7-5. 1-5

SOFTALK 4-17,5-40

Software Applications
Apple timing loops 3-28

Modifying the system monitor 6-10to6-n
Programming DOUBLE-RES displays in BASIC 8-44 to 8-46
Programm ing the game paddles 7-29 to 7-32
Readi ng video data from a program 5-40 to 5-44

Switching screen modes in timed loops 3-23 to 3-2T
6502/65C02 instruction details 4-23 to 4-28

source program 4-10 to 4-11, gl-6

Southern California Research Group 6-18

speaker MO, 7-4 to 7-6. 7-9

special function keys 1-9 to 1-10. 7-10, 7-11

SPKR signal 7-3 to 7-6, 7-9

stack, 6502 4-5, 4-15 to 4-20

stack pointer 4-5, 4-9 to 4-10, 4-14

stacked interrupts 4-16

state machine (see logic state sequencer)

status register. 6502 4-9 to 4-10, 4-14 to 4-20

STEP utility 6-7,6-10

stepper motor 9-2. 9-5 to 9-7, 9-13, 9-38

strobe g]-7

CAS' 3-4 to 3-1 1,3-20 to 3-22 5-2 to 5-5

C040 STROBE' 1-1 1, 4-25, 7-2 to 7-6

1/0 STROBE' 6-4, 7-2. 7-4. 7-18 to 7-21

KEYSTROBE soft switch 2-lB, 3-17, 7-3 to 7-,5, 7-12, 7-15

KSTRB' signal 3-14, 3-17, 7-3, 7-4. 7-12. 7-15

RAS' 3-4 to ,3- 1 1 , 3-20 to 3-22, B-2 to 5-8

SUMA3-SUMA6 5-6, 5-8. 5-9

SWEET 16 6-6,6-7

switch bounce 4-29, 7-10 to 7-12

SYNC, video 7-18. 7-27. 8-3 to 8-6, 8-10. 8-lB

SYNC. 6502 4-3. 4-4. 7-18, 7-19, [-3

Synertek 1-6, 3-7, 4-t, 4-6 to 4-7, 4-12. 6-1.6-5, C-l, H-2

Slittrlirt: Pntttrn uttii htt; Mniutnl 4-25

television

frequency interlace 8-6,8-48

frequency response 8-7. 8-33. 8-47 to 8-48

input 1-7,8-3

processing 8-3 to 8-7, 8-47 to 8-48

scan interlace 3-16, 8-6, gl-4

scanning 3-12 to 3-17, 8-3 to8-6, 8-16

syne 3-12 3-13. 8-3 to 8-6. 8-16. gl-7

systems .3-12, ,3-17, 8-3, 8-16 to 8-17

(also see video; NTSC; PAL; SfXAM)
temperature. ot>erating 10-3 to 10-4

TEXT mode 1-7 to i -8. 8-24 to 8-27

alternate characters 8-8. 8-40 to 8-43, (5-2

ASCII 1-8.8-13,8-15,8-25,8-40

characters 8-8.8-15,8-25

memory representations 8-8

memory scanning ,5-10 to 5-12, 6-40 to .5-42

norm/inv/flash 1-8,8-8,8-13.8-40

patterns 8-25,8-40

TEXT40/TEXT80 mode 1-7 to 1-8, 8-20. 8-23, 8-26

80-column capability 1-8. 7-23. 8-19 to 8-27

80-column firmware 6-8, 6-9. 7-21, 7-2;i

TEXT soft switch 7-3 to 7-5, 8-19 to g-21

ti mers
disk controller 9-U, 9-13

paddles 7-6 to 7-8, 7-29 to 7-32. 1-5

timing diagrams and descriptions

AY -5-3600 keyboard encoder 7- 12

diiik controller soft switches 9-21 to 9-23

disk read pul.se generation 9-8 to 9-9

DMA 4-12 to 4-13

HI RES video output 8-31 to 8-37, fig 8-13

I/O 7-23 to 7-26

LORES video output 8-27 to 8-31. fig 8-9

MIXED mode switching 8-37to8-39

MMU/IOU timing signals ,3-U

RAM 5-2, 5-32 to 5-38

READ sequence performance 9-32 to 9-,'53

ROM 6-4 to 6-6

TEXT video output 8-23 to 8-27

timing generator signals 3-2 to 3-12, 3-32

6502 4-5 to 4-9, C-l to C-7

timing generator 3-1 to 3-22

and video scanner 3-2. 3-3

^kii,..
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Apple II/I le d iffercnces 1-2 to 1-3

hardware 3-19 to 3-22

overview 3-2

propaEation delay 3-7. 3-8. 3-20. 1-2

signal descriptions 3-2 to 3-12

signal distribution 3-7. 3-9

signal frequencies 3-4 to 3-5. 3-17. 3-28

tim i ttft d iagrams 3-5 to 3-7, 3-32

timiriK HAL 1-5. 3-20 to 3-22. 3-29 to 3-32, G-1

(also see long cycle; timine diagrams)

timing loops ,1-23 to 3-28. 4-32. 5-41 .
9-25

tOKEle outputs 2-18. 7-3 to 7-5. 7-9

TRACE utility 6-7.6-10

trademarks B-1

transceiver (transmitter/receiver) 2-2 to 2 3 (also see bidirectional

bus driver)

tri-state bus drivers 2-1 to 2-3. 4-2 to 4-4

tri-slate logic 2-1 to 2-8. ((1-7. E-2

troubleshootinE 10-6 to 10-11. i?l-7

truth lable.i E-1 to E-4

TTL (TVansistor Transistor Logic) 1-10. 3-19. E-2

two state loftic 1-2.1-8.2-1

Ihiiln-stiiml'nin llw Ai,)ili- II 5-23. 5-40. 5-42. 6-12. 9-34. 10-3

UNUSED 8 ,5-8. ,5-11.5-14. 5-19. 5-41

USERl 7-19. 1-fi

VBL (Vertical BLanking) 3-15 to 3-16, 8-4 to 8-6. 8-10. 8-lT

and memory seanninpr 5-10. 5-12, 5-18, 5-19, 5-41

andSOHji'OUs 8-16

poll i ng 3-23 to 3-27, .5-40 to ,5-44
.
7-3 to 7-5

vectors, interrupt 4-14 to 4-20

vertical

counter ,3-13 to 3-17

retrace 3-13, 5-13. 8-5. 8-6

scan 3-13to3-17. 8-5. 8-6.8-16

s.vnc 3-12. 3-16. 5-18, 8-4 to 8-6. 8-10, 8-16

video 8-1 to8-48, gl-7

and export Apples (see PAL motherboard)
and RF modulator 1-7, 8-,3, 8-47

black reference 8-3

blanking 3-12, 8-4 to 8-6, 8-26

color signals 8-6 to 8 7, 8-16 to 8-19, 8-27 to 8-37

colors 1 -8 to 1 -9. 8-7, 8-27 to 8-37

composite video 8-3, 8-6 to 8-7, gt-2

displa.v (see screen display)

generation (see video generator)

horizontal period 8-11.8-16

mapping 1-7 to 1-8, 8-1 to 8-2. 8-8 to 8-9

modes 1-7 to 1-9. 3-19 to 8-21

monitor 8-3.8-7.8-33

NTSC l-7.8-3.8-6to8-7.8-16to8-19

PAL 1-7, 3-4 to 3-5. 3-17, 8-16 to 8-19

programming 1-8. 8-1. 8-8. 8-20. 8-44

retrace 3-12 to 3-13, 8-5.8-6

scanning (see memory scanning, television scanning)
SECAM 8-17

soft switches 7-3 to 7-5, 8-1 9 to 8-2

1

syncing serrations 8-4

(also see HIRES; LORES: MfXED; screen; television: TEXT)
video data 2-9 to 2-10

and peripheral cards 5-5, 7-24 to 7-26

bus (VID0^VID7) 2-9 to 2-10, 5-4, 7-27, 8-9 to 8-14

distribution 2-9 to 2-10, 5-3 to 5-5, 7-27. 8-10

latches 2-9 to 2-10. 2-20, 6-2 to 5-4

reading from program 5-40 to 5-44, 7-24 to 7-26

VID7 delay generation 8-22 to 8-24. 8-32 to 8-34

(also see timing diagrams)

video generation 2-20, 8-1 to 8-34

and export Apples 8-16 to 8-19

Apple Il/lle differences 1-6 to 1-7

data latches 2-9 to 2-10, 2-20, 5-2 to 5-4

delayed HIRES 1-9. 8-22 to 8-24, 8-32 to 8-35
HIRES generation 8-31 to 8-37

HIRES40 interference 8-33 to 8-36

lOU circuits 8-10

load/shift register 8-10,8-14

LORES cyclic patterns 8-28 to 8-29, fig 8-1

1

LORES generation 8-27 to 8-31

MIXED mode switching 5-7,8-3710 8-39

mode configuration 8- 19 to 8-21 , 8-26, 8-27, 8-31

norm/inv/flash 1-8, 8-8. 8-13, 8-40

TEXT generation 8-12 to 8-13. 8-23 to 8-27

timing signals S-21 to 8-24

video ROM 8-9 to 8-14, 8-18, 8-26, 8-40 to 8-43

video scanner gating 8-9,8-10,8-16

3.56 MHz trap 8-18,8-19

video scanner 1-5, 1-8, 2-9, 3-2, 3-13 to 3-19

and 50 Hz scanning 3-16 to 3-19, 8-12 to 8-14

feedback to video generator 3-2. 3-3, 3-5 to 3-7

hardware 3-13 to 3-16

logic gating 8-9.8-10. 8-16. 8-37, 8-38

(also see video generator)

video signal components 8-4.8-10,8-18

chrominance 8-5 to 8-6, 8-17 to 8-19. 8-47 to 8-48

COLOR BURST 3-15. 8-3 to 8-7, 8-10. 8-16 to 8-19

COLOR REFERENCE 3-4 to 3-10, 8-6 to 8-7. 8-17

color subcarrier 8-17 to 8- 19. 8-47 to 8-48

luminance 8-6 to 8-7. 8-17 to 8-19. 8-47 to 8-48

PICTURE signal 7-27. 8-3. 8-7 to 8-17, 8-24 to 8-36

SYNC 7-18. 7-27, 8-3 to 8-6. 8-10. 8-16

VIDEO output 8-3 to 8-7, 8-10, 8-16. 8-18

WNDW 8-10. 8-11. 8-37 to 8-39

Video-7. Inc. H-2

VIDO—V1D7 (see video data)

VID7M signal 3-4 to 3-12. 8-10. 8-21 to 8-35

VPE' 3-13 to 3-17

Watson. Allen III 8-37. 8-45

Wiggington. Randy 9-16. H-2

wire-OR (collector OR) 4-4, 7-19. gI-7

WNDW signal 8-10. 8-11. 8-37 to 8-39

Worth. Don 9-1.9-34

Wozniak. Steve 1-1. 4-12. 5-8, 6-6, 9-16, 9-26. H-1 to H-2

write cycle 2-5, 2-6. 4-21.5-5. 7-24 (also see timing diagrams)

write protect switch 9-6 to 9-8, 9-13 to 9-14, 9-21

installing on disk drive 9-46 to 9-48

(see also disk I/O)

X-register 4-9 to 4-10

Y-register 4-9 to 4-10

zero page addressing mode 4-5

Zilog 4-12, B-1

Z80MPU 4-1, 4-11, 4-12

Z80 softcard 4-12, 4-31 to 4-32, 7-19

3,5M (see COLOR REFERENCE)
7M 3-4 to 3-10. 3-19 to 3-22, 7-18, 7-27

14M 3-4 to 3-10. 3-19 to 3-22, 7-27, 8-10

40-column firmware 6-8, 8-14. 8-40

6502 MPU (seeMPU)
80-column card (see auxiliary slot)

80-eolumn firmware 6-8, 6-9. 7-21, 7-23. 8-14

80COL soft switch 7-3 to 7-5, 8-19 to 8-21

80COL' signal 3-20 to 3-22. 7-4. 7-27

80ST0BE lOU soft switch 5-7, 7-3 to 7-5. 8-19 to 8-21

80STORE MMU Softswitch 5-22, 5-25 to 5-27, 5-30 to 5-33

80VID phantom soft switch 5-7
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